Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem

•Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and microhabitats.•Sandy soil fractal dimension (D) significantly increased with litter cover.•Litter cover promotes the transformation of sandy to loamy textures...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 374; p. 114429
Main Authors Wu, Gao-Lin, Zhang, Meng-Qi, Liu, Yu, López‐Vicente, Manuel
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2020
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2020.114429

Cover

Abstract •Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and microhabitats.•Sandy soil fractal dimension (D) significantly increased with litter cover.•Litter cover promotes the transformation of sandy to loamy textures. Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial roles in maintaining ecosystem functioning. However, the true extent of soil quality improvement during the development of crusts is an issue not solved. In this study, four development stages of natural soil crusts, i.e., physical crusts (PC), biocrusts (BC), litter covered biocrusts (LBC) and litter crusts (LC) were selected in a semi-arid sandy ecosystem, along with a bare sandy land (BSL) as control area, to evaluate soil physicochemical properties at different soil depths. The coverage of litter (mainly leaves of Populus simonii) increased soil moisture and reduced soil bulk density. Compared with BC, the content of total soil organic matter (SOM) decreased in LBC by 13.83% and increased in LC by 36.57%. In contrast with BC, LC promoted a significant increase in soil nutrients, such as total nitrogen (30.30%), total phosphorus (46.89%) and available potassium (34.40%) in the topsoil layer (0–2 cm). Besides, LC contained higher clay and silt contents (10.47% and 29.81%) and lower sand content (−1.02%) than BC. In the 0–10 cm soil layer, the D (fractal dimension of the soil particle size distribution) of LC was the largest, with a value 5.71%, 6.1%, 2.44% and 0.93% higher than D in BSL, PC, BC and LBC, respectively. These findings reveal that litter covering facilitate the disintegration of BC, which further forms LC, and these processes clearly promote the enhancement of soil quality under sandy semi-arid conditions. Our findings are particularly important for predicting the transformation processes of sandy soil crusts and are of interest in ecological restoration programs.
AbstractList •Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and microhabitats.•Sandy soil fractal dimension (D) significantly increased with litter cover.•Litter cover promotes the transformation of sandy to loamy textures. Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial roles in maintaining ecosystem functioning. However, the true extent of soil quality improvement during the development of crusts is an issue not solved. In this study, four development stages of natural soil crusts, i.e., physical crusts (PC), biocrusts (BC), litter covered biocrusts (LBC) and litter crusts (LC) were selected in a semi-arid sandy ecosystem, along with a bare sandy land (BSL) as control area, to evaluate soil physicochemical properties at different soil depths. The coverage of litter (mainly leaves of Populus simonii) increased soil moisture and reduced soil bulk density. Compared with BC, the content of total soil organic matter (SOM) decreased in LBC by 13.83% and increased in LC by 36.57%. In contrast with BC, LC promoted a significant increase in soil nutrients, such as total nitrogen (30.30%), total phosphorus (46.89%) and available potassium (34.40%) in the topsoil layer (0–2 cm). Besides, LC contained higher clay and silt contents (10.47% and 29.81%) and lower sand content (−1.02%) than BC. In the 0–10 cm soil layer, the D (fractal dimension of the soil particle size distribution) of LC was the largest, with a value 5.71%, 6.1%, 2.44% and 0.93% higher than D in BSL, PC, BC and LBC, respectively. These findings reveal that litter covering facilitate the disintegration of BC, which further forms LC, and these processes clearly promote the enhancement of soil quality under sandy semi-arid conditions. Our findings are particularly important for predicting the transformation processes of sandy soil crusts and are of interest in ecological restoration programs.
Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial roles in maintaining ecosystem functioning. However, the true extent of soil quality improvement during the development of crusts is an issue not solved. In this study, four development stages of natural soil crusts, i.e., physical crusts (PC), biocrusts (BC), litter covered biocrusts (LBC) and litter crusts (LC) were selected in a semi-arid sandy ecosystem, along with a bare sandy land (BSL) as control area, to evaluate soil physicochemical properties at different soil depths. The coverage of litter (mainly leaves of Populus simonii) increased soil moisture and reduced soil bulk density. Compared with BC, the content of total soil organic matter (SOM) decreased in LBC by 13.83% and increased in LC by 36.57%. In contrast with BC, LC promoted a significant increase in soil nutrients, such as total nitrogen (30.30%), total phosphorus (46.89%) and available potassium (34.40%) in the topsoil layer (0–2 cm). Besides, LC contained higher clay and silt contents (10.47% and 29.81%) and lower sand content (−1.02%) than BC. In the 0–10 cm soil layer, the D (fractal dimension of the soil particle size distribution) of LC was the largest, with a value 5.71%, 6.1%, 2.44% and 0.93% higher than D in BSL, PC, BC and LBC, respectively. These findings reveal that litter covering facilitate the disintegration of BC, which further forms LC, and these processes clearly promote the enhancement of soil quality under sandy semi-arid conditions. Our findings are particularly important for predicting the transformation processes of sandy soil crusts and are of interest in ecological restoration programs.
ArticleNumber 114429
Author Zhang, Meng-Qi
Wu, Gao-Lin
Liu, Yu
López‐Vicente, Manuel
Author_xml – sequence: 1
  givenname: Gao-Lin
  surname: Wu
  fullname: Wu, Gao-Lin
  email: wugaolin@nwsuaf.edu.cn
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 2
  givenname: Meng-Qi
  surname: Zhang
  fullname: Zhang, Meng-Qi
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 3
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China
– sequence: 4
  givenname: Manuel
  surname: López‐Vicente
  fullname: López‐Vicente, Manuel
  organization: Team Soil, Water and Land Use, Wageningen Environmental Research, Droevendaalsesteeg 3, Wageningen 6708RC, Netherlands
BookMark eNqFkE1LAzEQhoMo2Kp_QXL0sjVJsx8BD0rxCwpe9OIlpMmspOxuaiYr9N-bpXrx4iVDMu8zZJ45OR7CAIRccrbgjFfX28UHBAexNwvBRH7kUgp1RGa8qUVRiVIdkxnLyaJmFT8lc8RtvtY5OyPva58SRGrDVz53MfQhAdKNDzaOmKgDG_pdQJ98GKgZHMUxtsYCxeA72o6DnTpI_UAxt_c0A7jHBP05OWlNh3DxU8_I28P96-qpWL88Pq_u1oVZVk0qKteotmESGMhlozacC3DclNKAhVpViksLztmpKOHcxpVLKW3F27auFauXZ-TqMDf__nMETLr3aKHrzABhRC3KkivJBJc5enOI2hgQI7Ta-mSmBVI0vtOc6Ump3upfpXpSqg9KM179wXfR9ybu_wdvDyBkD18eokbrYch7-Qg2aRf8fyO-AdXmmRE
CitedBy_id crossref_primary_10_3390_su12198238
crossref_primary_10_1016_j_catena_2023_107606
crossref_primary_10_1016_j_scitotenv_2024_172750
crossref_primary_10_1007_s11356_024_35041_8
crossref_primary_10_1016_j_ibiod_2023_105728
crossref_primary_10_1016_j_catena_2025_108821
crossref_primary_10_1016_j_geoderma_2022_115805
crossref_primary_10_5194_bg_19_3225_2022
crossref_primary_10_1016_j_jhazmat_2024_135037
crossref_primary_10_1016_j_catena_2023_107098
crossref_primary_10_1016_j_geoderma_2020_114911
crossref_primary_10_1016_j_catena_2021_105573
crossref_primary_10_1016_j_jaridenv_2021_104508
crossref_primary_10_1016_j_catena_2022_106344
crossref_primary_10_3390_rs15194803
crossref_primary_10_3390_f13071029
crossref_primary_10_1007_s10021_022_00784_3
crossref_primary_10_1080_02626667_2024_2349261
crossref_primary_10_1016_j_catena_2021_105638
crossref_primary_10_1007_s11104_024_06905_2
crossref_primary_10_1098_rstb_2020_0175
crossref_primary_10_1016_j_still_2024_106176
crossref_primary_10_5194_hess_27_4247_2023
crossref_primary_10_1002_ldr_4136
crossref_primary_10_1016_j_gecco_2025_e03455
crossref_primary_10_1016_j_foreco_2024_121965
crossref_primary_10_1002_ldr_5280
crossref_primary_10_1016_j_agwat_2021_107009
crossref_primary_10_1016_j_scitotenv_2022_159119
crossref_primary_10_1016_j_jhydrol_2021_126714
crossref_primary_10_1038_s41598_025_93405_7
crossref_primary_10_1016_j_scitotenv_2024_176837
crossref_primary_10_1016_j_catena_2022_106632
crossref_primary_10_3390_su152014730
Cites_doi 10.1002/2015JG003185
10.1016/j.soilbio.2012.02.017
10.1097/00010694-193401000-00003
10.1111/nph.13688
10.1126/science.1131634
10.1016/j.soilbio.2016.11.009
10.1016/j.ejsobi.2016.03.006
10.1061/(ASCE)HE.1943-5584.0000633
10.1016/j.iswcr.2017.06.005
10.2136/sssaj1992.03615995005600020005x
10.2136/sssaj2015.11.0407
10.1098/rsta.2010.0328
10.1016/j.geomorph.2011.12.042
10.1016/j.geoderma.2018.04.009
10.1016/j.geoderma.2015.03.024
10.1098/rstb.2012.0102
10.1111/1365-2745.13269
10.3390/su9050725
10.1016/S2095-6339(15)30056-3
10.2136/sssaj1999.634782x
10.1016/j.catena.2007.06.001
10.2136/sssaj2006.0014
10.1016/j.catena.2016.06.017
10.1016/S0016-7061(96)00036-5
10.1002/ecs2.2196
10.1016/j.jhydrol.2018.11.051
10.1038/s41598-017-06709-8
10.1073/pnas.1509150112
10.1111/gcb.12306
10.1016/j.geoderma.2011.09.013
10.1016/j.still.2018.06.011
10.1016/j.geoderma.2018.05.012
10.1016/j.foreco.2016.06.004
10.1016/j.geoderma.2003.12.003
10.1890/140162
10.1016/j.still.2005.07.003
10.1016/j.geomorph.2008.01.012
10.1016/j.geomorph.2016.05.003
10.1111/rec.12870
10.1016/j.ecolmodel.2004.04.007
10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2
10.1038/ngeo2520
10.1080/00103629209368705
10.1046/j.1365-2389.2001.t01-1-00362.x
10.1016/S0016-7061(03)00138-1
10.1016/j.geoderma.2010.10.005
10.1016/j.soilbio.2013.02.002
10.1071/EA03041
10.1016/j.advwatres.2012.01.013
10.1007/s12665-011-1066-0
10.1016/S0378-1127(00)00365-0
10.5194/hess-23-2481-2019
10.1016/j.catena.2018.07.024
10.1016/j.geomorph.2009.11.023
10.1016/j.soilbio.2013.01.030
10.1007/s10021-011-9499-6
10.1007/s11104-015-2648-5
10.1007/s40333-013-0184-9
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114429
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114429
S0016706120300926
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
VH1
WUQ
XPP
Y6R
ZMT
~HD
7S9
ACLOT
L.6
ID FETCH-LOGICAL-a368t-6d89f804e0e4389b112ed1a54aece796914ceddc14ce92ddbd5344c61ff779073
IEDL.DBID AIKHN
ISSN 0016-7061
IngestDate Sun Sep 28 06:24:48 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Thu Sep 18 00:23:47 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil organic matter
Ecological restoration
Soil nutrient
Sandy ecosystem
Soil crust
Soil particle size
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a368t-6d89f804e0e4389b112ed1a54aece796914ceddc14ce92ddbd5344c61ff779073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551940214
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551940214
crossref_citationtrail_10_1016_j_geoderma_2020_114429
crossref_primary_10_1016_j_geoderma_2020_114429
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114429
PublicationCentury 2000
PublicationDate 2020-09-01
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Berger, Duboc, Djukic, Tatzber, Gerzabek, Zehetner (b0025) 2015; 251
Hishe, Lyimo, Bewket (b0130) 2017; 5
Knudsen, Peterson, Pratt (b0165) 1982
Adeel, Safriel, Niemeijer, White, De Kalbermatten, Glantz, Salem, Scholes, Niamir-Fuller, Ehui (b0005) 2005
Chandler, Day, Madsen, Belnap (b0060) 2019; 27
Zhao, Guo, Zhou, Drake (b0310) 2011; 160
Zhao, Xu (b0315) 2012; 18
Jiang, Li, Wei, Chen, Li, Liu, Hu (b0150) 2018; 326
Ries, Hirt (b0245) 2008; 72
Reynolds, Smith, Lambin, Turner, Mortimore, Batterbury, Downing, Dowlatabadi, Fernández, Herrick, Huber-Sannwald, Jiang, Leemans, Lynam, Maestre, Ayarza, Walker (b0240) 2007; 316
D’Odorico, Bhattachan, Davis, Ravi, Runyan (b0080) 2013; 51
Lobe, Amelung, Du Preez (b0185) 2001; 52
Ferrenberg, Reed, Belnap (b0105) 2015; 112
Bittelli, Campbell, Flury (b0035) 1999; 63
Kidron, Vonshak, Abeliovich (b0160) 2008; 100
Mulvaney, Azam, Stein, Simmons (b0205) 1992; 23
Murphy, Lodge, Harden (b0210) 2004; 44
Chomel, Guittonny-Larchevêque, DesRochers, Baldy (b0065) 2016; 398
Jia, Huang, Miao, Lu, Li, Liu, Shen, He, Wu (b0140) 2018; 171
Walkley, Black (b0285) 1934; 37
Delgado-Baquerizo, Maestre, Eldridge, Bowker, Ochoa, Gozalo, Berdugo, Val, Singh (b0085) 2016; 209
Fullen, Booth, Brandsma (b0110) 2006; 89
Millán, González-Posada, Aguilar, Domı́nguez, Céspedes (b0195) 2003; 117
Chamizo, Cantón, Lázaro, Solé-Benet, Domingo (b0045) 2012; 15
Chamizo, Rodríguez-Caballero, Román, Cantón (b0055) 2017; 148
Belnap, Weber, Büdel (b0020) 2016
Montero (b0200) 2005; 182
Walter, Don, Tiemeyer, Freibauer (b0290) 2016; 80
Gao, Bowker, Xu, Sun, Tuo, Zhao (b0115) 2017; 105
Liu, Gong, Wang, Hu (b0180) 2013; 5
Ciais, Bombelli, Williams, Piao, Chave, Ryan, Henry, Brender, Valentini (b0070) 2011; 369
Assouline, Thompson, Chen, Svoray, Sela, Katul (b0010) 2015; 120
Kavvadias, Alifragis, Tsiontsis, Brofas, Stamatelos (b0155) 2001; 144
Niu, Yang, Tang, Wang (b0215) 2017; 9
Chamizo, Cantón, Miralles, Domingo (b0050) 2012; 49
Liu, Cui, Huang, Miao, Wu (b0175) 2019; 23
Zinn, Lal, Bigham, Resck (b0320) 2007; 71
Qi, Zhang, Liu, Niu, Zhang, Li, Li, Wang, Zhang (b0225) 2018; 184
Xiao, Sun, Hu, Kidron (b0305) 2019; 568
Gong, Zhu, Shao (b0120) 2018; 329
Bestelmeyer, Okin, Duniway, Archer, Sayre, Williamson, Herrick (b0030) 2015; 13
Sandoval-Pérez, Camargo-Ricalde, Montaño, García-Oliva, Alarcón, Montaño-Arias, Esperón-Rodríguez (b0255) 2016; 74
Feng, Qu, Tan, Fan, Niu (b0100) 2019; 1–14
Rodríguez-Caballero, Cantón, Chamizo, Afana, Solé-Benet (b0250) 2012; 145–146
Cotrufo, Soong, Horton, Campbell, Haddix, Wall, Parton (b0075) 2015; 8
Olsen, Sommers (b0220) 1982
Serpe, Roberts, Eldridge, Rosentreter (b0260) 2013; 60
Tyler, Wheatcraft (b0280) 1992; 56
Su, Zhao, Zhao, Zhang (b0270) 2004; 122
Bowker, Eldridge, Val, Soliveres (b0040) 2013; 61
Wei, Li, Wei (b0300) 2016; 266
Ravi, Breshears, Huxman, D'Odorico (b0230) 2010; 116
Deng, Li, Deng, Zhu, Zhang (b0090) 2017; 7
FAO/UNESCO (b0095) 1974
Ren, Zhao, Kang, Yang, Han, Tong, Feng, Ren (b0235) 2016; 376
Wang (b0295) 2014; 2
Jia, Liu, He, Miao, Huang, Zheng, Han, Wu (b0145) 2018; 9
Belnap (b0015) 2003; 1
Issa, Valentin, Rajot, Cerdan, Desprats, Bouchet (b0135) 2011; 167
Havrilla, Chaudhary, Ferrenberg, Antoninka, Belnap, Bowker, Eldridge, Faist, Huber-Sannwald, Leslie, Rodriguez-Caballero, Zhang, Barger (b0125) 2019; 107
Thomas (b0275) 2012; 367
Maestre, Escolar, de Guevara, Quero, Lázaro, Delgado-Baquerizo, Ochoa, Berdugo, Gozalo, Gallardo (b0190) 2013; 19
Sollins, Homann, Caldwell (b0265) 1996; 74
Lan, Wu, Zhang, Hu (b0170) 2012; 65
Liu (10.1016/j.geoderma.2020.114429_b0175) 2019; 23
Niu (10.1016/j.geoderma.2020.114429_b0215) 2017; 9
Wang (10.1016/j.geoderma.2020.114429_b0295) 2014; 2
Millán (10.1016/j.geoderma.2020.114429_b0195) 2003; 117
Rodríguez-Caballero (10.1016/j.geoderma.2020.114429_b0250) 2012; 145–146
Issa (10.1016/j.geoderma.2020.114429_b0135) 2011; 167
Qi (10.1016/j.geoderma.2020.114429_b0225) 2018; 184
Zinn (10.1016/j.geoderma.2020.114429_b0320) 2007; 71
FAO/UNESCO (10.1016/j.geoderma.2020.114429_b0095) 1974
Montero (10.1016/j.geoderma.2020.114429_b0200) 2005; 182
Delgado-Baquerizo (10.1016/j.geoderma.2020.114429_b0085) 2016; 209
Jiang (10.1016/j.geoderma.2020.114429_b0150) 2018; 326
Jia (10.1016/j.geoderma.2020.114429_b0140) 2018; 171
Reynolds (10.1016/j.geoderma.2020.114429_b0240) 2007; 316
Wei (10.1016/j.geoderma.2020.114429_b0300) 2016; 266
Chomel (10.1016/j.geoderma.2020.114429_b0065) 2016; 398
Maestre (10.1016/j.geoderma.2020.114429_b0190) 2013; 19
Chamizo (10.1016/j.geoderma.2020.114429_b0045) 2012; 15
Walkley (10.1016/j.geoderma.2020.114429_b0285) 1934; 37
Sandoval-Pérez (10.1016/j.geoderma.2020.114429_b0255) 2016; 74
Chamizo (10.1016/j.geoderma.2020.114429_b0055) 2017; 148
D’Odorico (10.1016/j.geoderma.2020.114429_b0080) 2013; 51
Thomas (10.1016/j.geoderma.2020.114429_b0275) 2012; 367
Chandler (10.1016/j.geoderma.2020.114429_b0060) 2019; 27
Zhao (10.1016/j.geoderma.2020.114429_b0310) 2011; 160
Jia (10.1016/j.geoderma.2020.114429_b0145) 2018; 9
Olsen (10.1016/j.geoderma.2020.114429_b0220) 1982
Serpe (10.1016/j.geoderma.2020.114429_b0260) 2013; 60
Kidron (10.1016/j.geoderma.2020.114429_b0160) 2008; 100
Lan (10.1016/j.geoderma.2020.114429_b0170) 2012; 65
Ries (10.1016/j.geoderma.2020.114429_b0245) 2008; 72
Gong (10.1016/j.geoderma.2020.114429_b0120) 2018; 329
Bestelmeyer (10.1016/j.geoderma.2020.114429_b0030) 2015; 13
Feng (10.1016/j.geoderma.2020.114429_b0100) 2019; 1–14
Belnap (10.1016/j.geoderma.2020.114429_b0020) 2016
Hishe (10.1016/j.geoderma.2020.114429_b0130) 2017; 5
Kavvadias (10.1016/j.geoderma.2020.114429_b0155) 2001; 144
Murphy (10.1016/j.geoderma.2020.114429_b0210) 2004; 44
Assouline (10.1016/j.geoderma.2020.114429_b0010) 2015; 120
Gao (10.1016/j.geoderma.2020.114429_b0115) 2017; 105
Liu (10.1016/j.geoderma.2020.114429_b0180) 2013; 5
Tyler (10.1016/j.geoderma.2020.114429_b0280) 1992; 56
Ciais (10.1016/j.geoderma.2020.114429_b0070) 2011; 369
Chamizo (10.1016/j.geoderma.2020.114429_b0050) 2012; 49
Bittelli (10.1016/j.geoderma.2020.114429_b0035) 1999; 63
Adeel (10.1016/j.geoderma.2020.114429_b0005) 2005
Cotrufo (10.1016/j.geoderma.2020.114429_b0075) 2015; 8
Su (10.1016/j.geoderma.2020.114429_b0270) 2004; 122
Ferrenberg (10.1016/j.geoderma.2020.114429_b0105) 2015; 112
Walter (10.1016/j.geoderma.2020.114429_b0290) 2016; 80
Lobe (10.1016/j.geoderma.2020.114429_b0185) 2001; 52
Bowker (10.1016/j.geoderma.2020.114429_b0040) 2013; 61
Belnap (10.1016/j.geoderma.2020.114429_b0015) 2003; 1
Knudsen (10.1016/j.geoderma.2020.114429_b0165) 1982
Xiao (10.1016/j.geoderma.2020.114429_b0305) 2019; 568
Havrilla (10.1016/j.geoderma.2020.114429_b0125) 2019; 107
Deng (10.1016/j.geoderma.2020.114429_b0090) 2017; 7
Sollins (10.1016/j.geoderma.2020.114429_b0265) 1996; 74
Fullen (10.1016/j.geoderma.2020.114429_b0110) 2006; 89
Ravi (10.1016/j.geoderma.2020.114429_b0230) 2010; 116
Berger (10.1016/j.geoderma.2020.114429_b0025) 2015; 251
Zhao (10.1016/j.geoderma.2020.114429_b0315) 2012; 18
Mulvaney (10.1016/j.geoderma.2020.114429_b0205) 1992; 23
Ren (10.1016/j.geoderma.2020.114429_b0235) 2016; 376
References_xml – volume: 23
  start-page: 1805
  year: 1992
  end-page: 1813
  ident: b0205
  article-title: Chloride interference in total nitrogen analysis by the kjeldahl method
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 145–146
  start-page: 81
  year: 2012
  end-page: 89
  ident: b0250
  article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion
  publication-title: Geomorphology
– year: 1974
  ident: b0095
  article-title: Soil Map of the World 1:5,000,000, Vol 1, Legend
– volume: 63
  start-page: 782
  year: 1999
  end-page: 788
  ident: b0035
  article-title: Characterization of particle-size distribution in soils with a fragmentation model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 171
  start-page: 245
  year: 2018
  end-page: 250
  ident: b0140
  article-title: Litter crusts promote herb species formation by improving surface microhabitats in a desert ecosystem
  publication-title: Catena
– volume: 112
  start-page: 12116
  year: 2015
  end-page: 12121
  ident: b0105
  article-title: Climate change and physical disturbance cause similar community shifts in biological soil crusts
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 74
  start-page: 65
  year: 1996
  end-page: 105
  ident: b0265
  article-title: Stabilization and destabilization of soil organic matter: mechanisms and controls
  publication-title: Geoderma
– volume: 49
  start-page: 96
  year: 2012
  end-page: 105
  ident: b0050
  article-title: Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems
  publication-title: Soil Biol. Biochem.
– year: 2005
  ident: b0005
  article-title: Ecosystems and Human Well-Being: Desertification Synthesis
– start-page: 225
  year: 1982
  end-page: 246
  ident: b0165
  article-title: Lithium, sodium and potassium
  publication-title: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties
– start-page: 403
  year: 1982
  end-page: 430
  ident: b0220
  article-title: Phosphorus
  publication-title: Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties
– volume: 61
  start-page: 14
  year: 2013
  end-page: 22
  ident: b0040
  article-title: Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts
  publication-title: Soil Biol. Biochem.
– volume: 72
  start-page: 282
  year: 2008
  end-page: 296
  ident: b0245
  article-title: Permanence of soil surface crusts on abandoned farmland in the Central Ebro Basin/Spain
  publication-title: Catena
– volume: 13
  start-page: 28
  year: 2015
  end-page: 36
  ident: b0030
  article-title: Desertification, land use, and the transformation of global drylands
  publication-title: Front. Ecol. Environ.
– volume: 329
  start-page: 11
  year: 2018
  end-page: 19
  ident: b0120
  article-title: Spatial distribution of caliche nodules in surface soil and their influencing factors in the Liudaogou catchment of the northern Loess Plateau, China
  publication-title: Geoderma
– volume: 160
  start-page: 367
  year: 2011
  end-page: 372
  ident: b0310
  article-title: The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China
  publication-title: Geoderma
– volume: 8
  start-page: 776
  year: 2015
  end-page: 779
  ident: b0075
  article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss
  publication-title: Nat. Geosci.
– volume: 1
  start-page: 181
  year: 2003
  end-page: 189
  ident: b0015
  article-title: The world at your feet: desert biological soil crusts
  publication-title: Front. Ecol. Environ.
– start-page: 3
  year: 2016
  end-page: 13
  ident: b0020
  article-title: Biological soil crusts as an organizing principle in drylands
  publication-title: Biological Soil Crusts: An Organizing principle in Drylands
– volume: 266
  start-page: 133
  year: 2016
  end-page: 145
  ident: b0300
  article-title: Fractal features of soil particle size distribution in layered sediments behind two check dams: implications for the Loess Plateau, China
  publication-title: Geomorphology
– volume: 5
  start-page: 480
  year: 2013
  end-page: 487
  ident: b0180
  article-title: Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees
  publication-title: J. Arid Land
– volume: 44
  start-page: 571
  year: 2004
  end-page: 583
  ident: b0210
  article-title: Surface soil water dynamics in pastures in northern New South Wales. 3. Evapotranspiration
  publication-title: Aust. J. Exp. Agric.
– volume: 9
  start-page: 725
  year: 2017
  ident: b0215
  article-title: Relationships between soil crust development and soil properties in the desert region of North China
  publication-title: Sustainability
– volume: 117
  start-page: 117
  year: 2003
  end-page: 128
  ident: b0195
  article-title: On the fractal scaling of soil data. Particle-size distributions
  publication-title: Geoderma
– volume: 209
  start-page: 1540
  year: 2016
  end-page: 1552
  ident: b0085
  article-title: Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands
  publication-title: New Phytol.
– volume: 52
  start-page: 93
  year: 2001
  end-page: 101
  ident: b0185
  article-title: Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld
  publication-title: Eur. J. Soil Sci.
– volume: 19
  start-page: 3835
  year: 2013
  end-page: 3847
  ident: b0190
  article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands
  publication-title: Glob. Change Biol.
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: b0285
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
– volume: 7
  start-page: 6742
  year: 2017
  ident: b0090
  article-title: Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China
  publication-title: Sci. Rep.
– volume: 51
  start-page: 326
  year: 2013
  end-page: 344
  ident: b0080
  article-title: Global desertification: drivers and feedbacks
  publication-title: Adv. Water. Res.
– volume: 80
  start-page: 579
  year: 2016
  end-page: 591
  ident: b0290
  article-title: Determining soil bulk density for carbon stock calculations: a systematic method comparison
  publication-title: Soil Sci. Soc. Am. J.
– volume: 71
  start-page: 1204
  year: 2007
  end-page: 1214
  ident: b0320
  article-title: Edaphic controls on soil organic carbon retention in the brazilian cerrado: texture and mineralogy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 74
  start-page: 93
  year: 2016
  end-page: 103
  ident: b0255
  article-title: Biocrusts, inside and outside resource islands of Mimosa luisana (Leguminosae), improve soil carbon and nitrogen dynamics in a tropical semiarid ecosystem
  publication-title: Eur. J. Soil Biol.
– volume: 398
  start-page: 229
  year: 2016
  end-page: 241
  ident: b0065
  article-title: Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations
  publication-title: Plant Soil
– volume: 326
  start-page: 201
  year: 2018
  end-page: 209
  ident: b0150
  article-title: Contrasting surface soil hydrology regulated by biological and physical soil crusts for patchy grass in the high-altitude alpine steppe ecosystem
  publication-title: Geoderma
– volume: 89
  start-page: 122
  year: 2006
  end-page: 128
  ident: b0110
  article-title: Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in East Shropshire, UK
  publication-title: Soil Till. Res.
– volume: 122
  start-page: 43
  year: 2004
  end-page: 49
  ident: b0270
  article-title: Fractal features of soil particle size distribution and the implication for indicating desertification
  publication-title: Geoderma
– volume: 568
  start-page: 792
  year: 2019
  end-page: 802
  ident: b0305
  article-title: Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem
  publication-title: J. Hydrol.
– volume: 367
  start-page: 3076
  year: 2012
  end-page: 3086
  ident: b0275
  article-title: Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO
  publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci.
– volume: 184
  start-page: 45
  year: 2018
  end-page: 51
  ident: b0225
  article-title: Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region
  publication-title: Soil Till. Res.
– volume: 369
  start-page: 2038
  year: 2011
  end-page: 2057
  ident: b0070
  article-title: The carbon balance of Africa: synthesis of recent research studies
  publication-title: Philos. Trans. R. Soc. A
– volume: 251
  start-page: 92
  year: 2015
  end-page: 104
  ident: b0025
  article-title: Decomposition of beech (
  publication-title: Geoderma
– volume: 60
  start-page: 220
  year: 2013
  end-page: 230
  ident: b0260
  article-title: Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland
  publication-title: Soil Biol. Biochem.
– volume: 100
  start-page: 444
  year: 2008
  end-page: 452
  ident: b0160
  article-title: Recovery rates of microbiotic crusts within a dune ecosystem in the Negev Desert
  publication-title: Geomorphology
– volume: 105
  start-page: 49
  year: 2017
  end-page: 58
  ident: b0115
  article-title: Biological soil crusts decrease erodibility by modifying inherent soil properties on the loess plateau, China
  publication-title: Soil Biol. Biochem.
– volume: 182
  start-page: 305
  year: 2005
  end-page: 315
  ident: b0200
  article-title: Rényi dimensions analysis of soil particle-size distributions
  publication-title: Ecol. Model.
– volume: 9
  year: 2018
  ident: b0145
  article-title: Formation of litter crusts and its multifunctional ecological effects in a desert ecosystem
  publication-title: Ecosphere
– volume: 27
  start-page: 289
  year: 2019
  end-page: 297
  ident: b0060
  article-title: Amendments fail to hasten biocrust recovery or soil stability at a disturbed dryland sandy site
  publication-title: Restor. Ecol.
– volume: 116
  start-page: 236
  year: 2010
  end-page: 245
  ident: b0230
  article-title: Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics
  publication-title: Geomorphology
– volume: 2
  start-page: 34
  year: 2014
  end-page: 41
  ident: b0295
  article-title: Aeolian desertification and its control in Northern China
  publication-title: Int. Soil Water Conserv. Res.
– volume: 107
  start-page: 2789
  year: 2019
  end-page: 2807
  ident: b0125
  article-title: Towards a predictive framework for biocrust mediation of plant performance: a meta-analysis
  publication-title: J. Ecol.
– volume: 167
  start-page: 22
  year: 2011
  end-page: 29
  ident: b0135
  article-title: Runoff generation fostered by physical and biological crusts in semi-arid sandy soils
  publication-title: Geoderma
– volume: 1–14
  year: 2019
  ident: b0100
  article-title: Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the eastern Qinghai-Tibet Plateau
  publication-title: J. Soil Sedim.
– volume: 15
  start-page: 148
  year: 2012
  end-page: 161
  ident: b0045
  article-title: Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems
  publication-title: Ecosystems
– volume: 5
  start-page: 231
  year: 2017
  end-page: 240
  ident: b0130
  article-title: Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia
  publication-title: Int. Soil Water Conserv. Res.
– volume: 144
  start-page: 113
  year: 2001
  end-page: 127
  ident: b0155
  article-title: Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece
  publication-title: For. Ecol. Manage.
– volume: 376
  start-page: 59
  year: 2016
  end-page: 66
  ident: b0235
  article-title: Linkages of C:N: P stoichiometry and bacterial community in soil following afforestation of former farmland
  publication-title: For. Ecol. Manage.
– volume: 148
  start-page: 117
  year: 2017
  end-page: 125
  ident: b0055
  article-title: Effects of biocrust on soil erosion and organic carbon losses under natural rainfall
  publication-title: Catena
– volume: 316
  start-page: 847
  year: 2007
  end-page: 851
  ident: b0240
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
– volume: 23
  start-page: 2481
  year: 2019
  end-page: 2490
  ident: b0175
  article-title: The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 120
  start-page: 2108
  year: 2015
  end-page: 2119
  ident: b0010
  article-title: The dual role of soil crusts in desertification
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 65
  start-page: 77
  year: 2012
  end-page: 88
  ident: b0170
  article-title: Successional stages of biological soil crusts and their microstructure variability in shapotou region (China)
  publication-title: Environ. Earth Sci.
– volume: 18
  start-page: 387
  year: 2012
  end-page: 393
  ident: b0315
  article-title: Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies
  publication-title: J. Hydrol. Eng.
– volume: 56
  start-page: 362
  year: 1992
  end-page: 369
  ident: b0280
  article-title: Fractal scaling of soil particle-size distributions: analysis and limitations
  publication-title: Soil Sci. Soc. Am. J.
– volume: 120
  start-page: 2108
  year: 2015
  ident: 10.1016/j.geoderma.2020.114429_b0010
  article-title: The dual role of soil crusts in desertification
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2015JG003185
– volume: 49
  start-page: 96
  year: 2012
  ident: 10.1016/j.geoderma.2020.114429_b0050
  article-title: Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.02.017
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.geoderma.2020.114429_b0285
  article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Sci.
  doi: 10.1097/00010694-193401000-00003
– volume: 209
  start-page: 1540
  issue: 4
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0085
  article-title: Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands
  publication-title: New Phytol.
  doi: 10.1111/nph.13688
– volume: 316
  start-page: 847
  year: 2007
  ident: 10.1016/j.geoderma.2020.114429_b0240
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
  doi: 10.1126/science.1131634
– volume: 105
  start-page: 49
  year: 2017
  ident: 10.1016/j.geoderma.2020.114429_b0115
  article-title: Biological soil crusts decrease erodibility by modifying inherent soil properties on the loess plateau, China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.11.009
– volume: 74
  start-page: 93
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0255
  article-title: Biocrusts, inside and outside resource islands of Mimosa luisana (Leguminosae), improve soil carbon and nitrogen dynamics in a tropical semiarid ecosystem
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2016.03.006
– volume: 18
  start-page: 387
  year: 2012
  ident: 10.1016/j.geoderma.2020.114429_b0315
  article-title: Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000633
– volume: 5
  start-page: 231
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2020.114429_b0130
  article-title: Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2017.06.005
– start-page: 3
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0020
  article-title: Biological soil crusts as an organizing principle in drylands
– volume: 56
  start-page: 362
  year: 1992
  ident: 10.1016/j.geoderma.2020.114429_b0280
  article-title: Fractal scaling of soil particle-size distributions: analysis and limitations
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600020005x
– volume: 80
  start-page: 579
  issue: 3
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0290
  article-title: Determining soil bulk density for carbon stock calculations: a systematic method comparison
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.11.0407
– volume: 369
  start-page: 2038
  year: 2011
  ident: 10.1016/j.geoderma.2020.114429_b0070
  article-title: The carbon balance of Africa: synthesis of recent research studies
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2010.0328
– volume: 145–146
  start-page: 81
  year: 2012
  ident: 10.1016/j.geoderma.2020.114429_b0250
  article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.12.042
– volume: 326
  start-page: 201
  year: 2018
  ident: 10.1016/j.geoderma.2020.114429_b0150
  article-title: Contrasting surface soil hydrology regulated by biological and physical soil crusts for patchy grass in the high-altitude alpine steppe ecosystem
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.04.009
– volume: 251
  start-page: 92
  year: 2015
  ident: 10.1016/j.geoderma.2020.114429_b0025
  article-title: Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: decay and nutrient release
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.03.024
– volume: 367
  start-page: 3076
  year: 2012
  ident: 10.1016/j.geoderma.2020.114429_b0275
  article-title: Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana
  publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci.
  doi: 10.1098/rstb.2012.0102
– volume: 107
  start-page: 2789
  issue: 6
  year: 2019
  ident: 10.1016/j.geoderma.2020.114429_b0125
  article-title: Towards a predictive framework for biocrust mediation of plant performance: a meta-analysis
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13269
– volume: 9
  start-page: 725
  year: 2017
  ident: 10.1016/j.geoderma.2020.114429_b0215
  article-title: Relationships between soil crust development and soil properties in the desert region of North China
  publication-title: Sustainability
  doi: 10.3390/su9050725
– volume: 2
  start-page: 34
  issue: 4
  year: 2014
  ident: 10.1016/j.geoderma.2020.114429_b0295
  article-title: Aeolian desertification and its control in Northern China
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/S2095-6339(15)30056-3
– volume: 63
  start-page: 782
  year: 1999
  ident: 10.1016/j.geoderma.2020.114429_b0035
  article-title: Characterization of particle-size distribution in soils with a fragmentation model
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1999.634782x
– volume: 72
  start-page: 282
  year: 2008
  ident: 10.1016/j.geoderma.2020.114429_b0245
  article-title: Permanence of soil surface crusts on abandoned farmland in the Central Ebro Basin/Spain
  publication-title: Catena
  doi: 10.1016/j.catena.2007.06.001
– volume: 71
  start-page: 1204
  year: 2007
  ident: 10.1016/j.geoderma.2020.114429_b0320
  article-title: Edaphic controls on soil organic carbon retention in the brazilian cerrado: texture and mineralogy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0014
– volume: 148
  start-page: 117
  year: 2017
  ident: 10.1016/j.geoderma.2020.114429_b0055
  article-title: Effects of biocrust on soil erosion and organic carbon losses under natural rainfall
  publication-title: Catena
  doi: 10.1016/j.catena.2016.06.017
– volume: 74
  start-page: 65
  year: 1996
  ident: 10.1016/j.geoderma.2020.114429_b0265
  article-title: Stabilization and destabilization of soil organic matter: mechanisms and controls
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(96)00036-5
– volume: 9
  year: 2018
  ident: 10.1016/j.geoderma.2020.114429_b0145
  article-title: Formation of litter crusts and its multifunctional ecological effects in a desert ecosystem
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2196
– volume: 568
  start-page: 792
  year: 2019
  ident: 10.1016/j.geoderma.2020.114429_b0305
  article-title: Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.051
– volume: 7
  start-page: 6742
  issue: 1
  year: 2017
  ident: 10.1016/j.geoderma.2020.114429_b0090
  article-title: Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06709-8
– volume: 112
  start-page: 12116
  year: 2015
  ident: 10.1016/j.geoderma.2020.114429_b0105
  article-title: Climate change and physical disturbance cause similar community shifts in biological soil crusts
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1509150112
– volume: 19
  start-page: 3835
  year: 2013
  ident: 10.1016/j.geoderma.2020.114429_b0190
  article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12306
– volume: 167
  start-page: 22
  year: 2011
  ident: 10.1016/j.geoderma.2020.114429_b0135
  article-title: Runoff generation fostered by physical and biological crusts in semi-arid sandy soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.09.013
– start-page: 403
  year: 1982
  ident: 10.1016/j.geoderma.2020.114429_b0220
  article-title: Phosphorus
– volume: 184
  start-page: 45
  year: 2018
  ident: 10.1016/j.geoderma.2020.114429_b0225
  article-title: Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2018.06.011
– volume: 329
  start-page: 11
  year: 2018
  ident: 10.1016/j.geoderma.2020.114429_b0120
  article-title: Spatial distribution of caliche nodules in surface soil and their influencing factors in the Liudaogou catchment of the northern Loess Plateau, China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.012
– volume: 376
  start-page: 59
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0235
  article-title: Linkages of C:N: P stoichiometry and bacterial community in soil following afforestation of former farmland
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2016.06.004
– volume: 122
  start-page: 43
  year: 2004
  ident: 10.1016/j.geoderma.2020.114429_b0270
  article-title: Fractal features of soil particle size distribution and the implication for indicating desertification
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2003.12.003
– volume: 13
  start-page: 28
  year: 2015
  ident: 10.1016/j.geoderma.2020.114429_b0030
  article-title: Desertification, land use, and the transformation of global drylands
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/140162
– volume: 89
  start-page: 122
  year: 2006
  ident: 10.1016/j.geoderma.2020.114429_b0110
  article-title: Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in East Shropshire, UK
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2005.07.003
– volume: 100
  start-page: 444
  year: 2008
  ident: 10.1016/j.geoderma.2020.114429_b0160
  article-title: Recovery rates of microbiotic crusts within a dune ecosystem in the Negev Desert
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.01.012
– volume: 266
  start-page: 133
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0300
  article-title: Fractal features of soil particle size distribution in layered sediments behind two check dams: implications for the Loess Plateau, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.05.003
– volume: 27
  start-page: 289
  issue: 2
  year: 2019
  ident: 10.1016/j.geoderma.2020.114429_b0060
  article-title: Amendments fail to hasten biocrust recovery or soil stability at a disturbed dryland sandy site
  publication-title: Restor. Ecol.
  doi: 10.1111/rec.12870
– volume: 182
  start-page: 305
  year: 2005
  ident: 10.1016/j.geoderma.2020.114429_b0200
  article-title: Rényi dimensions analysis of soil particle-size distributions
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2004.04.007
– volume: 1
  start-page: 181
  year: 2003
  ident: 10.1016/j.geoderma.2020.114429_b0015
  article-title: The world at your feet: desert biological soil crusts
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2
– volume: 8
  start-page: 776
  year: 2015
  ident: 10.1016/j.geoderma.2020.114429_b0075
  article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2520
– volume: 23
  start-page: 1805
  year: 1992
  ident: 10.1016/j.geoderma.2020.114429_b0205
  article-title: Chloride interference in total nitrogen analysis by the kjeldahl method
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629209368705
– start-page: 225
  year: 1982
  ident: 10.1016/j.geoderma.2020.114429_b0165
  article-title: Lithium, sodium and potassium
– volume: 52
  start-page: 93
  year: 2001
  ident: 10.1016/j.geoderma.2020.114429_b0185
  article-title: Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2001.t01-1-00362.x
– volume: 117
  start-page: 117
  year: 2003
  ident: 10.1016/j.geoderma.2020.114429_b0195
  article-title: On the fractal scaling of soil data. Particle-size distributions
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00138-1
– volume: 160
  start-page: 367
  year: 2011
  ident: 10.1016/j.geoderma.2020.114429_b0310
  article-title: The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.10.005
– volume: 61
  start-page: 14
  year: 2013
  ident: 10.1016/j.geoderma.2020.114429_b0040
  article-title: Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.02.002
– volume: 44
  start-page: 571
  year: 2004
  ident: 10.1016/j.geoderma.2020.114429_b0210
  article-title: Surface soil water dynamics in pastures in northern New South Wales. 3. Evapotranspiration
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA03041
– volume: 51
  start-page: 326
  year: 2013
  ident: 10.1016/j.geoderma.2020.114429_b0080
  article-title: Global desertification: drivers and feedbacks
  publication-title: Adv. Water. Res.
  doi: 10.1016/j.advwatres.2012.01.013
– volume: 65
  start-page: 77
  year: 2012
  ident: 10.1016/j.geoderma.2020.114429_b0170
  article-title: Successional stages of biological soil crusts and their microstructure variability in shapotou region (China)
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1066-0
– volume: 144
  start-page: 113
  year: 2001
  ident: 10.1016/j.geoderma.2020.114429_b0155
  article-title: Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(00)00365-0
– volume: 1–14
  year: 2019
  ident: 10.1016/j.geoderma.2020.114429_b0100
  article-title: Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the eastern Qinghai-Tibet Plateau
  publication-title: J. Soil Sedim.
– volume: 23
  start-page: 2481
  year: 2019
  ident: 10.1016/j.geoderma.2020.114429_b0175
  article-title: The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-23-2481-2019
– volume: 171
  start-page: 245
  year: 2018
  ident: 10.1016/j.geoderma.2020.114429_b0140
  article-title: Litter crusts promote herb species formation by improving surface microhabitats in a desert ecosystem
  publication-title: Catena
  doi: 10.1016/j.catena.2018.07.024
– volume: 116
  start-page: 236
  year: 2010
  ident: 10.1016/j.geoderma.2020.114429_b0230
  article-title: Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.11.023
– volume: 60
  start-page: 220
  year: 2013
  ident: 10.1016/j.geoderma.2020.114429_b0260
  article-title: Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.01.030
– volume: 15
  start-page: 148
  year: 2012
  ident: 10.1016/j.geoderma.2020.114429_b0045
  article-title: Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems
  publication-title: Ecosystems
  doi: 10.1007/s10021-011-9499-6
– year: 2005
  ident: 10.1016/j.geoderma.2020.114429_b0005
– volume: 398
  start-page: 229
  year: 2016
  ident: 10.1016/j.geoderma.2020.114429_b0065
  article-title: Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2648-5
– year: 1974
  ident: 10.1016/j.geoderma.2020.114429_b0095
– volume: 5
  start-page: 480
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2020.114429_b0180
  article-title: Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees
  publication-title: J. Arid Land
  doi: 10.1007/s40333-013-0184-9
SSID ssj0017020
Score 2.4890268
Snippet •Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and...
Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114429
SubjectTerms biological soil crusts
clay
Ecological restoration
ecosystems
fractal dimensions
particle size distribution
Populus simonii
potassium
sand fraction
Sandy ecosystem
sandy soils
silt
Soil crust
soil density
Soil nutrient
Soil organic matter
Soil particle size
soil quality
soil water
topsoil
total nitrogen
total phosphorus
Title Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem
URI https://dx.doi.org/10.1016/j.geoderma.2020.114429
https://www.proquest.com/docview/2551940214
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS-RAEC10vOhB1HVx_KIFr9lJTzqd9HEQZfzAk4LspUl3V5aIZIbJzMGLv92upCO7i-DBU0hChVBVqVehX70GOPeoXGCGIpKZk5FAE0eFFDaKnXJJTj27adU-7-X0Udw8pU9rcNHPwhCtMtT-rqa31TpcGQVvjuZVRTO-XGaE0D5PYzWW67Ax9mifD2Bjcn07vf9YTMjioM7IZUQGfw0KP_sw0Z5jrQTRuFXOFW23-SlG_VetWwi62oHt0DuySfd6u7CG9R5sTf4sgn4G_oDfdxWN5zBLzEw2b7l22DBTzSwNVzCHxCEPRC1W1I41q0VZWGTNrHphhHJtIrKqZo2__cq8Qaf2vA-PV5cPF9MobJ8QFYnMl5F0uSrzWGCMtMW58Z0VOl5QcCxmSiouvJOdpYMaO2dcmghhJS9LEiHMkp8wqGc1HgBDpQyKFNNUGoHKGY4JclGSMpCwDoeQ9g7TNmiL0xYXL7onkT3r3tGaHK07Rw9h9GE379Q1vrRQfTz0P3miPQR8aXvWB1D7j4hWRooaZ6tG-_8qrgTJxx1-4_lHsElnHQPtGAbLxQpPfMuyNKew_uuNn4bEfAeXje2L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3gt227TdHNcRFl13ZOCeAlNMpWKdJft7sF_b6ZNRUXw4KmQMCXMTGem5JtvAC5cVs4wRR6I1IqAow6DTHAThFbauE81u67ZPsdi-Mhvn5KnJbhse2EIVuljfxPT62jtV7pem91pUVCPbyRSytDOT0PZE8uwwmmodQdWBjd3w_HnZUIaenbGSAQk8KVR-NWZiWaO1RREvZo5l9fV5q856ke0rlPQ9SZs-NqRDZrjbcESltuwPniZef4M3IHnUUHtOcwQMpNNa6wdVkwXE0PNFcwiYcg9UItlpWXVYpZnBlk1Kd4YZbnaEVlRssptvzMn0LA978Lj9dXD5TDw4xOCLBb9eSBsX-b9kGOINOJcu8oKbZSRcQymUsiIOyVbQw_Zs1bbJObciCjPiYQwjfegU05K3AeGUmrkCSaJ0Byl1RHGGPGcmIG4sXgASaswZTy3OI24eFMtiOxVtYpWpGjVKPoAup9y04Zd408J2dpDffMT5VLAn7LnrQGV-4joZiQrcbKolPuviiQn-rjDf7z_DFaHD_cjNboZ3x3BGu00aLRj6MxnCzxx5ctcn3r3_AAyJ-9x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Litter+cover+promotes+biocrust+decomposition+and+surface+soil+functions+in+sandy+ecosystem&rft.jtitle=Geoderma&rft.au=Wu%2C+Gao-Lin&rft.au=Zhang%2C+Meng-Qi&rft.au=Liu%2C+Yu&rft.au=L%C3%B3pez%E2%80%90Vicente%2C+Manuel&rft.date=2020-09-01&rft.issn=0016-7061&rft.volume=374+p.114429-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114429&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon