Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells
Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, a...
Saved in:
Published in | Journal of agricultural and food chemistry Vol. 72; no. 13; pp. 7219 - 7229 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
03.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8561 1520-5118 1520-5118 |
DOI | 10.1021/acs.jafc.4c00185 |
Cover
Abstract | Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells. |
---|---|
AbstractList | Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells. Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca²⁺ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells. Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells. Enterotoxigenic (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells. |
Author | Wu, Jianping Bao, Xiaoyu Gänzle, Michael G. |
AuthorAffiliation | Department of Agricultural, Food and Nutritional Science |
AuthorAffiliation_xml | – name: Department of Agricultural, Food and Nutritional Science |
Author_xml | – sequence: 1 givenname: Xiaoyu surname: Bao fullname: Bao, Xiaoyu – sequence: 2 givenname: Michael G. surname: Gänzle fullname: Gänzle, Michael G. – sequence: 3 givenname: Jianping orcidid: 0000-0003-2574-5191 surname: Wu fullname: Wu, Jianping email: jwu3@ualberta.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38507577$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFOyfkYyuRZZys7eRYokCrVqqE9h5NHKdx5dhLnKDuH-H34nQXDkiUk6Xx996M3jsjJ847Tch7BmsGKfuEKqwfsVPrjQJgOX9FVoynkHDG8hOygsgkORfslJyF8AgAOZfwhpxmOQfJpVyRn_c__DAr4-j1vh293QecdKDfdDsrTT-jmvRo0NKrttfBeEfRtfTGdRaHAadlEKWVi5Sf_JN50M4oWgXVR5nqDVLlraEX1bYqL-ltnidlj9Zq96AXm7hqMi7aVzsz9doum0ptbXhLXndog353fM_J9ku1La-Tu_uvN-XVXYKZKKYk1ZtCNLyARuaNaIXsELBNlQCJbcwkZ6AbwTLIBCJy2WjNVSG7TnHYpCI7JxcH293ov8_xmHowQcUD0Gk_hzpjPGPFJuPwXzQtZMZAQLGgH47o3Ay6rXejGXDc179TjwAcADX6EEbd_UEY1EuxdSy2Xoqtj8VGifhLosz0XMA0orEvCT8ehM8_fh5j3OHf-C8tYbms |
CitedBy_id | crossref_primary_10_3389_fimmu_2024_1460127 crossref_primary_10_1038_s42003_025_07821_6 crossref_primary_10_1016_j_psj_2025_104786 crossref_primary_10_1186_s13567_024_01352_4 |
Cites_doi | 10.1017/S0007114513003024 10.1016/j.jff.2021.104822 10.1016/j.ijfoodmicro.2010.05.027 10.1177/002215540405200507 10.1016/S0161-5890(01)00108-0 10.1016/j.ijbiomac.2020.06.148 10.3389/fcimb.2015.00026 10.2353/ajpath.2010.100371 10.1371/journal.pone.0104258 10.1128/AEM.03137-09 10.1016/j.jff.2019.02.015 10.1111/nyas.13346 10.1371/journal.pone.0104183 10.1017/S0007114512002978 10.1073/pnas.90.8.3202 10.1016/S1043-4526(08)00402-6 10.1016/j.procbio.2011.10.014 10.1016/j.jss.2009.03.066 10.1099/mic.0.001157 10.1007/s00418-005-0067-z 10.3390/ijms20143485 10.1021/acs.jafc.6b04299 10.1099/00221287-139-3-631 10.1016/j.foodchem.2016.05.153 10.1128/CMR.18.3.465-483.2005 10.1111/j.1365-2672.2008.04068.x 10.1016/j.vas.2019.100058 10.1021/jf0353335 10.1371/journal.pone.0051874 10.1016/j.vetmic.2009.08.020 10.1128/AEM.01525-15 10.1111/j.1574-695X.2010.00650.x 10.1186/s12866-016-0847-8 10.1128/ecosalplus.ESP-0006-2016 10.1016/j.cell.2006.02.015 10.1186/s40813-016-0039-9 10.1016/j.jbc.2023.102989 10.1016/j.tifs.2017.09.002 10.1017/S095026880700934X 10.1111/j.1348-0421.1997.tb01904.x 10.1128/IAI.00455-13 10.1016/j.ijbiomac.2018.07.186 10.1007/s10616-011-9362-9 10.1042/bse0530041 10.1021/acs.jafc.1c00865 10.1128/AEM.01782-14 10.1007/s00253-015-6643-9 10.1093/jn/137.12.2709 10.1016/S0924-2244(00)89083-4 10.1038/s41598-018-35702-y 10.1017/S0007114518002507 10.1186/s40813-022-00247-0 10.1016/j.tifs.2020.11.015 10.1007/s10719-009-9269-2 10.1002/mnfr.202200184 10.1111/j.1749-6632.2010.05634.x 10.3389/fcimb.2018.00242 10.1016/j.vetmic.2007.12.018 10.1093/jas/skaa012 10.1016/j.foodchem.2012.08.078 10.1038/nrm.2016.80 10.1111/j.1365-2621.1977.tb01227.x 10.1016/j.tifs.2010.07.001 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.jafc.4c00185 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 7229 |
ExternalDocumentID | 38507577 10_1021_acs_jafc_4c00185 c628343941 |
Genre | Journal Article |
GroupedDBID | --- -~X .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL GX1 IH9 JG~ LG6 P2P ROL TWZ UI2 VF5 VG9 W1F WH7 AAHBH AAYXX ABBLG ABLBI AGXLV CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a369t-2e496b590b78b6d67fa0ad2c607ad4c0810eb613036aaa57bee5c97ffc504263 |
IEDL.DBID | ACS |
ISSN | 0021-8561 1520-5118 |
IngestDate | Fri Jul 11 02:04:09 EDT 2025 Fri Jul 11 13:28:47 EDT 2025 Wed Feb 19 02:07:28 EST 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jul 01 01:40:35 EDT 2025 Thu Apr 04 10:28:47 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | ovomucin hydrolysate intestinal epithelial cells intestinal integrity inflammation Enterotoxigenic Escherichia coli K88 heat-stable toxin tight junction |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a369t-2e496b590b78b6d67fa0ad2c607ad4c0810eb613036aaa57bee5c97ffc504263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2574-5191 |
PMID | 38507577 |
PQID | 2973106090 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3153194350 proquest_miscellaneous_2973106090 pubmed_primary_38507577 crossref_primary_10_1021_acs_jafc_4c00185 crossref_citationtrail_10_1021_acs_jafc_4c00185 acs_journals_10_1021_acs_jafc_4c00185 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-03 |
PublicationDateYYYYMMDD | 2024-04-03 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 Sjölund M. (ref4/cit4) 2014 ref18/cit18 Vergauwen H. (ref31/cit31) 2015 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 Lea T. (ref45/cit45) 2015 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref21/cit21 doi: 10.1017/S0007114513003024 – ident: ref32/cit32 doi: 10.1016/j.jff.2021.104822 – ident: ref13/cit13 doi: 10.1016/j.ijfoodmicro.2010.05.027 – ident: ref35/cit35 doi: 10.1177/002215540405200507 – ident: ref39/cit39 doi: 10.1016/S0161-5890(01)00108-0 – ident: ref41/cit41 doi: 10.1016/j.ijbiomac.2020.06.148 – ident: ref8/cit8 doi: 10.3389/fcimb.2015.00026 – ident: ref60/cit60 doi: 10.2353/ajpath.2010.100371 – ident: ref15/cit15 doi: 10.1371/journal.pone.0104258 – ident: ref17/cit17 doi: 10.1128/AEM.03137-09 – ident: ref27/cit27 doi: 10.1016/j.jff.2019.02.015 – ident: ref52/cit52 doi: 10.1111/nyas.13346 – ident: ref57/cit57 doi: 10.1371/journal.pone.0104183 – ident: ref20/cit20 doi: 10.1017/S0007114512002978 – start-page: 125 volume-title: The Impact of Food Bioactives on Health: in vitro and ex vivo models year: 2015 ident: ref31/cit31 – ident: ref62/cit62 doi: 10.1073/pnas.90.8.3202 – ident: ref12/cit12 doi: 10.1016/S1043-4526(08)00402-6 – ident: ref28/cit28 doi: 10.1016/j.procbio.2011.10.014 – ident: ref61/cit61 doi: 10.1016/j.jss.2009.03.066 – start-page: 103 volume-title: The Impact of Food Bioactives on Health: in vitro and ex vivo models year: 2015 ident: ref45/cit45 – ident: ref43/cit43 doi: 10.1099/mic.0.001157 – ident: ref47/cit47 doi: 10.1007/s00418-005-0067-z – ident: ref9/cit9 doi: 10.3390/ijms20143485 – ident: ref26/cit26 doi: 10.1021/acs.jafc.6b04299 – ident: ref66/cit66 doi: 10.1099/00221287-139-3-631 – ident: ref29/cit29 doi: 10.1016/j.foodchem.2016.05.153 – ident: ref1/cit1 doi: 10.1128/CMR.18.3.465-483.2005 – ident: ref16/cit16 doi: 10.1111/j.1365-2672.2008.04068.x – ident: ref11/cit11 doi: 10.1016/j.vas.2019.100058 – ident: ref25/cit25 doi: 10.1021/jf0353335 – ident: ref36/cit36 doi: 10.1371/journal.pone.0051874 – volume-title: Proceedings of the 6th European symposium of porcine health management year: 2014 ident: ref4/cit4 – ident: ref53/cit53 doi: 10.1016/j.vetmic.2009.08.020 – ident: ref19/cit19 doi: 10.1128/AEM.01525-15 – ident: ref33/cit33 doi: 10.1111/j.1574-695X.2010.00650.x – ident: ref55/cit55 doi: 10.1186/s12866-016-0847-8 – ident: ref3/cit3 doi: 10.1128/ecosalplus.ESP-0006-2016 – ident: ref59/cit59 doi: 10.1016/j.cell.2006.02.015 – ident: ref5/cit5 doi: 10.1186/s40813-016-0039-9 – ident: ref42/cit42 doi: 10.1016/j.jbc.2023.102989 – ident: ref14/cit14 doi: 10.1016/j.tifs.2017.09.002 – ident: ref2/cit2 doi: 10.1017/S095026880700934X – ident: ref63/cit63 doi: 10.1111/j.1348-0421.1997.tb01904.x – ident: ref64/cit64 doi: 10.1128/IAI.00455-13 – ident: ref44/cit44 doi: 10.1016/j.ijbiomac.2018.07.186 – ident: ref49/cit49 doi: 10.1007/s10616-011-9362-9 – ident: ref58/cit58 doi: 10.1042/bse0530041 – ident: ref40/cit40 doi: 10.1021/acs.jafc.1c00865 – ident: ref18/cit18 doi: 10.1128/AEM.01782-14 – ident: ref6/cit6 doi: 10.1007/s00253-015-6643-9 – ident: ref7/cit7 doi: 10.1093/jn/137.12.2709 – ident: ref22/cit22 doi: 10.1016/S0924-2244(00)89083-4 – ident: ref10/cit10 doi: 10.1038/s41598-018-35702-y – ident: ref56/cit56 doi: 10.1017/S0007114518002507 – ident: ref46/cit46 doi: 10.1186/s40813-022-00247-0 – ident: ref50/cit50 doi: 10.1016/j.tifs.2020.11.015 – ident: ref30/cit30 doi: 10.1007/s10719-009-9269-2 – ident: ref37/cit37 doi: 10.1002/mnfr.202200184 – ident: ref65/cit65 doi: 10.1111/j.1749-6632.2010.05634.x – ident: ref54/cit54 doi: 10.3389/fcimb.2018.00242 – ident: ref48/cit48 doi: 10.1016/j.vetmic.2007.12.018 – ident: ref38/cit38 doi: 10.1093/jas/skaa012 – ident: ref34/cit34 doi: 10.1016/j.foodchem.2012.08.078 – ident: ref51/cit51 doi: 10.1038/nrm.2016.80 – ident: ref23/cit23 doi: 10.1111/j.1365-2621.1977.tb01227.x – ident: ref24/cit24 doi: 10.1016/j.tifs.2010.07.001 |
SSID | ssj0008570 |
Score | 2.4717803 |
Snippet | Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal... Enterotoxigenic (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7219 |
SubjectTerms | adhesion Animals Bacterial Adhesion Bioactive Constituents, Metabolites, and Functions Caco-2 Cells calcium calcium-calmodulin-dependent protein kinase chickens diarrhea Diarrhea - microbiology egg albumen Enterotoxigenic Escherichia coli enterotoxins epithelial cells Epithelial Cells - metabolism epithelium Escherichia coli Infections - drug therapy Escherichia coli Infections - microbiology food chemistry glycoproteins glycosylation Humans inflammation Inflammation - drug therapy Inflammation - metabolism Intestinal Mucosa - metabolism intestines mitogen-activated protein kinase NF-kappa B - genetics NF-kappa B - metabolism Ovomucin oxidative stress pancreatin pathogens pepsin Swine |
Title | Ovomucin Hydrolysates Reduce Bacterial Adhesion and Inflammation in Enterotoxigenic Escherichia coli (ETEC) K88-Challenged Intestinal Epithelial Cells |
URI | http://dx.doi.org/10.1021/acs.jafc.4c00185 https://www.ncbi.nlm.nih.gov/pubmed/38507577 https://www.proquest.com/docview/2973106090 https://www.proquest.com/docview/3153194350 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXOBAKc8-qIwEEj1kG-dhx8clSrWAAAkWqbfIdpyykCbVJlu1_BB-b2ec7CLoQ71G9ji2ZzxfMuNvCHmtrVXSSjAkpa0HLiDxlOMiDEMeM65E6e5XfPrMJ9-jD4fx4V-anP8j-AHbV6Yd_VSlGUUGK8jFd8k9kMjwQ2ucfludukjU3qdzMC8BUDCEJK-SgI7ItP86omvQpfMyB-t9uaLWkRNicsmv0aLTI_P7MnXjLSbwiDwcwCYd99qxQe7Y-jF5MD6aD4Qb9gn58-W0OV6YWU0n58W8qc5bBJ_0KzK6Wvqu53JGGcUPiz_WqKoL-r4uQZH6S48UurrMgqZrzpDac2Zo1qIqzDCNmoKizejbbJqle_Qj2Eu6rN6CYjrk-MBXzE7wbkiFI6W2qtqnZHqQTdOJN9RqgK3lsvMCG0muY-lrkWhecFEqXxWB4b5QBUw8Yb7V3DlMpVQsQEdiI0VZmhi_4sJnZK1uavuCUMWZKSOpuU5YpKXQUWkCrQFZRiphim2SN7Ci-WBqbe6i6AHL3UNY5nxY5k2yv9zf3Ax851h2o7qhx96qx0nP9XFD21dLlcnBIDHKomrbLNrcFQPzuS_969uEDI8-QKrQ5nmvb6sRwwQgeizE1i3nuU3uBwC0XDZRuEPWuvnCvgSg1OldZyEX9v4OxQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOUAP5V3K00gg0UO2cR52fCxRqi19IJVF6i2yHYduSZNqk0WUH8LvZcbJLgLRCq6W357xfMmMvyHktbZWSStBkZS2HpiAxFOOizAMecy4EqV7X3F4xMefovcn8ckKYYu3MDCJFnpqnRP_F7sA28ayM1WaUWQwkVx8g9x0RCiIhtKPy8sX-dr7qA7mJYANBs_k33pAe2Ta3-3RFSDTGZvdO-R4OU0XY_JlNO_0yHz_g8Hxv9Zxl6wP0JPu9LJyj6zY-j5Z2_k8G-g37APy48PX5nxupjUdXxazprpsEYrSY-R3tfRdz-yMfRSnFn-zUVUXdK8uQaz6J5AUmro4g6ZrviHR59TQrEXBmGJQNQWxm9K32SRLt-g-aE-6yOWC3XTI-IFTzC7wpUiFI6W2qtqHZLKbTdKxN2RugIPmsvMCG0muY-lrkWhecFEqXxWB4b5QBSw8Yb7V3JlPpVQsQGJiI0VZmhi_6cJHZLVuavuYUMWZKSOpuU5YpKXQUWkCrQFnRiphim2SN7Cj-aB4be586gHLXSFscz5s8ybZXhxzbgb2c0zCUV3TYmvZ4qJn_rim7quF5OSgnuhzUbVt5m3uUoP53Jf-1XVChhch4Faos9GL3XLEMAHAHgvx5B_X-ZLcGk8OD_KDvaP9p-R2ABDMxRmFz8hqN5vb5wChOv3CKc1Pn_AXMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAceEPL00gg0UO2cRLbybGErLYUCoKl6i2yHYcuhGS1ySLKD-H3MuNkVwLRCq6W357xfMmMvyHkqbZWJTYBRVLaemACYk85LsIwFJwJJUv3vuLNoZh8jF4d8-MNwldvYWASLfTUOic-avW8KAeGAbaL5Z9VaUaRwWRy_AK5yJEBDhFR-mF9ASNnex_ZwbwY8MHgnfxbD2iTTPu7TToDaDqDM75GjtZTdXEmX0bLTo_Mjz9YHP97LdfJ1QGC0r1eZm6QDVvfJFf2Pi0GGg57i_x8-635ujSzmk5Oi0VTnbYISel75Hm19EXP8Ix9FCcWf7dRVRd0vy5BvPqnkBSauniDpmu-I-HnzNCsRQGZYXA1BfGb0efZNEt36AFoUbrK6YLddMj8gVPM5vhipMKRUltV7W0yHWfTdOINGRzgwEXSeYGNEqF54msZa1EIWSpfFYERvlQFLDxmvtXCmVGlFJcgOdwksiwNx2-78A7ZrJvabhGqBDNllGihYxbpROqoNIHWgDcjFTPFtskz2NF8UMA2d771gOWuELY5H7Z5m-yujjo3Aws6JuOozmmxs24x7xlAzqn7ZCU9Oagp-l5UbZtlm7sUYb7wE__sOiHDCxHwK9S524veesQwBuDOpbz3j-t8TC69eznOX-8fHtwnlwNAYi7cKHxANrvF0j4EJNXpR05vfgF08Bmq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ovomucin+Hydrolysates+Reduce+Bacterial+Adhesion+and+Inflammation+in+Enterotoxigenic+Escherichia+coli+%28ETEC%29+K88-Challenged+Intestinal+Epithelial+Cells&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Bao%2C+Xiaoyu&rft.au=G%C3%A4nzle%2C+Michael+G&rft.au=Wu%2C+Jianping&rft.date=2024-04-03&rft.issn=1520-5118&rft.volume=72&rft.issue=13+p.7219-7229&rft.spage=7219&rft.epage=7229&rft_id=info:doi/10.1021%2Facs.jafc.4c00185&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |