Dephasing and Decoherence in Vibrational and Electronic Line Shapes

Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the “bath” (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broa...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 124; no. 8; pp. 1531 - 1542
Main Authors Kananenka, Alexei A, Strong, Steven E, Skinner, J. L
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.02.2020
Subjects
Online AccessGet full text
ISSN1520-6106
1520-5207
1520-5207
DOI10.1021/acs.jpcb.9b11655

Cover

Abstract Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the “bath” (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broadening process is often known as dephasing. If, on the other hand, the bath degrees of freedom are instead treated quantum mechanically, there is additional broadening due to what is known in the chemical-physics literature as decoherence. The question addressed in this paper is the relative importance of decoherence (bath quantum effects) and dephasing. We present general developments of this subject for absorption and emission line shapes, discover several new relationships connecting classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in liquid D2O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature liquids.
AbstractList Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the “bath” (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broadening process is often known as dephasing. If, on the other hand, the bath degrees of freedom are instead treated quantum mechanically, there is additional broadening due to what is known in the chemical-physics literature as decoherence. The question addressed in this paper is the relative importance of decoherence (bath quantum effects) and dephasing. We present general developments of this subject for absorption and emission line shapes, discover several new relationships connecting classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in liquid D₂O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature liquids.
Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the "bath" (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broadening process is often known as dephasing. If, on the other hand, the bath degrees of freedom are instead treated quantum mechanically, there is additional broadening due to what is known in the chemical-physics literature as decoherence. The question addressed in this paper is the relative importance of decoherence (bath quantum effects) and dephasing. We present general developments of this subject for absorption and emission line shapes, discover several new relationships connecting classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in liquid D O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature liquids.
Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the “bath” (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broadening process is often known as dephasing. If, on the other hand, the bath degrees of freedom are instead treated quantum mechanically, there is additional broadening due to what is known in the chemical-physics literature as decoherence. The question addressed in this paper is the relative importance of decoherence (bath quantum effects) and dephasing. We present general developments of this subject for absorption and emission line shapes, discover several new relationships connecting classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in liquid D2O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature liquids.
Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the "bath" (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broadening process is often known as dephasing. If, on the other hand, the bath degrees of freedom are instead treated quantum mechanically, there is additional broadening due to what is known in the chemical-physics literature as decoherence. The question addressed in this paper is the relative importance of decoherence (bath quantum effects) and dephasing. We present general developments of this subject for absorption and emission line shapes, discover several new relationships connecting classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in liquid D2O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature liquids.Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the "bath" (in this case, the rotational and translational degrees of freedom of all the molecules in the liquid). If these degrees of freedom are treated classically, the broadening process is often known as dephasing. If, on the other hand, the bath degrees of freedom are instead treated quantum mechanically, there is additional broadening due to what is known in the chemical-physics literature as decoherence. The question addressed in this paper is the relative importance of decoherence (bath quantum effects) and dephasing. We present general developments of this subject for absorption and emission line shapes, discover several new relationships connecting classical and quantum treatments of the bath, and also consider the Stokes shift (difference in peak frequencies in absorption and emission). We next draw some general conclusions by considering a model system whose transition-frequency time-correlation function has only one bath time scale. We then consider a realistic system of the vibrational OH stretch transition of dilute HOD in liquid D2O at room temperature. For this system, we conclude that bath quantum effects are not very important, except for the Stokes shift. More generally, we argue that this is the case for many vibrational and most electronic transitions in room-temperature liquids.
Author Kananenka, Alexei A
Skinner, J. L
Strong, Steven E
AuthorAffiliation Pritzker School of Molecular Engineering
Department of Physics and Astronomy
AuthorAffiliation_xml – name: Department of Physics and Astronomy
– name: Pritzker School of Molecular Engineering
Author_xml – sequence: 1
  givenname: Alexei A
  orcidid: 0000-0001-9422-7203
  surname: Kananenka
  fullname: Kananenka, Alexei A
  email: akanane@udel.edu
  organization: Department of Physics and Astronomy
– sequence: 2
  givenname: Steven E
  orcidid: 0000-0003-4204-3028
  surname: Strong
  fullname: Strong, Steven E
  organization: Pritzker School of Molecular Engineering
– sequence: 3
  givenname: J. L
  orcidid: 0000-0001-6939-9759
  surname: Skinner
  fullname: Skinner, J. L
  email: jlskinner@uchicago.edu
  organization: Pritzker School of Molecular Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31990552$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtPwzAQxi1URB-wM6GMDLT4ETvOiNrykCox8Fgjx7lQV6kd7GTgvydtAwMSMJzudPf7bvi-MRpYZwGhc4JnBFNyrXSYbWqdz9KcEMH5ERoRTvG0q2TQz4JgMUTjEDYYU06lOEFDRtIUc05HaL6Aeq2CsW-RskW0AO3W4MFqiIyNXk3uVWOcVdX-vKxAN95Zo6OVsRA9rVUN4RQdl6oKcNb3CXq5XT7P76erx7uH-c1qqphIm2kigHRDLkuQXJKiwCmTLM0LXALgWGPCFSsYkCShTBYYBBbdjjBdYoi1YBN0efhbe_feQmiyrQkaqkpZcG3IaMyIlLGI4_9RFkvKGJdJh170aJtvochqb7bKf2RfHnUAPgDauxA8lN8IwdkuhqyLIdvFkPUxdBLxQ6JNszey8cpUfwmvDsL9xbW-cz78jn8CgD2bBQ
CitedBy_id crossref_primary_10_1039_D1CP04490G
crossref_primary_10_1177_00037028231210885
crossref_primary_10_1063_5_0119631
crossref_primary_10_1177_00037028221126197
crossref_primary_10_1021_acs_jpclett_0c03641
Cites_doi 10.1073/pnas.0701482104
10.1103/PhysRevLett.67.1011
10.1063/1.1683072
10.1016/j.cplett.2005.07.063
10.1103/PhysRevA.31.1695
10.1063/1.447874
10.1103/PhysRevLett.83.2077
10.1063/1.465409
10.1063/1.1642609
10.1021/ar5002796
10.1063/1.1514652
10.1016/j.cplett.2003.12.078
10.1007/978-3-642-96701-6
10.1016/0301-0104(94)00025-5
10.1063/1.442382
10.1063/1.1502248
10.1063/1.471326
10.1016/S0009-2614(03)01317-4
10.1103/RevModPhys.76.1267
10.1021/acs.jpclett.5b02637
10.1063/1.2780868
10.1146/annurev.physchem.47.1.109
10.1021/jp9919314
10.1021/j100308a038
10.1887/0852743920
10.1063/1.2221685
10.1063/1.3587053
10.1063/1.447334
10.1002/9780470143605.ch6
10.1021/jp907648y
10.1063/1.443055
10.1021/ct400292q
10.1103/RevModPhys.75.715
10.1143/ptp/89.2.281
10.1016/S0166-1280(96)04612-X
10.1016/S0009-2614(01)00855-7
10.1201/9781420084306
10.1063/1.474312
10.1063/1.2925258
10.1073/pnas.0408813102
10.1063/1.1739391
10.1006/jcph.1995.1039
10.1063/1.1961472
10.1063/1.470177
10.1103/PhysRevLett.81.5294
10.1021/jp037031b
10.1016/S0009-2614(03)00314-2
10.1016/0021-9991(77)90098-5
10.1063/1.1580807
10.1016/S0009-2614(03)01267-3
10.1063/1.3173276
10.1017/CBO9780511675935
10.1021/cr9001879
10.1063/1.466780
10.1063/1.442059
10.1063/1.1645783
10.1016/S0301-0104(01)00302-0
10.1063/1.473144
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jpcb.9b11655
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 1542
ExternalDocumentID 31990552
10_1021_acs_jpcb_9b11655
b71737628
Genre Journal Article
GroupedDBID -
.K2
02
123
29L
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a369t-76e1369b8fe8581dd093839bd0fee04c015a3d3e177238d0e60601513cf0e4c63
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 15:27:58 EDT 2025
Wed Oct 01 13:05:16 EDT 2025
Thu Jan 02 22:59:25 EST 2025
Tue Jul 01 01:00:34 EDT 2025
Thu Apr 24 22:56:19 EDT 2025
Thu Aug 27 22:10:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-76e1369b8fe8581dd093839bd0fee04c015a3d3e177238d0e60601513cf0e4c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9422-7203
0000-0001-6939-9759
0000-0003-4204-3028
PMID 31990552
PQID 2348233587
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2431884644
proquest_miscellaneous_2348233587
pubmed_primary_31990552
crossref_primary_10_1021_acs_jpcb_9b11655
crossref_citationtrail_10_1021_acs_jpcb_9b11655
acs_journals_10_1021_acs_jpcb_9b11655
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-27
PublicationDateYYYYMMDD 2020-02-27
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Hamm P. (ref3/cit3) 2011
ref45/cit45
ref27/cit27
Joos E. (ref15/cit15) 2013
Mukamel S. (ref1/cit1) 1995
ref63/cit63
Schlosshauer M. (ref14/cit14) 2007
ref56/cit56
ref16/cit16
Plimpton S. (ref49/cit49) 1995; 117
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref34/cit34
ref37/cit37
Nitzan A. (ref24/cit24) 2014
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
Cho M. (ref2/cit2) 2009
ref19/cit19
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
Hockney R. W. (ref51/cit51) 1988
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Kubo R. (ref43/cit43) 1985
ref65/cit65
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
Breuer H. (ref11/cit11) 2002
Frommhold L. (ref21/cit21) 1993; 2
ref57/cit57
ref5/cit5
Rumble J. R. (ref50/cit50) 2019
McQuarrie D. A. (ref44/cit44) 1976
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref7/cit7
References_xml – ident: ref55/cit55
  doi: 10.1073/pnas.0701482104
– ident: ref26/cit26
  doi: 10.1103/PhysRevLett.67.1011
– volume-title: Decoherence and the Appearance of a Classical World in Quantum Theory
  year: 2013
  ident: ref15/cit15
– ident: ref57/cit57
  doi: 10.1063/1.1683072
– ident: ref59/cit59
  doi: 10.1016/j.cplett.2005.07.063
– ident: ref54/cit54
  doi: 10.1103/PhysRevA.31.1695
– ident: ref39/cit39
  doi: 10.1063/1.447874
– ident: ref66/cit66
  doi: 10.1103/PhysRevLett.83.2077
– ident: ref27/cit27
  doi: 10.1063/1.465409
– ident: ref7/cit7
  doi: 10.1063/1.1642609
– volume-title: Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems
  year: 2014
  ident: ref24/cit24
– ident: ref36/cit36
  doi: 10.1021/ar5002796
– ident: ref45/cit45
  doi: 10.1063/1.1514652
– ident: ref62/cit62
  doi: 10.1016/j.cplett.2003.12.078
– volume-title: Statistical Physics II. Nonequilibrium Statistical Mechanics
  year: 1985
  ident: ref43/cit43
  doi: 10.1007/978-3-642-96701-6
– ident: ref28/cit28
  doi: 10.1016/0301-0104(94)00025-5
– ident: ref25/cit25
  doi: 10.1063/1.442382
– ident: ref64/cit64
  doi: 10.1063/1.1502248
– ident: ref30/cit30
  doi: 10.1063/1.471326
– ident: ref5/cit5
  doi: 10.1016/S0009-2614(03)01317-4
– ident: ref13/cit13
  doi: 10.1103/RevModPhys.76.1267
– ident: ref38/cit38
  doi: 10.1021/acs.jpclett.5b02637
– ident: ref37/cit37
  doi: 10.1063/1.2780868
– volume-title: The Theory of Open Quantum Systems
  year: 2002
  ident: ref11/cit11
– ident: ref17/cit17
  doi: 10.1146/annurev.physchem.47.1.109
– ident: ref22/cit22
  doi: 10.1021/jp9919314
– ident: ref48/cit48
  doi: 10.1021/j100308a038
– volume-title: Computer Simulation Using Particles
  year: 1988
  ident: ref51/cit51
  doi: 10.1887/0852743920
– ident: ref8/cit8
  doi: 10.1063/1.2221685
– ident: ref58/cit58
  doi: 10.1063/1.3587053
– ident: ref53/cit53
  doi: 10.1063/1.447334
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2019
  ident: ref50/cit50
– ident: ref4/cit4
  doi: 10.1002/9780470143605.ch6
– ident: ref65/cit65
  doi: 10.1021/jp907648y
– ident: ref16/cit16
  doi: 10.1063/1.443055
– volume-title: Statistical Mechanics
  year: 1976
  ident: ref44/cit44
– volume: 2
  volume-title: Collision-Induced Absorption in Gases
  year: 1993
  ident: ref21/cit21
– ident: ref56/cit56
  doi: 10.1021/ct400292q
– ident: ref12/cit12
  doi: 10.1103/RevModPhys.75.715
– ident: ref10/cit10
  doi: 10.1143/ptp/89.2.281
– ident: ref31/cit31
  doi: 10.1016/S0166-1280(96)04612-X
– volume-title: Decoherence and the Quantum-to-Classical Transition
  year: 2007
  ident: ref14/cit14
– ident: ref34/cit34
  doi: 10.1016/S0009-2614(01)00855-7
– volume-title: Two-Dimensional Optical Spectroscopy
  year: 2009
  ident: ref2/cit2
  doi: 10.1201/9781420084306
– ident: ref6/cit6
  doi: 10.1063/1.474312
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1995
  ident: ref1/cit1
– ident: ref46/cit46
  doi: 10.1063/1.2925258
– ident: ref19/cit19
  doi: 10.1073/pnas.0408813102
– ident: ref67/cit67
  doi: 10.1063/1.1739391
– volume: 117
  start-page: 1
  year: 1995
  ident: ref49/cit49
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– ident: ref40/cit40
  doi: 10.1063/1.1961472
– ident: ref29/cit29
  doi: 10.1063/1.470177
– ident: ref32/cit32
  doi: 10.1103/PhysRevLett.81.5294
– ident: ref35/cit35
  doi: 10.1021/jp037031b
– ident: ref61/cit61
  doi: 10.1016/S0009-2614(03)00314-2
– ident: ref52/cit52
  doi: 10.1016/0021-9991(77)90098-5
– ident: ref18/cit18
  doi: 10.1063/1.1580807
– ident: ref63/cit63
– ident: ref60/cit60
  doi: 10.1016/S0009-2614(03)01267-3
– ident: ref9/cit9
  doi: 10.1063/1.3173276
– volume-title: Concepts and Methods of 2D Infrared Spectroscopy
  year: 2011
  ident: ref3/cit3
  doi: 10.1017/CBO9780511675935
– ident: ref47/cit47
  doi: 10.1021/cr9001879
– ident: ref23/cit23
  doi: 10.1063/1.466780
– ident: ref20/cit20
  doi: 10.1063/1.442059
– ident: ref41/cit41
  doi: 10.1063/1.1645783
– ident: ref33/cit33
  doi: 10.1016/S0301-0104(01)00302-0
– ident: ref42/cit42
  doi: 10.1063/1.473144
SSID ssj0025286
Score 2.35921
Snippet Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the “bath” (in this case, the...
Absorption and emission line shapes of vibrational and electronic transitions in liquids are broadened by interactions with the "bath" (in this case, the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1531
SubjectTerms absorption
ambient temperature
deuterium oxide
liquids
Title Dephasing and Decoherence in Vibrational and Electronic Line Shapes
URI http://dx.doi.org/10.1021/acs.jpcb.9b11655
https://www.ncbi.nlm.nih.gov/pubmed/31990552
https://www.proquest.com/docview/2348233587
https://www.proquest.com/docview/2431884644
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025286
  issn: 1520-6106
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaW7gEuC8vusuWlIMGBQ1o_Yic-Vn2oWgkupai3yHbGKg9lI9Je9tfvOEmLgKXqLXLsRGM7mW889vcR8t5yx2yhi9igf4gTBy7WxvOYapd6lXivbDjg_Omzmi-Tm5Vc_abJ-TuDz9nQuHrwvXJ2oG2gipGPyClXaRq2743Gi31wJXmj6ojuKIRDdJeSfOgJwRG5-k9H9B902XiZ2dNWrqhuyAnD5pIfg-3GDtzdv9SNRxjwjJx1YDMatbPjnJxA-Zw8Hu803i7IeALV2oTlgsiURTTBWHTdnv-LvpXR1xBKt2uFze3pXjInwhAWosXaVFBfkuVs-mU8jztZhdgIpTdxqoDhhc08ZBLhakE1hqnaFtQD0MQhQDCiEMDSIEhWUFCBs0Uy4TyFxClxRXrlbQnXJALmZIGYhEEqElAefT_zmbDSGi0dTfrkA1qfd59FnTcZb87yphC7JO-6pE-Gu7HIXcdNHiQyfh5o8XHfomp5OQ7Ufbcb3hz7N2RETAm32zrngdpHCJmlB-ogxMoQpSVozYt2buzfiP8vTaXkL4-08xV5wkO8Ho7Ep69Jb_NrC28Q1Gzs22Y23wN4fPBN
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigX3o8ChSDBgUO2dvxIfKy2rRZoe6At6i2ynbGWh9IV2b3013ecF6KCFdwix3Y8tpP5Pk9mBuCtyzx3lalSS_ohlR59amzIUmZ8HrQMQbvo4Hx8omfn8uOFutgAPvjC0CAa6qlpjfi_ogvw3Vj2beHdxLgYMUbdgttKSx751t70dORYKmuTO5JWiqyIDZbJP_UQ9ZFvftdHfwGZrbI5vAefx2G2_5h8n6yWbuKvbkRw_C857sPdHnome91eeQAbWD-EremQ8e0RTPdxMbfx8CCxdZXsEzOdd96Aydc6-RKJdXdy2N4-GBPoJERoMTmd2wU2j-H88OBsOkv7JAupFdos01wjpwtXBCwUgdeKGSKtxlUsIDLpCS5YUQnkeUxPVjHUMYKL4sIHhtJr8QQ268san0GC3KuKEArHXEjUgZAAD4VwylmjPJPb8I6kL_uXpClb-3fGy7aQpqTsp2QbdoclKX0fqTwmzPixpsX7scWii9Kxpu6bYZVLmt9oH7E1Xq6aMouBfoRQRb6mDgGugjCbJGmedltkfCJ9zQxTKnv-j3K-hq3Z2fFRefTh5NMLuJNFJh-d5fOXsLn8ucIdgjtL96rd4NfcYviv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VIkFfuI9yBgkeeMjWjmMnfkS7XZWrQiqt-hb5GGuhKI3I7gu_nnEuCQQreIscO_H4yHzjyXwD8NJmjluvfWpIP6S5Q5dqE7KUaVcElYegbAxw_nisjk7zd-fyfAfkGAtDnWjpSW3nxI-7uvFhYBjgB7H8a-PsTNvIGiOvwFWpaKdHRDQ_mewsmXUJHkkzRcuIjd7JPz0h6iTX_qqT_gI0O4WzvAlnU1e7_0wuZpu1nbkfv7E4_rcst-DGAEGTN_2auQ07WN-B6_Mx89tdmC-wWZl4iJCY2icLslBXfVRg8qVOzqKB3Z8gdrcPp0Q6CRm2mJysTIPtPThdHn6eH6VDsoXUCKXXaaGQ04UtA5aSQKxnmoxXbT0LiCx3BBuM8AJ5EdOUeYYqMrlILlxgmDsl7sNufVnjQ0iQO-kJqXAsRI4qECLgoRRWWqOlY_k-vCLpq2GztFXnB8941RXSkFTDkOzDwTgtlRsYy2PijG9bWryeWjQ9W8eWui_Gma5ofKOfxNR4uWmrLBL-CCHLYksdAl4lYbecpHnQL5PpjfRV00zK7NE_yvkcrn1aLKsPb4_fP4a9LBr0MWa-eAK76-8bfEqoZ22fdWv8JwVD-zI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dephasing+and+Decoherence+in+Vibrational+and+Electronic+Line+Shapes&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Kananenka%2C+Alexei+A&rft.au=Strong%2C+Steven+E&rft.au=Skinner%2C+J+L&rft.date=2020-02-27&rft.issn=1520-5207&rft.eissn=1520-5207&rft.volume=124&rft.issue=8&rft.spage=1531&rft_id=info:doi/10.1021%2Facs.jpcb.9b11655&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon