Exact solutions of a class of nonlinear dispersive long wave systems via Feng's first integral method

In this paper, eight groups of exact solutions for the (1+1)-dimensional and (2+1)-dimensional nonlinear dispersive long wave systems are found respectively via Feng's first integral method. It is shown that there are some similarities in the expressions of the solutions of (1+1)-dimensional an...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 8; pp. 7984 - 8000
Main Authors Lu, Qiuci, Zhang, Songchuan, Zheng, Hang
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021464

Cover

Abstract In this paper, eight groups of exact solutions for the (1+1)-dimensional and (2+1)-dimensional nonlinear dispersive long wave systems are found respectively via Feng's first integral method. It is shown that there are some similarities in the expressions of the solutions of (1+1)-dimensional and (2+1)-dimensional DLWEs, while there exist some differences in their dimensions and their physical significance. Finally, some graphs are presented to show these features, which also show the effectiveness of the proposed method.
AbstractList In this paper, eight groups of exact solutions for the (1+1)-dimensional and (2+1)-dimensional nonlinear dispersive long wave systems are found respectively via Feng's first integral method. It is shown that there are some similarities in the expressions of the solutions of (1+1)-dimensional and (2+1)-dimensional DLWEs, while there exist some differences in their dimensions and their physical significance. Finally, some graphs are presented to show these features, which also show the effectiveness of the proposed method.
Author Lu, Qiuci
Zheng, Hang
Zhang, Songchuan
Author_xml – sequence: 1
  givenname: Qiuci
  surname: Lu
  fullname: Lu, Qiuci
– sequence: 2
  givenname: Songchuan
  surname: Zhang
  fullname: Zhang, Songchuan
– sequence: 3
  givenname: Hang
  surname: Zheng
  fullname: Zheng, Hang
BookMark eNp9kEtLAzEUhYMoWB87f0B2bhzNayaTpYgvKLjR9XDzqinppCSp2n_vaEVcubqHy8d34Byh_TGNDqEzSi654uJqBfX1khFGRSf20IwJyZtO9f3-n3yITktZEjJRTDApZsjdfoCpuKS4qSGNBSePAZsI5TtOHTGMDjK2oaxdLuHN4ZjGBX6HKZVtqW5V8FsAfOfGxXnBPuRScRirW2SIeOXqa7In6MBDLO705x6jl7vb55uHZv50_3hzPW-Ad6o2Qipie9qyVhvXyk4x6jzXRlouPLHaCi0VSFC-J5QzxbRupRZadUrazhp-jB53XptgOaxzWEHeDgnC8P1IeTFArsFEN3jDJbTetJJxQSlXltu-o20nuVaKyMnV7FybcQ3bd4jxV0jJ8DX58DX58DP5xF_seJNTKdn5__FPhauFUQ
Cites_doi 10.1088/0253-6102/51/5/04
10.1016/j.chaos.2003.09.026
10.1007/s12591-014-0222-x
10.1088/0266-5611/3/3/007
10.1016/j.physa.2005.05.103
10.1002/mma.1670181004
10.1007/s11071-007-9262-x
10.1016/j.amc.2006.11.149
10.1088/0253-6102/51/5/06
10.1007/s00033-008-8092-0
10.1088/0253-6102/33/4/577
10.1016/S0375-9601(03)00016-1
10.1088/0305-4470/35/2/312
10.1088/1402-4896/ab5c89
10.1142/S021812741950041X
10.1016/j.amc.2019.124576
10.1016/j.chaos.2020.109950
10.1016/j.cnsns.2009.08.003
10.1016/j.jmaa.2011.09.044
10.1007/s12346-020-00352-x
10.1016/j.amc.2020.125342
10.1016/j.cnsns.2008.07.009
ContentType Journal Article
CorporateAuthor School of Humanities and Teacher Education of Wuyi University, Wuyishan, Fujian 354300, China
School of Mathematics and Computer, Wuyi University, Wu Yishan, Fujian 354300, China
CorporateAuthor_xml – name: School of Mathematics and Computer, Wuyi University, Wu Yishan, Fujian 354300, China
– name: School of Humanities and Teacher Education of Wuyi University, Wuyishan, Fujian 354300, China
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2021464
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 8000
ExternalDocumentID oai_doaj_org_article_fc37a5fc572341139d3d8615673b9907
10.3934/math.2021464
10_3934_math_2021464
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a369t-4790d81525bce576921ef3bc7d34f0dbd4b79a7a9f8013292bb57b4b9697d6dc3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Fri Oct 03 12:37:24 EDT 2025
Mon Sep 15 10:14:59 EDT 2025
Tue Jul 01 03:56:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-4790d81525bce576921ef3bc7d34f0dbd4b79a7a9f8013292bb57b4b9697d6dc3
OpenAccessLink https://doaj.org/article/fc37a5fc572341139d3d8615673b9907
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_fc37a5fc572341139d3d8615673b9907
unpaywall_primary_10_3934_math_2021464
crossref_primary_10_3934_math_2021464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021464-1
key-10.3934/math.2021464-2
key-10.3934/math.2021464-3
key-10.3934/math.2021464-4
key-10.3934/math.2021464-5
key-10.3934/math.2021464-6
key-10.3934/math.2021464-7
key-10.3934/math.2021464-16
key-10.3934/math.2021464-8
key-10.3934/math.2021464-17
key-10.3934/math.2021464-9
key-10.3934/math.2021464-18
key-10.3934/math.2021464-19
key-10.3934/math.2021464-12
key-10.3934/math.2021464-23
key-10.3934/math.2021464-13
key-10.3934/math.2021464-24
key-10.3934/math.2021464-14
key-10.3934/math.2021464-15
key-10.3934/math.2021464-20
key-10.3934/math.2021464-10
key-10.3934/math.2021464-21
key-10.3934/math.2021464-11
key-10.3934/math.2021464-22
References_xml – ident: key-10.3934/math.2021464-4
  doi: 10.1088/0253-6102/51/5/04
– ident: key-10.3934/math.2021464-24
– ident: key-10.3934/math.2021464-23
– ident: key-10.3934/math.2021464-9
  doi: 10.1016/j.chaos.2003.09.026
– ident: key-10.3934/math.2021464-15
  doi: 10.1007/s12591-014-0222-x
– ident: key-10.3934/math.2021464-6
  doi: 10.1088/0266-5611/3/3/007
– ident: key-10.3934/math.2021464-10
  doi: 10.1016/j.physa.2005.05.103
– ident: key-10.3934/math.2021464-7
  doi: 10.1002/mma.1670181004
– ident: key-10.3934/math.2021464-19
  doi: 10.1007/s11071-007-9262-x
– ident: key-10.3934/math.2021464-3
  doi: 10.1016/j.amc.2006.11.149
– ident: key-10.3934/math.2021464-5
  doi: 10.1088/0253-6102/51/5/06
– ident: key-10.3934/math.2021464-18
  doi: 10.1007/s00033-008-8092-0
– ident: key-10.3934/math.2021464-8
  doi: 10.1088/0253-6102/33/4/577
– ident: key-10.3934/math.2021464-17
  doi: 10.1016/S0375-9601(03)00016-1
– ident: key-10.3934/math.2021464-16
  doi: 10.1088/0305-4470/35/2/312
– ident: key-10.3934/math.2021464-2
  doi: 10.1088/1402-4896/ab5c89
– ident: key-10.3934/math.2021464-11
  doi: 10.1142/S021812741950041X
– ident: key-10.3934/math.2021464-13
  doi: 10.1016/j.amc.2019.124576
– ident: key-10.3934/math.2021464-1
  doi: 10.1016/j.chaos.2020.109950
– ident: key-10.3934/math.2021464-21
  doi: 10.1016/j.cnsns.2009.08.003
– ident: key-10.3934/math.2021464-22
  doi: 10.1016/j.jmaa.2011.09.044
– ident: key-10.3934/math.2021464-14
  doi: 10.1007/s12346-020-00352-x
– ident: key-10.3934/math.2021464-12
  doi: 10.1016/j.amc.2020.125342
– ident: key-10.3934/math.2021464-20
  doi: 10.1016/j.cnsns.2008.07.009
SSID ssj0002124274
Score 2.1475198
Snippet In this paper, eight groups of exact solutions for the (1+1)-dimensional and (2+1)-dimensional nonlinear dispersive long wave systems are found respectively...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 7984
SubjectTerms division theorem
exact solutions
feng's first integral method
nonlinear dispersive long wave equations
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPWgPvsX6Igcfp9W2ySabY5VKERQPFvS05CnF0pZ26-vXO3G3xQeotxCyZJiZMN9Mst8AHFBap8wJGnnnTMS4r0VKJDbSRjmNGQki5lAauLrm7Q67vIvvSnAw_Rfm0_09lZSdImwLVwah_TSbg3keI-Iuw3zn-qZ5H_rGMdyGyyTJ37T_-ORLtPkg5a_AwqQ_VK_Pqtf7FEkulqE1lSF_QPJ4Msn0iXn7Rs_4l5ArsFRASdLMbb8KJddfg8rVjId1vA6u9aJMRmb-RQaeKGICYg7Dfs6ToUbEdgNjeHjKTnqD_gN5VjjKWZ7H5KmrCHrzw_GY-C6iRVJwTPRI3n96AzoXrdvzdlQ0VogU5TIL1bSaTULnI20cJhyyUXeeaiMsZb5mtWVaSCWU9Em4ipENrWOhmZZcCsutoZtQRgndFpAkxpmYGTzGjBmmE8eFq_s6bxghjdRVOJwaIB3m_Bkp5h1BbWlQW1qorQpnwTqzNYH1-mMC9ZwWhyj1hgoVexOLBgZfxK6W2gQhGRdUY1QVVTia2fbX3bb_u3AHFsMor7nsQjkbTdweopBM7xdO-A5AR9nm
  priority: 102
  providerName: Unpaywall
Title Exact solutions of a class of nonlinear dispersive long wave systems via Feng's first integral method
URI https://doi.org/10.3934/math.2021464
https://doaj.org/article/fc37a5fc572341139d3d8615673b9907
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SD-pBfGJ9lBx8nJY-kt1sjlVaitDiwUI9LXmWwtKWPqz-e2eatdSLXryFsGzCzOzMN8nsN4TcMlZn3AkWeedMxBNfi5RIbaSNchoyEkDMeDTQ7SWdPn8exIOtVl9YExbogYPgqt4woWJvYtEAhwt4xTKbQhhOBNPgSdf_kddSuZVMoQ8Gh8wh3wqV7kwyXgX8h3cP2Mea_4hBa6r-A7K3HE_V50rl-VZ8aR-RwwIY0mbY0DHZceMTctDdsKrOT4lrfSizoBtroRNPFTWIf3E4DqwXakbtCPm_sTCd5pPxkK4UjAJn85y-jxQF2xw-zKkfAfajBWNETkM36TPSb7denzpR0SYhUiyRCzwbq9kU-xhp4yB9kI2680wbYRn3Nast10IqoaRP8WJFNrSOheZaJlLYxBp2TkqwQ3dBaBrDTMwNfJScG65TlwhX9_WkYYQ0UpfJ3bfgsmlgw8ggi0ABZyjgrBBwmTyiVDfPIIf1egI0mxWazf7SbJncb3Ty62qX_7HaFdnH14XTlWtSWsyW7gbwxkJX1qZVIbv93kvz7QuPW9Qh
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qPWgPvsX6Igcfp9W2ySabY5VKERQPFvS05CnF0pZ26-vXO3G3xQeotxCyZJiZMN9Mst8AHFBap8wJGnnnTMS4r0VKJDbSRjmNGQki5lAauLrm7Q67vIvvSnAw_Rfm0_09lZSdImwLVwah_TSbg3keI-Iuw3zn-qZ5H_rGMdyGyyTJ37T_-ORLtPkg5a_AwqQ_VK_Pqtf7FEkulqE1lSF_QPJ4Msn0iXn7Rs_4l5ArsFRASdLMbb8KJddfg8rVjId1vA6u9aJMRmb-RQaeKGICYg7Dfs6ToUbEdgNjeHjKTnqD_gN5VjjKWZ7H5KmrCHrzw_GY-C6iRVJwTPRI3n96AzoXrdvzdlQ0VogU5TIL1bSaTULnI20cJhyyUXeeaiMsZb5mtWVaSCWU9Em4ipENrWOhmZZcCsutoZtQRgndFpAkxpmYGTzGjBmmE8eFq_s6bxghjdRVOJwaIB3m_Bkp5h1BbWlQW1qorQpnwTqzNYH1-mMC9ZwWhyj1hgoVexOLBgZfxK6W2gQhGRdUY1QVVTia2fbX3bb_u3AHFsMor7nsQjkbTdweopBM7xdO-A5AR9nm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+solutions+of+a+class+of+nonlinear+dispersive+long+wave+systems+via+Feng%27s+first+integral+method&rft.jtitle=AIMS+mathematics&rft.au=Qiuci+Lu&rft.au=Songchuan+Zhang&rft.au=Hang+Zheng&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=8&rft.spage=7984&rft.epage=8000&rft_id=info:doi/10.3934%2Fmath.2021464&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fc37a5fc572341139d3d8615673b9907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon