Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells

Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, a...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 72; no. 13; pp. 7219 - 7229
Main Authors Bao, Xiaoyu, Gänzle, Michael G., Wu, Jianping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.04.2024
Subjects
Online AccessGet full text
ISSN0021-8561
1520-5118
1520-5118
DOI10.1021/acs.jafc.4c00185

Cover

Abstract Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
AbstractList Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca²⁺ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Enterotoxigenic (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.
Author Wu, Jianping
Bao, Xiaoyu
Gänzle, Michael G.
AuthorAffiliation Department of Agricultural, Food and Nutritional Science
AuthorAffiliation_xml – name: Department of Agricultural, Food and Nutritional Science
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Bao
  fullname: Bao, Xiaoyu
– sequence: 2
  givenname: Michael G.
  surname: Gänzle
  fullname: Gänzle, Michael G.
– sequence: 3
  givenname: Jianping
  orcidid: 0000-0003-2574-5191
  surname: Wu
  fullname: Wu, Jianping
  email: jwu3@ualberta.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38507577$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFOyfkYyuRZZys7eRYokCrVqqE9h5NHKdx5dhLnKDuH-H34nQXDkiUk6Xx996M3jsjJ847Tch7BmsGKfuEKqwfsVPrjQJgOX9FVoynkHDG8hOygsgkORfslJyF8AgAOZfwhpxmOQfJpVyRn_c__DAr4-j1vh293QecdKDfdDsrTT-jmvRo0NKrttfBeEfRtfTGdRaHAadlEKWVi5Sf_JN50M4oWgXVR5nqDVLlraEX1bYqL-ltnidlj9Zq96AXm7hqMi7aVzsz9doum0ptbXhLXndog353fM_J9ku1La-Tu_uvN-XVXYKZKKYk1ZtCNLyARuaNaIXsELBNlQCJbcwkZ6AbwTLIBCJy2WjNVSG7TnHYpCI7JxcH293ov8_xmHowQcUD0Gk_hzpjPGPFJuPwXzQtZMZAQLGgH47o3Ay6rXejGXDc179TjwAcADX6EEbd_UEY1EuxdSy2Xoqtj8VGifhLosz0XMA0orEvCT8ehM8_fh5j3OHf-C8tYbms
CitedBy_id crossref_primary_10_3389_fimmu_2024_1460127
crossref_primary_10_1038_s42003_025_07821_6
crossref_primary_10_1016_j_psj_2025_104786
crossref_primary_10_1186_s13567_024_01352_4
Cites_doi 10.1017/S0007114513003024
10.1016/j.jff.2021.104822
10.1016/j.ijfoodmicro.2010.05.027
10.1177/002215540405200507
10.1016/S0161-5890(01)00108-0
10.1016/j.ijbiomac.2020.06.148
10.3389/fcimb.2015.00026
10.2353/ajpath.2010.100371
10.1371/journal.pone.0104258
10.1128/AEM.03137-09
10.1016/j.jff.2019.02.015
10.1111/nyas.13346
10.1371/journal.pone.0104183
10.1017/S0007114512002978
10.1073/pnas.90.8.3202
10.1016/S1043-4526(08)00402-6
10.1016/j.procbio.2011.10.014
10.1016/j.jss.2009.03.066
10.1099/mic.0.001157
10.1007/s00418-005-0067-z
10.3390/ijms20143485
10.1021/acs.jafc.6b04299
10.1099/00221287-139-3-631
10.1016/j.foodchem.2016.05.153
10.1128/CMR.18.3.465-483.2005
10.1111/j.1365-2672.2008.04068.x
10.1016/j.vas.2019.100058
10.1021/jf0353335
10.1371/journal.pone.0051874
10.1016/j.vetmic.2009.08.020
10.1128/AEM.01525-15
10.1111/j.1574-695X.2010.00650.x
10.1186/s12866-016-0847-8
10.1128/ecosalplus.ESP-0006-2016
10.1016/j.cell.2006.02.015
10.1186/s40813-016-0039-9
10.1016/j.jbc.2023.102989
10.1016/j.tifs.2017.09.002
10.1017/S095026880700934X
10.1111/j.1348-0421.1997.tb01904.x
10.1128/IAI.00455-13
10.1016/j.ijbiomac.2018.07.186
10.1007/s10616-011-9362-9
10.1042/bse0530041
10.1021/acs.jafc.1c00865
10.1128/AEM.01782-14
10.1007/s00253-015-6643-9
10.1093/jn/137.12.2709
10.1016/S0924-2244(00)89083-4
10.1038/s41598-018-35702-y
10.1017/S0007114518002507
10.1186/s40813-022-00247-0
10.1016/j.tifs.2020.11.015
10.1007/s10719-009-9269-2
10.1002/mnfr.202200184
10.1111/j.1749-6632.2010.05634.x
10.3389/fcimb.2018.00242
10.1016/j.vetmic.2007.12.018
10.1093/jas/skaa012
10.1016/j.foodchem.2012.08.078
10.1038/nrm.2016.80
10.1111/j.1365-2621.1977.tb01227.x
10.1016/j.tifs.2010.07.001
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.jafc.4c00185
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 7229
ExternalDocumentID 38507577
10_1021_acs_jafc_4c00185
c628343941
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
GX1
IH9
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
AAHBH
AAYXX
ABBLG
ABLBI
AGXLV
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a369t-2e496b590b78b6d67fa0ad2c607ad4c0810eb613036aaa57bee5c97ffc504263
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Fri Jul 11 02:04:09 EDT 2025
Fri Jul 11 13:28:47 EDT 2025
Wed Feb 19 02:07:28 EST 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Jul 01 01:40:35 EDT 2025
Thu Apr 04 10:28:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords ovomucin hydrolysate
intestinal epithelial cells
intestinal integrity
inflammation
Enterotoxigenic Escherichia coli K88
heat-stable toxin
tight junction
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a369t-2e496b590b78b6d67fa0ad2c607ad4c0810eb613036aaa57bee5c97ffc504263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2574-5191
PMID 38507577
PQID 2973106090
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3153194350
proquest_miscellaneous_2973106090
pubmed_primary_38507577
crossref_primary_10_1021_acs_jafc_4c00185
crossref_citationtrail_10_1021_acs_jafc_4c00185
acs_journals_10_1021_acs_jafc_4c00185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-03
PublicationDateYYYYMMDD 2024-04-03
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
Sjölund M. (ref4/cit4) 2014
ref18/cit18
Vergauwen H. (ref31/cit31) 2015
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
Lea T. (ref45/cit45) 2015
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1017/S0007114513003024
– ident: ref32/cit32
  doi: 10.1016/j.jff.2021.104822
– ident: ref13/cit13
  doi: 10.1016/j.ijfoodmicro.2010.05.027
– ident: ref35/cit35
  doi: 10.1177/002215540405200507
– ident: ref39/cit39
  doi: 10.1016/S0161-5890(01)00108-0
– ident: ref41/cit41
  doi: 10.1016/j.ijbiomac.2020.06.148
– ident: ref8/cit8
  doi: 10.3389/fcimb.2015.00026
– ident: ref60/cit60
  doi: 10.2353/ajpath.2010.100371
– ident: ref15/cit15
  doi: 10.1371/journal.pone.0104258
– ident: ref17/cit17
  doi: 10.1128/AEM.03137-09
– ident: ref27/cit27
  doi: 10.1016/j.jff.2019.02.015
– ident: ref52/cit52
  doi: 10.1111/nyas.13346
– ident: ref57/cit57
  doi: 10.1371/journal.pone.0104183
– ident: ref20/cit20
  doi: 10.1017/S0007114512002978
– start-page: 125
  volume-title: The Impact of Food Bioactives on Health: in vitro and ex vivo models
  year: 2015
  ident: ref31/cit31
– ident: ref62/cit62
  doi: 10.1073/pnas.90.8.3202
– ident: ref12/cit12
  doi: 10.1016/S1043-4526(08)00402-6
– ident: ref28/cit28
  doi: 10.1016/j.procbio.2011.10.014
– ident: ref61/cit61
  doi: 10.1016/j.jss.2009.03.066
– start-page: 103
  volume-title: The Impact of Food Bioactives on Health: in vitro and ex vivo models
  year: 2015
  ident: ref45/cit45
– ident: ref43/cit43
  doi: 10.1099/mic.0.001157
– ident: ref47/cit47
  doi: 10.1007/s00418-005-0067-z
– ident: ref9/cit9
  doi: 10.3390/ijms20143485
– ident: ref26/cit26
  doi: 10.1021/acs.jafc.6b04299
– ident: ref66/cit66
  doi: 10.1099/00221287-139-3-631
– ident: ref29/cit29
  doi: 10.1016/j.foodchem.2016.05.153
– ident: ref1/cit1
  doi: 10.1128/CMR.18.3.465-483.2005
– ident: ref16/cit16
  doi: 10.1111/j.1365-2672.2008.04068.x
– ident: ref11/cit11
  doi: 10.1016/j.vas.2019.100058
– ident: ref25/cit25
  doi: 10.1021/jf0353335
– ident: ref36/cit36
  doi: 10.1371/journal.pone.0051874
– volume-title: Proceedings of the 6th European symposium of porcine health management
  year: 2014
  ident: ref4/cit4
– ident: ref53/cit53
  doi: 10.1016/j.vetmic.2009.08.020
– ident: ref19/cit19
  doi: 10.1128/AEM.01525-15
– ident: ref33/cit33
  doi: 10.1111/j.1574-695X.2010.00650.x
– ident: ref55/cit55
  doi: 10.1186/s12866-016-0847-8
– ident: ref3/cit3
  doi: 10.1128/ecosalplus.ESP-0006-2016
– ident: ref59/cit59
  doi: 10.1016/j.cell.2006.02.015
– ident: ref5/cit5
  doi: 10.1186/s40813-016-0039-9
– ident: ref42/cit42
  doi: 10.1016/j.jbc.2023.102989
– ident: ref14/cit14
  doi: 10.1016/j.tifs.2017.09.002
– ident: ref2/cit2
  doi: 10.1017/S095026880700934X
– ident: ref63/cit63
  doi: 10.1111/j.1348-0421.1997.tb01904.x
– ident: ref64/cit64
  doi: 10.1128/IAI.00455-13
– ident: ref44/cit44
  doi: 10.1016/j.ijbiomac.2018.07.186
– ident: ref49/cit49
  doi: 10.1007/s10616-011-9362-9
– ident: ref58/cit58
  doi: 10.1042/bse0530041
– ident: ref40/cit40
  doi: 10.1021/acs.jafc.1c00865
– ident: ref18/cit18
  doi: 10.1128/AEM.01782-14
– ident: ref6/cit6
  doi: 10.1007/s00253-015-6643-9
– ident: ref7/cit7
  doi: 10.1093/jn/137.12.2709
– ident: ref22/cit22
  doi: 10.1016/S0924-2244(00)89083-4
– ident: ref10/cit10
  doi: 10.1038/s41598-018-35702-y
– ident: ref56/cit56
  doi: 10.1017/S0007114518002507
– ident: ref46/cit46
  doi: 10.1186/s40813-022-00247-0
– ident: ref50/cit50
  doi: 10.1016/j.tifs.2020.11.015
– ident: ref30/cit30
  doi: 10.1007/s10719-009-9269-2
– ident: ref37/cit37
  doi: 10.1002/mnfr.202200184
– ident: ref65/cit65
  doi: 10.1111/j.1749-6632.2010.05634.x
– ident: ref54/cit54
  doi: 10.3389/fcimb.2018.00242
– ident: ref48/cit48
  doi: 10.1016/j.vetmic.2007.12.018
– ident: ref38/cit38
  doi: 10.1093/jas/skaa012
– ident: ref34/cit34
  doi: 10.1016/j.foodchem.2012.08.078
– ident: ref51/cit51
  doi: 10.1038/nrm.2016.80
– ident: ref23/cit23
  doi: 10.1111/j.1365-2621.1977.tb01227.x
– ident: ref24/cit24
  doi: 10.1016/j.tifs.2010.07.001
SSID ssj0008570
Score 2.4717803
Snippet Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal...
Enterotoxigenic (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7219
SubjectTerms adhesion
Animals
Bacterial Adhesion
Bioactive Constituents, Metabolites, and Functions
Caco-2 Cells
calcium
calcium-calmodulin-dependent protein kinase
chickens
diarrhea
Diarrhea - microbiology
egg albumen
Enterotoxigenic Escherichia coli
enterotoxins
epithelial cells
Epithelial Cells - metabolism
epithelium
Escherichia coli Infections - drug therapy
Escherichia coli Infections - microbiology
food chemistry
glycoproteins
glycosylation
Humans
inflammation
Inflammation - drug therapy
Inflammation - metabolism
Intestinal Mucosa - metabolism
intestines
mitogen-activated protein kinase
NF-kappa B - genetics
NF-kappa B - metabolism
Ovomucin
oxidative stress
pancreatin
pathogens
pepsin
Swine
Title Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells
URI http://dx.doi.org/10.1021/acs.jafc.4c00185
https://www.ncbi.nlm.nih.gov/pubmed/38507577
https://www.proquest.com/docview/2973106090
https://www.proquest.com/docview/3153194350
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBAKc8-qIwEEj1kG-dhx8clSrWAAAkWqbfIdpyykCbVJlu1_BB-b2ec7CLoQ71G9ji2ZzxfMuNvCHmtrVXSSjAkpa0HLiDxlOMiDEMeM65E6e5XfPrMJ9-jD4fx4V-anP8j-AHbV6Yd_VSlGUUGK8jFd8k9kMjwQ2ucfludukjU3qdzMC8BUDCEJK-SgI7ItP86omvQpfMyB-t9uaLWkRNicsmv0aLTI_P7MnXjLSbwiDwcwCYd99qxQe7Y-jF5MD6aD4Qb9gn58-W0OV6YWU0n58W8qc5bBJ_0KzK6Wvqu53JGGcUPiz_WqKoL-r4uQZH6S48UurrMgqZrzpDac2Zo1qIqzDCNmoKizejbbJqle_Qj2Eu6rN6CYjrk-MBXzE7wbkiFI6W2qtqnZHqQTdOJN9RqgK3lsvMCG0muY-lrkWhecFEqXxWB4b5QBUw8Yb7V3DlMpVQsQEdiI0VZmhi_4sJnZK1uavuCUMWZKSOpuU5YpKXQUWkCrQFZRiphim2SN7Ci-WBqbe6i6AHL3UNY5nxY5k2yv9zf3Ax851h2o7qhx96qx0nP9XFD21dLlcnBIDHKomrbLNrcFQPzuS_969uEDI8-QKrQ5nmvb6sRwwQgeizE1i3nuU3uBwC0XDZRuEPWuvnCvgSg1OldZyEX9v4OxQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAP5V3K00gg0UO2cR52fCxRqi19IJVF6i2yHYduSZNqk0WUH8LvZcbJLgLRCq6W357xfMmMvyHktbZWSStBkZS2HpiAxFOOizAMecy4EqV7X3F4xMefovcn8ckKYYu3MDCJFnpqnRP_F7sA28ayM1WaUWQwkVx8g9x0RCiIhtKPy8sX-dr7qA7mJYANBs_k33pAe2Ta3-3RFSDTGZvdO-R4OU0XY_JlNO_0yHz_g8Hxv9Zxl6wP0JPu9LJyj6zY-j5Z2_k8G-g37APy48PX5nxupjUdXxazprpsEYrSY-R3tfRdz-yMfRSnFn-zUVUXdK8uQaz6J5AUmro4g6ZrviHR59TQrEXBmGJQNQWxm9K32SRLt-g-aE-6yOWC3XTI-IFTzC7wpUiFI6W2qtqHZLKbTdKxN2RugIPmsvMCG0muY-lrkWhecFEqXxWB4b5QBSw8Yb7V3JlPpVQsQGJiI0VZmhi_6cJHZLVuavuYUMWZKSOpuU5YpKXQUWkCrQFnRiphim2SN7Cj-aB4be586gHLXSFscz5s8ybZXhxzbgb2c0zCUV3TYmvZ4qJn_rim7quF5OSgnuhzUbVt5m3uUoP53Jf-1XVChhch4Faos9GL3XLEMAHAHgvx5B_X-ZLcGk8OD_KDvaP9p-R2ABDMxRmFz8hqN5vb5wChOv3CKc1Pn_AXMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAceEPL00gg0UO2cRLbybGErLYUCoKl6i2yHYcuhGS1ySLKD-H3MuNkVwLRCq6W357xfMmMvyHkqbZWJTYBRVLaemACYk85LsIwFJwJJUv3vuLNoZh8jF4d8-MNwldvYWASLfTUOic-avW8KAeGAbaL5Z9VaUaRwWRy_AK5yJEBDhFR-mF9ASNnex_ZwbwY8MHgnfxbD2iTTPu7TToDaDqDM75GjtZTdXEmX0bLTo_Mjz9YHP97LdfJ1QGC0r1eZm6QDVvfJFf2Pi0GGg57i_x8-635ujSzmk5Oi0VTnbYISel75Hm19EXP8Ix9FCcWf7dRVRd0vy5BvPqnkBSauniDpmu-I-HnzNCsRQGZYXA1BfGb0efZNEt36AFoUbrK6YLddMj8gVPM5vhipMKRUltV7W0yHWfTdOINGRzgwEXSeYGNEqF54msZa1EIWSpfFYERvlQFLDxmvtXCmVGlFJcgOdwksiwNx2-78A7ZrJvabhGqBDNllGihYxbpROqoNIHWgDcjFTPFtskz2NF8UMA2d771gOWuELY5H7Z5m-yujjo3Aws6JuOozmmxs24x7xlAzqn7ZCU9Oagp-l5UbZtlm7sUYb7wE__sOiHDCxHwK9S524veesQwBuDOpbz3j-t8TC69eznOX-8fHtwnlwNAYi7cKHxANrvF0j4EJNXpR05vfgF08Bmq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ovomucin+Hydrolysates+Reduce+Bacterial+Adhesion+and+Inflammation+in+Enterotoxigenic+Escherichia+coli+%28ETEC%29+K88-Challenged+Intestinal+Epithelial+Cells&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Bao%2C+Xiaoyu&rft.au=G%C3%A4nzle%2C+Michael+G&rft.au=Wu%2C+Jianping&rft.date=2024-04-03&rft.issn=1520-5118&rft.volume=72&rft.issue=13+p.7219-7229&rft.spage=7219&rft.epage=7229&rft_id=info:doi/10.1021%2Facs.jafc.4c00185&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon