Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem
•Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and microhabitats.•Sandy soil fractal dimension (D) significantly increased with litter cover.•Litter cover promotes the transformation of sandy to loamy textures...
Saved in:
Published in | Geoderma Vol. 374; p. 114429 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2020.114429 |
Cover
Abstract | •Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and microhabitats.•Sandy soil fractal dimension (D) significantly increased with litter cover.•Litter cover promotes the transformation of sandy to loamy textures.
Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial roles in maintaining ecosystem functioning. However, the true extent of soil quality improvement during the development of crusts is an issue not solved. In this study, four development stages of natural soil crusts, i.e., physical crusts (PC), biocrusts (BC), litter covered biocrusts (LBC) and litter crusts (LC) were selected in a semi-arid sandy ecosystem, along with a bare sandy land (BSL) as control area, to evaluate soil physicochemical properties at different soil depths. The coverage of litter (mainly leaves of Populus simonii) increased soil moisture and reduced soil bulk density. Compared with BC, the content of total soil organic matter (SOM) decreased in LBC by 13.83% and increased in LC by 36.57%. In contrast with BC, LC promoted a significant increase in soil nutrients, such as total nitrogen (30.30%), total phosphorus (46.89%) and available potassium (34.40%) in the topsoil layer (0–2 cm). Besides, LC contained higher clay and silt contents (10.47% and 29.81%) and lower sand content (−1.02%) than BC. In the 0–10 cm soil layer, the D (fractal dimension of the soil particle size distribution) of LC was the largest, with a value 5.71%, 6.1%, 2.44% and 0.93% higher than D in BSL, PC, BC and LBC, respectively. These findings reveal that litter covering facilitate the disintegration of BC, which further forms LC, and these processes clearly promote the enhancement of soil quality under sandy semi-arid conditions. Our findings are particularly important for predicting the transformation processes of sandy soil crusts and are of interest in ecological restoration programs. |
---|---|
AbstractList | •Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and microhabitats.•Sandy soil fractal dimension (D) significantly increased with litter cover.•Litter cover promotes the transformation of sandy to loamy textures.
Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial roles in maintaining ecosystem functioning. However, the true extent of soil quality improvement during the development of crusts is an issue not solved. In this study, four development stages of natural soil crusts, i.e., physical crusts (PC), biocrusts (BC), litter covered biocrusts (LBC) and litter crusts (LC) were selected in a semi-arid sandy ecosystem, along with a bare sandy land (BSL) as control area, to evaluate soil physicochemical properties at different soil depths. The coverage of litter (mainly leaves of Populus simonii) increased soil moisture and reduced soil bulk density. Compared with BC, the content of total soil organic matter (SOM) decreased in LBC by 13.83% and increased in LC by 36.57%. In contrast with BC, LC promoted a significant increase in soil nutrients, such as total nitrogen (30.30%), total phosphorus (46.89%) and available potassium (34.40%) in the topsoil layer (0–2 cm). Besides, LC contained higher clay and silt contents (10.47% and 29.81%) and lower sand content (−1.02%) than BC. In the 0–10 cm soil layer, the D (fractal dimension of the soil particle size distribution) of LC was the largest, with a value 5.71%, 6.1%, 2.44% and 0.93% higher than D in BSL, PC, BC and LBC, respectively. These findings reveal that litter covering facilitate the disintegration of BC, which further forms LC, and these processes clearly promote the enhancement of soil quality under sandy semi-arid conditions. Our findings are particularly important for predicting the transformation processes of sandy soil crusts and are of interest in ecological restoration programs. Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial roles in maintaining ecosystem functioning. However, the true extent of soil quality improvement during the development of crusts is an issue not solved. In this study, four development stages of natural soil crusts, i.e., physical crusts (PC), biocrusts (BC), litter covered biocrusts (LBC) and litter crusts (LC) were selected in a semi-arid sandy ecosystem, along with a bare sandy land (BSL) as control area, to evaluate soil physicochemical properties at different soil depths. The coverage of litter (mainly leaves of Populus simonii) increased soil moisture and reduced soil bulk density. Compared with BC, the content of total soil organic matter (SOM) decreased in LBC by 13.83% and increased in LC by 36.57%. In contrast with BC, LC promoted a significant increase in soil nutrients, such as total nitrogen (30.30%), total phosphorus (46.89%) and available potassium (34.40%) in the topsoil layer (0–2 cm). Besides, LC contained higher clay and silt contents (10.47% and 29.81%) and lower sand content (−1.02%) than BC. In the 0–10 cm soil layer, the D (fractal dimension of the soil particle size distribution) of LC was the largest, with a value 5.71%, 6.1%, 2.44% and 0.93% higher than D in BSL, PC, BC and LBC, respectively. These findings reveal that litter covering facilitate the disintegration of BC, which further forms LC, and these processes clearly promote the enhancement of soil quality under sandy semi-arid conditions. Our findings are particularly important for predicting the transformation processes of sandy soil crusts and are of interest in ecological restoration programs. |
ArticleNumber | 114429 |
Author | Zhang, Meng-Qi Wu, Gao-Lin Liu, Yu López‐Vicente, Manuel |
Author_xml | – sequence: 1 givenname: Gao-Lin surname: Wu fullname: Wu, Gao-Lin email: wugaolin@nwsuaf.edu.cn organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 2 givenname: Meng-Qi surname: Zhang fullname: Zhang, Meng-Qi organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 3 givenname: Yu surname: Liu fullname: Liu, Yu organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China – sequence: 4 givenname: Manuel surname: López‐Vicente fullname: López‐Vicente, Manuel organization: Team Soil, Water and Land Use, Wageningen Environmental Research, Droevendaalsesteeg 3, Wageningen 6708RC, Netherlands |
BookMark | eNqFkE1LAzEQhoMo2Kp_QXL0sjVJsx8BD0rxCwpe9OIlpMmspOxuaiYr9N-bpXrx4iVDMu8zZJ45OR7CAIRccrbgjFfX28UHBAexNwvBRH7kUgp1RGa8qUVRiVIdkxnLyaJmFT8lc8RtvtY5OyPva58SRGrDVz53MfQhAdKNDzaOmKgDG_pdQJ98GKgZHMUxtsYCxeA72o6DnTpI_UAxt_c0A7jHBP05OWlNh3DxU8_I28P96-qpWL88Pq_u1oVZVk0qKteotmESGMhlozacC3DclNKAhVpViksLztmpKOHcxpVLKW3F27auFauXZ-TqMDf__nMETLr3aKHrzABhRC3KkivJBJc5enOI2hgQI7Ta-mSmBVI0vtOc6Ump3upfpXpSqg9KM179wXfR9ybu_wdvDyBkD18eokbrYch7-Qg2aRf8fyO-AdXmmRE |
CitedBy_id | crossref_primary_10_3390_su12198238 crossref_primary_10_1016_j_catena_2023_107606 crossref_primary_10_1016_j_scitotenv_2024_172750 crossref_primary_10_1007_s11356_024_35041_8 crossref_primary_10_1016_j_ibiod_2023_105728 crossref_primary_10_1016_j_catena_2025_108821 crossref_primary_10_1016_j_geoderma_2022_115805 crossref_primary_10_5194_bg_19_3225_2022 crossref_primary_10_1016_j_jhazmat_2024_135037 crossref_primary_10_1016_j_catena_2023_107098 crossref_primary_10_1016_j_geoderma_2020_114911 crossref_primary_10_1016_j_catena_2021_105573 crossref_primary_10_1016_j_jaridenv_2021_104508 crossref_primary_10_1016_j_catena_2022_106344 crossref_primary_10_3390_rs15194803 crossref_primary_10_3390_f13071029 crossref_primary_10_1007_s10021_022_00784_3 crossref_primary_10_1080_02626667_2024_2349261 crossref_primary_10_1016_j_catena_2021_105638 crossref_primary_10_1007_s11104_024_06905_2 crossref_primary_10_1098_rstb_2020_0175 crossref_primary_10_1016_j_still_2024_106176 crossref_primary_10_5194_hess_27_4247_2023 crossref_primary_10_1002_ldr_4136 crossref_primary_10_1016_j_gecco_2025_e03455 crossref_primary_10_1016_j_foreco_2024_121965 crossref_primary_10_1002_ldr_5280 crossref_primary_10_1016_j_agwat_2021_107009 crossref_primary_10_1016_j_scitotenv_2022_159119 crossref_primary_10_1016_j_jhydrol_2021_126714 crossref_primary_10_1038_s41598_025_93405_7 crossref_primary_10_1016_j_scitotenv_2024_176837 crossref_primary_10_1016_j_catena_2022_106632 crossref_primary_10_3390_su152014730 |
Cites_doi | 10.1002/2015JG003185 10.1016/j.soilbio.2012.02.017 10.1097/00010694-193401000-00003 10.1111/nph.13688 10.1126/science.1131634 10.1016/j.soilbio.2016.11.009 10.1016/j.ejsobi.2016.03.006 10.1061/(ASCE)HE.1943-5584.0000633 10.1016/j.iswcr.2017.06.005 10.2136/sssaj1992.03615995005600020005x 10.2136/sssaj2015.11.0407 10.1098/rsta.2010.0328 10.1016/j.geomorph.2011.12.042 10.1016/j.geoderma.2018.04.009 10.1016/j.geoderma.2015.03.024 10.1098/rstb.2012.0102 10.1111/1365-2745.13269 10.3390/su9050725 10.1016/S2095-6339(15)30056-3 10.2136/sssaj1999.634782x 10.1016/j.catena.2007.06.001 10.2136/sssaj2006.0014 10.1016/j.catena.2016.06.017 10.1016/S0016-7061(96)00036-5 10.1002/ecs2.2196 10.1016/j.jhydrol.2018.11.051 10.1038/s41598-017-06709-8 10.1073/pnas.1509150112 10.1111/gcb.12306 10.1016/j.geoderma.2011.09.013 10.1016/j.still.2018.06.011 10.1016/j.geoderma.2018.05.012 10.1016/j.foreco.2016.06.004 10.1016/j.geoderma.2003.12.003 10.1890/140162 10.1016/j.still.2005.07.003 10.1016/j.geomorph.2008.01.012 10.1016/j.geomorph.2016.05.003 10.1111/rec.12870 10.1016/j.ecolmodel.2004.04.007 10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2 10.1038/ngeo2520 10.1080/00103629209368705 10.1046/j.1365-2389.2001.t01-1-00362.x 10.1016/S0016-7061(03)00138-1 10.1016/j.geoderma.2010.10.005 10.1016/j.soilbio.2013.02.002 10.1071/EA03041 10.1016/j.advwatres.2012.01.013 10.1007/s12665-011-1066-0 10.1016/S0378-1127(00)00365-0 10.5194/hess-23-2481-2019 10.1016/j.catena.2018.07.024 10.1016/j.geomorph.2009.11.023 10.1016/j.soilbio.2013.01.030 10.1007/s10021-011-9499-6 10.1007/s11104-015-2648-5 10.1007/s40333-013-0184-9 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114429 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114429 S0016706120300926 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW VH1 WUQ XPP Y6R ZMT ~HD 7S9 ACLOT L.6 |
ID | FETCH-LOGICAL-a368t-6d89f804e0e4389b112ed1a54aece796914ceddc14ce92ddbd5344c61ff779073 |
IEDL.DBID | AIKHN |
ISSN | 0016-7061 |
IngestDate | Sun Sep 28 06:24:48 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Thu Sep 18 00:23:47 EDT 2025 Fri Feb 23 02:47:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil organic matter Ecological restoration Soil nutrient Sandy ecosystem Soil crust Soil particle size |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a368t-6d89f804e0e4389b112ed1a54aece796914ceddc14ce92ddbd5344c61ff779073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551940214 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551940214 crossref_citationtrail_10_1016_j_geoderma_2020_114429 crossref_primary_10_1016_j_geoderma_2020_114429 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114429 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Berger, Duboc, Djukic, Tatzber, Gerzabek, Zehetner (b0025) 2015; 251 Hishe, Lyimo, Bewket (b0130) 2017; 5 Knudsen, Peterson, Pratt (b0165) 1982 Adeel, Safriel, Niemeijer, White, De Kalbermatten, Glantz, Salem, Scholes, Niamir-Fuller, Ehui (b0005) 2005 Chandler, Day, Madsen, Belnap (b0060) 2019; 27 Zhao, Guo, Zhou, Drake (b0310) 2011; 160 Zhao, Xu (b0315) 2012; 18 Jiang, Li, Wei, Chen, Li, Liu, Hu (b0150) 2018; 326 Ries, Hirt (b0245) 2008; 72 Reynolds, Smith, Lambin, Turner, Mortimore, Batterbury, Downing, Dowlatabadi, Fernández, Herrick, Huber-Sannwald, Jiang, Leemans, Lynam, Maestre, Ayarza, Walker (b0240) 2007; 316 D’Odorico, Bhattachan, Davis, Ravi, Runyan (b0080) 2013; 51 Lobe, Amelung, Du Preez (b0185) 2001; 52 Ferrenberg, Reed, Belnap (b0105) 2015; 112 Bittelli, Campbell, Flury (b0035) 1999; 63 Kidron, Vonshak, Abeliovich (b0160) 2008; 100 Mulvaney, Azam, Stein, Simmons (b0205) 1992; 23 Murphy, Lodge, Harden (b0210) 2004; 44 Chomel, Guittonny-Larchevêque, DesRochers, Baldy (b0065) 2016; 398 Jia, Huang, Miao, Lu, Li, Liu, Shen, He, Wu (b0140) 2018; 171 Walkley, Black (b0285) 1934; 37 Delgado-Baquerizo, Maestre, Eldridge, Bowker, Ochoa, Gozalo, Berdugo, Val, Singh (b0085) 2016; 209 Fullen, Booth, Brandsma (b0110) 2006; 89 Millán, González-Posada, Aguilar, Domı́nguez, Céspedes (b0195) 2003; 117 Chamizo, Cantón, Lázaro, Solé-Benet, Domingo (b0045) 2012; 15 Chamizo, Rodríguez-Caballero, Román, Cantón (b0055) 2017; 148 Belnap, Weber, Büdel (b0020) 2016 Montero (b0200) 2005; 182 Walter, Don, Tiemeyer, Freibauer (b0290) 2016; 80 Gao, Bowker, Xu, Sun, Tuo, Zhao (b0115) 2017; 105 Liu, Gong, Wang, Hu (b0180) 2013; 5 Ciais, Bombelli, Williams, Piao, Chave, Ryan, Henry, Brender, Valentini (b0070) 2011; 369 Assouline, Thompson, Chen, Svoray, Sela, Katul (b0010) 2015; 120 Kavvadias, Alifragis, Tsiontsis, Brofas, Stamatelos (b0155) 2001; 144 Niu, Yang, Tang, Wang (b0215) 2017; 9 Chamizo, Cantón, Miralles, Domingo (b0050) 2012; 49 Liu, Cui, Huang, Miao, Wu (b0175) 2019; 23 Zinn, Lal, Bigham, Resck (b0320) 2007; 71 Qi, Zhang, Liu, Niu, Zhang, Li, Li, Wang, Zhang (b0225) 2018; 184 Xiao, Sun, Hu, Kidron (b0305) 2019; 568 Gong, Zhu, Shao (b0120) 2018; 329 Bestelmeyer, Okin, Duniway, Archer, Sayre, Williamson, Herrick (b0030) 2015; 13 Sandoval-Pérez, Camargo-Ricalde, Montaño, García-Oliva, Alarcón, Montaño-Arias, Esperón-Rodríguez (b0255) 2016; 74 Feng, Qu, Tan, Fan, Niu (b0100) 2019; 1–14 Rodríguez-Caballero, Cantón, Chamizo, Afana, Solé-Benet (b0250) 2012; 145–146 Cotrufo, Soong, Horton, Campbell, Haddix, Wall, Parton (b0075) 2015; 8 Olsen, Sommers (b0220) 1982 Serpe, Roberts, Eldridge, Rosentreter (b0260) 2013; 60 Tyler, Wheatcraft (b0280) 1992; 56 Su, Zhao, Zhao, Zhang (b0270) 2004; 122 Bowker, Eldridge, Val, Soliveres (b0040) 2013; 61 Wei, Li, Wei (b0300) 2016; 266 Ravi, Breshears, Huxman, D'Odorico (b0230) 2010; 116 Deng, Li, Deng, Zhu, Zhang (b0090) 2017; 7 FAO/UNESCO (b0095) 1974 Ren, Zhao, Kang, Yang, Han, Tong, Feng, Ren (b0235) 2016; 376 Wang (b0295) 2014; 2 Jia, Liu, He, Miao, Huang, Zheng, Han, Wu (b0145) 2018; 9 Belnap (b0015) 2003; 1 Issa, Valentin, Rajot, Cerdan, Desprats, Bouchet (b0135) 2011; 167 Havrilla, Chaudhary, Ferrenberg, Antoninka, Belnap, Bowker, Eldridge, Faist, Huber-Sannwald, Leslie, Rodriguez-Caballero, Zhang, Barger (b0125) 2019; 107 Thomas (b0275) 2012; 367 Maestre, Escolar, de Guevara, Quero, Lázaro, Delgado-Baquerizo, Ochoa, Berdugo, Gozalo, Gallardo (b0190) 2013; 19 Sollins, Homann, Caldwell (b0265) 1996; 74 Lan, Wu, Zhang, Hu (b0170) 2012; 65 Liu (10.1016/j.geoderma.2020.114429_b0175) 2019; 23 Niu (10.1016/j.geoderma.2020.114429_b0215) 2017; 9 Wang (10.1016/j.geoderma.2020.114429_b0295) 2014; 2 Millán (10.1016/j.geoderma.2020.114429_b0195) 2003; 117 Rodríguez-Caballero (10.1016/j.geoderma.2020.114429_b0250) 2012; 145–146 Issa (10.1016/j.geoderma.2020.114429_b0135) 2011; 167 Qi (10.1016/j.geoderma.2020.114429_b0225) 2018; 184 Zinn (10.1016/j.geoderma.2020.114429_b0320) 2007; 71 FAO/UNESCO (10.1016/j.geoderma.2020.114429_b0095) 1974 Montero (10.1016/j.geoderma.2020.114429_b0200) 2005; 182 Delgado-Baquerizo (10.1016/j.geoderma.2020.114429_b0085) 2016; 209 Jiang (10.1016/j.geoderma.2020.114429_b0150) 2018; 326 Jia (10.1016/j.geoderma.2020.114429_b0140) 2018; 171 Reynolds (10.1016/j.geoderma.2020.114429_b0240) 2007; 316 Wei (10.1016/j.geoderma.2020.114429_b0300) 2016; 266 Chomel (10.1016/j.geoderma.2020.114429_b0065) 2016; 398 Maestre (10.1016/j.geoderma.2020.114429_b0190) 2013; 19 Chamizo (10.1016/j.geoderma.2020.114429_b0045) 2012; 15 Walkley (10.1016/j.geoderma.2020.114429_b0285) 1934; 37 Sandoval-Pérez (10.1016/j.geoderma.2020.114429_b0255) 2016; 74 Chamizo (10.1016/j.geoderma.2020.114429_b0055) 2017; 148 D’Odorico (10.1016/j.geoderma.2020.114429_b0080) 2013; 51 Thomas (10.1016/j.geoderma.2020.114429_b0275) 2012; 367 Chandler (10.1016/j.geoderma.2020.114429_b0060) 2019; 27 Zhao (10.1016/j.geoderma.2020.114429_b0310) 2011; 160 Jia (10.1016/j.geoderma.2020.114429_b0145) 2018; 9 Olsen (10.1016/j.geoderma.2020.114429_b0220) 1982 Serpe (10.1016/j.geoderma.2020.114429_b0260) 2013; 60 Kidron (10.1016/j.geoderma.2020.114429_b0160) 2008; 100 Lan (10.1016/j.geoderma.2020.114429_b0170) 2012; 65 Ries (10.1016/j.geoderma.2020.114429_b0245) 2008; 72 Gong (10.1016/j.geoderma.2020.114429_b0120) 2018; 329 Bestelmeyer (10.1016/j.geoderma.2020.114429_b0030) 2015; 13 Feng (10.1016/j.geoderma.2020.114429_b0100) 2019; 1–14 Belnap (10.1016/j.geoderma.2020.114429_b0020) 2016 Hishe (10.1016/j.geoderma.2020.114429_b0130) 2017; 5 Kavvadias (10.1016/j.geoderma.2020.114429_b0155) 2001; 144 Murphy (10.1016/j.geoderma.2020.114429_b0210) 2004; 44 Assouline (10.1016/j.geoderma.2020.114429_b0010) 2015; 120 Gao (10.1016/j.geoderma.2020.114429_b0115) 2017; 105 Liu (10.1016/j.geoderma.2020.114429_b0180) 2013; 5 Tyler (10.1016/j.geoderma.2020.114429_b0280) 1992; 56 Ciais (10.1016/j.geoderma.2020.114429_b0070) 2011; 369 Chamizo (10.1016/j.geoderma.2020.114429_b0050) 2012; 49 Bittelli (10.1016/j.geoderma.2020.114429_b0035) 1999; 63 Adeel (10.1016/j.geoderma.2020.114429_b0005) 2005 Cotrufo (10.1016/j.geoderma.2020.114429_b0075) 2015; 8 Su (10.1016/j.geoderma.2020.114429_b0270) 2004; 122 Ferrenberg (10.1016/j.geoderma.2020.114429_b0105) 2015; 112 Walter (10.1016/j.geoderma.2020.114429_b0290) 2016; 80 Lobe (10.1016/j.geoderma.2020.114429_b0185) 2001; 52 Bowker (10.1016/j.geoderma.2020.114429_b0040) 2013; 61 Belnap (10.1016/j.geoderma.2020.114429_b0015) 2003; 1 Knudsen (10.1016/j.geoderma.2020.114429_b0165) 1982 Xiao (10.1016/j.geoderma.2020.114429_b0305) 2019; 568 Havrilla (10.1016/j.geoderma.2020.114429_b0125) 2019; 107 Deng (10.1016/j.geoderma.2020.114429_b0090) 2017; 7 Sollins (10.1016/j.geoderma.2020.114429_b0265) 1996; 74 Fullen (10.1016/j.geoderma.2020.114429_b0110) 2006; 89 Ravi (10.1016/j.geoderma.2020.114429_b0230) 2010; 116 Berger (10.1016/j.geoderma.2020.114429_b0025) 2015; 251 Zhao (10.1016/j.geoderma.2020.114429_b0315) 2012; 18 Mulvaney (10.1016/j.geoderma.2020.114429_b0205) 1992; 23 Ren (10.1016/j.geoderma.2020.114429_b0235) 2016; 376 |
References_xml | – volume: 23 start-page: 1805 year: 1992 end-page: 1813 ident: b0205 article-title: Chloride interference in total nitrogen analysis by the kjeldahl method publication-title: Commun. Soil Sci. Plant Anal. – volume: 145–146 start-page: 81 year: 2012 end-page: 89 ident: b0250 article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion publication-title: Geomorphology – year: 1974 ident: b0095 article-title: Soil Map of the World 1:5,000,000, Vol 1, Legend – volume: 63 start-page: 782 year: 1999 end-page: 788 ident: b0035 article-title: Characterization of particle-size distribution in soils with a fragmentation model publication-title: Soil Sci. Soc. Am. J. – volume: 171 start-page: 245 year: 2018 end-page: 250 ident: b0140 article-title: Litter crusts promote herb species formation by improving surface microhabitats in a desert ecosystem publication-title: Catena – volume: 112 start-page: 12116 year: 2015 end-page: 12121 ident: b0105 article-title: Climate change and physical disturbance cause similar community shifts in biological soil crusts publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 74 start-page: 65 year: 1996 end-page: 105 ident: b0265 article-title: Stabilization and destabilization of soil organic matter: mechanisms and controls publication-title: Geoderma – volume: 49 start-page: 96 year: 2012 end-page: 105 ident: b0050 article-title: Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems publication-title: Soil Biol. Biochem. – year: 2005 ident: b0005 article-title: Ecosystems and Human Well-Being: Desertification Synthesis – start-page: 225 year: 1982 end-page: 246 ident: b0165 article-title: Lithium, sodium and potassium publication-title: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties – start-page: 403 year: 1982 end-page: 430 ident: b0220 article-title: Phosphorus publication-title: Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties – volume: 61 start-page: 14 year: 2013 end-page: 22 ident: b0040 article-title: Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts publication-title: Soil Biol. Biochem. – volume: 72 start-page: 282 year: 2008 end-page: 296 ident: b0245 article-title: Permanence of soil surface crusts on abandoned farmland in the Central Ebro Basin/Spain publication-title: Catena – volume: 13 start-page: 28 year: 2015 end-page: 36 ident: b0030 article-title: Desertification, land use, and the transformation of global drylands publication-title: Front. Ecol. Environ. – volume: 329 start-page: 11 year: 2018 end-page: 19 ident: b0120 article-title: Spatial distribution of caliche nodules in surface soil and their influencing factors in the Liudaogou catchment of the northern Loess Plateau, China publication-title: Geoderma – volume: 160 start-page: 367 year: 2011 end-page: 372 ident: b0310 article-title: The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China publication-title: Geoderma – volume: 8 start-page: 776 year: 2015 end-page: 779 ident: b0075 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nat. Geosci. – volume: 1 start-page: 181 year: 2003 end-page: 189 ident: b0015 article-title: The world at your feet: desert biological soil crusts publication-title: Front. Ecol. Environ. – start-page: 3 year: 2016 end-page: 13 ident: b0020 article-title: Biological soil crusts as an organizing principle in drylands publication-title: Biological Soil Crusts: An Organizing principle in Drylands – volume: 266 start-page: 133 year: 2016 end-page: 145 ident: b0300 article-title: Fractal features of soil particle size distribution in layered sediments behind two check dams: implications for the Loess Plateau, China publication-title: Geomorphology – volume: 5 start-page: 480 year: 2013 end-page: 487 ident: b0180 article-title: Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees publication-title: J. Arid Land – volume: 44 start-page: 571 year: 2004 end-page: 583 ident: b0210 article-title: Surface soil water dynamics in pastures in northern New South Wales. 3. Evapotranspiration publication-title: Aust. J. Exp. Agric. – volume: 9 start-page: 725 year: 2017 ident: b0215 article-title: Relationships between soil crust development and soil properties in the desert region of North China publication-title: Sustainability – volume: 117 start-page: 117 year: 2003 end-page: 128 ident: b0195 article-title: On the fractal scaling of soil data. Particle-size distributions publication-title: Geoderma – volume: 209 start-page: 1540 year: 2016 end-page: 1552 ident: b0085 article-title: Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands publication-title: New Phytol. – volume: 52 start-page: 93 year: 2001 end-page: 101 ident: b0185 article-title: Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld publication-title: Eur. J. Soil Sci. – volume: 19 start-page: 3835 year: 2013 end-page: 3847 ident: b0190 article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands publication-title: Glob. Change Biol. – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: b0285 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. – volume: 7 start-page: 6742 year: 2017 ident: b0090 article-title: Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China publication-title: Sci. Rep. – volume: 51 start-page: 326 year: 2013 end-page: 344 ident: b0080 article-title: Global desertification: drivers and feedbacks publication-title: Adv. Water. Res. – volume: 80 start-page: 579 year: 2016 end-page: 591 ident: b0290 article-title: Determining soil bulk density for carbon stock calculations: a systematic method comparison publication-title: Soil Sci. Soc. Am. J. – volume: 71 start-page: 1204 year: 2007 end-page: 1214 ident: b0320 article-title: Edaphic controls on soil organic carbon retention in the brazilian cerrado: texture and mineralogy publication-title: Soil Sci. Soc. Am. J. – volume: 74 start-page: 93 year: 2016 end-page: 103 ident: b0255 article-title: Biocrusts, inside and outside resource islands of Mimosa luisana (Leguminosae), improve soil carbon and nitrogen dynamics in a tropical semiarid ecosystem publication-title: Eur. J. Soil Biol. – volume: 398 start-page: 229 year: 2016 end-page: 241 ident: b0065 article-title: Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations publication-title: Plant Soil – volume: 326 start-page: 201 year: 2018 end-page: 209 ident: b0150 article-title: Contrasting surface soil hydrology regulated by biological and physical soil crusts for patchy grass in the high-altitude alpine steppe ecosystem publication-title: Geoderma – volume: 89 start-page: 122 year: 2006 end-page: 128 ident: b0110 article-title: Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in East Shropshire, UK publication-title: Soil Till. Res. – volume: 122 start-page: 43 year: 2004 end-page: 49 ident: b0270 article-title: Fractal features of soil particle size distribution and the implication for indicating desertification publication-title: Geoderma – volume: 568 start-page: 792 year: 2019 end-page: 802 ident: b0305 article-title: Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem publication-title: J. Hydrol. – volume: 367 start-page: 3076 year: 2012 end-page: 3086 ident: b0275 article-title: Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci. – volume: 184 start-page: 45 year: 2018 end-page: 51 ident: b0225 article-title: Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region publication-title: Soil Till. Res. – volume: 369 start-page: 2038 year: 2011 end-page: 2057 ident: b0070 article-title: The carbon balance of Africa: synthesis of recent research studies publication-title: Philos. Trans. R. Soc. A – volume: 251 start-page: 92 year: 2015 end-page: 104 ident: b0025 article-title: Decomposition of beech ( publication-title: Geoderma – volume: 60 start-page: 220 year: 2013 end-page: 230 ident: b0260 article-title: Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland publication-title: Soil Biol. Biochem. – volume: 100 start-page: 444 year: 2008 end-page: 452 ident: b0160 article-title: Recovery rates of microbiotic crusts within a dune ecosystem in the Negev Desert publication-title: Geomorphology – volume: 105 start-page: 49 year: 2017 end-page: 58 ident: b0115 article-title: Biological soil crusts decrease erodibility by modifying inherent soil properties on the loess plateau, China publication-title: Soil Biol. Biochem. – volume: 182 start-page: 305 year: 2005 end-page: 315 ident: b0200 article-title: Rényi dimensions analysis of soil particle-size distributions publication-title: Ecol. Model. – volume: 9 year: 2018 ident: b0145 article-title: Formation of litter crusts and its multifunctional ecological effects in a desert ecosystem publication-title: Ecosphere – volume: 27 start-page: 289 year: 2019 end-page: 297 ident: b0060 article-title: Amendments fail to hasten biocrust recovery or soil stability at a disturbed dryland sandy site publication-title: Restor. Ecol. – volume: 116 start-page: 236 year: 2010 end-page: 245 ident: b0230 article-title: Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics publication-title: Geomorphology – volume: 2 start-page: 34 year: 2014 end-page: 41 ident: b0295 article-title: Aeolian desertification and its control in Northern China publication-title: Int. Soil Water Conserv. Res. – volume: 107 start-page: 2789 year: 2019 end-page: 2807 ident: b0125 article-title: Towards a predictive framework for biocrust mediation of plant performance: a meta-analysis publication-title: J. Ecol. – volume: 167 start-page: 22 year: 2011 end-page: 29 ident: b0135 article-title: Runoff generation fostered by physical and biological crusts in semi-arid sandy soils publication-title: Geoderma – volume: 1–14 year: 2019 ident: b0100 article-title: Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the eastern Qinghai-Tibet Plateau publication-title: J. Soil Sedim. – volume: 15 start-page: 148 year: 2012 end-page: 161 ident: b0045 article-title: Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems publication-title: Ecosystems – volume: 5 start-page: 231 year: 2017 end-page: 240 ident: b0130 article-title: Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia publication-title: Int. Soil Water Conserv. Res. – volume: 144 start-page: 113 year: 2001 end-page: 127 ident: b0155 article-title: Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece publication-title: For. Ecol. Manage. – volume: 376 start-page: 59 year: 2016 end-page: 66 ident: b0235 article-title: Linkages of C:N: P stoichiometry and bacterial community in soil following afforestation of former farmland publication-title: For. Ecol. Manage. – volume: 148 start-page: 117 year: 2017 end-page: 125 ident: b0055 article-title: Effects of biocrust on soil erosion and organic carbon losses under natural rainfall publication-title: Catena – volume: 316 start-page: 847 year: 2007 end-page: 851 ident: b0240 article-title: Global desertification: building a science for dryland development publication-title: Science – volume: 23 start-page: 2481 year: 2019 end-page: 2490 ident: b0175 article-title: The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem publication-title: Hydrol. Earth Syst. Sci. – volume: 120 start-page: 2108 year: 2015 end-page: 2119 ident: b0010 article-title: The dual role of soil crusts in desertification publication-title: J. Geophys. Res. Biogeosci. – volume: 65 start-page: 77 year: 2012 end-page: 88 ident: b0170 article-title: Successional stages of biological soil crusts and their microstructure variability in shapotou region (China) publication-title: Environ. Earth Sci. – volume: 18 start-page: 387 year: 2012 end-page: 393 ident: b0315 article-title: Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies publication-title: J. Hydrol. Eng. – volume: 56 start-page: 362 year: 1992 end-page: 369 ident: b0280 article-title: Fractal scaling of soil particle-size distributions: analysis and limitations publication-title: Soil Sci. Soc. Am. J. – volume: 120 start-page: 2108 year: 2015 ident: 10.1016/j.geoderma.2020.114429_b0010 article-title: The dual role of soil crusts in desertification publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2015JG003185 – volume: 49 start-page: 96 year: 2012 ident: 10.1016/j.geoderma.2020.114429_b0050 article-title: Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.02.017 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.geoderma.2020.114429_b0285 article-title: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Sci. doi: 10.1097/00010694-193401000-00003 – volume: 209 start-page: 1540 issue: 4 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0085 article-title: Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands publication-title: New Phytol. doi: 10.1111/nph.13688 – volume: 316 start-page: 847 year: 2007 ident: 10.1016/j.geoderma.2020.114429_b0240 article-title: Global desertification: building a science for dryland development publication-title: Science doi: 10.1126/science.1131634 – volume: 105 start-page: 49 year: 2017 ident: 10.1016/j.geoderma.2020.114429_b0115 article-title: Biological soil crusts decrease erodibility by modifying inherent soil properties on the loess plateau, China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.11.009 – volume: 74 start-page: 93 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0255 article-title: Biocrusts, inside and outside resource islands of Mimosa luisana (Leguminosae), improve soil carbon and nitrogen dynamics in a tropical semiarid ecosystem publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2016.03.006 – volume: 18 start-page: 387 year: 2012 ident: 10.1016/j.geoderma.2020.114429_b0315 article-title: Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000633 – volume: 5 start-page: 231 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2020.114429_b0130 article-title: Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2017.06.005 – start-page: 3 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0020 article-title: Biological soil crusts as an organizing principle in drylands – volume: 56 start-page: 362 year: 1992 ident: 10.1016/j.geoderma.2020.114429_b0280 article-title: Fractal scaling of soil particle-size distributions: analysis and limitations publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600020005x – volume: 80 start-page: 579 issue: 3 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0290 article-title: Determining soil bulk density for carbon stock calculations: a systematic method comparison publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.11.0407 – volume: 369 start-page: 2038 year: 2011 ident: 10.1016/j.geoderma.2020.114429_b0070 article-title: The carbon balance of Africa: synthesis of recent research studies publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2010.0328 – volume: 145–146 start-page: 81 year: 2012 ident: 10.1016/j.geoderma.2020.114429_b0250 article-title: Effects of biological soil crusts on surface roughness and implications for runoff and erosion publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.12.042 – volume: 326 start-page: 201 year: 2018 ident: 10.1016/j.geoderma.2020.114429_b0150 article-title: Contrasting surface soil hydrology regulated by biological and physical soil crusts for patchy grass in the high-altitude alpine steppe ecosystem publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.009 – volume: 251 start-page: 92 year: 2015 ident: 10.1016/j.geoderma.2020.114429_b0025 article-title: Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: decay and nutrient release publication-title: Geoderma doi: 10.1016/j.geoderma.2015.03.024 – volume: 367 start-page: 3076 year: 2012 ident: 10.1016/j.geoderma.2020.114429_b0275 article-title: Impact of grazing intensity on seasonal variations in soil organic carbon and soil CO2 efflux in two semiarid grasslands in southern Botswana publication-title: Philos. Trans. R. Soc. Lond. B: Biol. Sci. doi: 10.1098/rstb.2012.0102 – volume: 107 start-page: 2789 issue: 6 year: 2019 ident: 10.1016/j.geoderma.2020.114429_b0125 article-title: Towards a predictive framework for biocrust mediation of plant performance: a meta-analysis publication-title: J. Ecol. doi: 10.1111/1365-2745.13269 – volume: 9 start-page: 725 year: 2017 ident: 10.1016/j.geoderma.2020.114429_b0215 article-title: Relationships between soil crust development and soil properties in the desert region of North China publication-title: Sustainability doi: 10.3390/su9050725 – volume: 2 start-page: 34 issue: 4 year: 2014 ident: 10.1016/j.geoderma.2020.114429_b0295 article-title: Aeolian desertification and its control in Northern China publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/S2095-6339(15)30056-3 – volume: 63 start-page: 782 year: 1999 ident: 10.1016/j.geoderma.2020.114429_b0035 article-title: Characterization of particle-size distribution in soils with a fragmentation model publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.634782x – volume: 72 start-page: 282 year: 2008 ident: 10.1016/j.geoderma.2020.114429_b0245 article-title: Permanence of soil surface crusts on abandoned farmland in the Central Ebro Basin/Spain publication-title: Catena doi: 10.1016/j.catena.2007.06.001 – volume: 71 start-page: 1204 year: 2007 ident: 10.1016/j.geoderma.2020.114429_b0320 article-title: Edaphic controls on soil organic carbon retention in the brazilian cerrado: texture and mineralogy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0014 – volume: 148 start-page: 117 year: 2017 ident: 10.1016/j.geoderma.2020.114429_b0055 article-title: Effects of biocrust on soil erosion and organic carbon losses under natural rainfall publication-title: Catena doi: 10.1016/j.catena.2016.06.017 – volume: 74 start-page: 65 year: 1996 ident: 10.1016/j.geoderma.2020.114429_b0265 article-title: Stabilization and destabilization of soil organic matter: mechanisms and controls publication-title: Geoderma doi: 10.1016/S0016-7061(96)00036-5 – volume: 9 year: 2018 ident: 10.1016/j.geoderma.2020.114429_b0145 article-title: Formation of litter crusts and its multifunctional ecological effects in a desert ecosystem publication-title: Ecosphere doi: 10.1002/ecs2.2196 – volume: 568 start-page: 792 year: 2019 ident: 10.1016/j.geoderma.2020.114429_b0305 article-title: Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.051 – volume: 7 start-page: 6742 issue: 1 year: 2017 ident: 10.1016/j.geoderma.2020.114429_b0090 article-title: Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China publication-title: Sci. Rep. doi: 10.1038/s41598-017-06709-8 – volume: 112 start-page: 12116 year: 2015 ident: 10.1016/j.geoderma.2020.114429_b0105 article-title: Climate change and physical disturbance cause similar community shifts in biological soil crusts publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1509150112 – volume: 19 start-page: 3835 year: 2013 ident: 10.1016/j.geoderma.2020.114429_b0190 article-title: Changes in biocrust cover drive carbon cycle responses to climate change in drylands publication-title: Glob. Change Biol. doi: 10.1111/gcb.12306 – volume: 167 start-page: 22 year: 2011 ident: 10.1016/j.geoderma.2020.114429_b0135 article-title: Runoff generation fostered by physical and biological crusts in semi-arid sandy soils publication-title: Geoderma doi: 10.1016/j.geoderma.2011.09.013 – start-page: 403 year: 1982 ident: 10.1016/j.geoderma.2020.114429_b0220 article-title: Phosphorus – volume: 184 start-page: 45 year: 2018 ident: 10.1016/j.geoderma.2020.114429_b0225 article-title: Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region publication-title: Soil Till. Res. doi: 10.1016/j.still.2018.06.011 – volume: 329 start-page: 11 year: 2018 ident: 10.1016/j.geoderma.2020.114429_b0120 article-title: Spatial distribution of caliche nodules in surface soil and their influencing factors in the Liudaogou catchment of the northern Loess Plateau, China publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.012 – volume: 376 start-page: 59 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0235 article-title: Linkages of C:N: P stoichiometry and bacterial community in soil following afforestation of former farmland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2016.06.004 – volume: 122 start-page: 43 year: 2004 ident: 10.1016/j.geoderma.2020.114429_b0270 article-title: Fractal features of soil particle size distribution and the implication for indicating desertification publication-title: Geoderma doi: 10.1016/j.geoderma.2003.12.003 – volume: 13 start-page: 28 year: 2015 ident: 10.1016/j.geoderma.2020.114429_b0030 article-title: Desertification, land use, and the transformation of global drylands publication-title: Front. Ecol. Environ. doi: 10.1890/140162 – volume: 89 start-page: 122 year: 2006 ident: 10.1016/j.geoderma.2020.114429_b0110 article-title: Long-term effects of grass ley set-aside on erosion rates and soil organic matter on sandy soils in East Shropshire, UK publication-title: Soil Till. Res. doi: 10.1016/j.still.2005.07.003 – volume: 100 start-page: 444 year: 2008 ident: 10.1016/j.geoderma.2020.114429_b0160 article-title: Recovery rates of microbiotic crusts within a dune ecosystem in the Negev Desert publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.01.012 – volume: 266 start-page: 133 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0300 article-title: Fractal features of soil particle size distribution in layered sediments behind two check dams: implications for the Loess Plateau, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.05.003 – volume: 27 start-page: 289 issue: 2 year: 2019 ident: 10.1016/j.geoderma.2020.114429_b0060 article-title: Amendments fail to hasten biocrust recovery or soil stability at a disturbed dryland sandy site publication-title: Restor. Ecol. doi: 10.1111/rec.12870 – volume: 182 start-page: 305 year: 2005 ident: 10.1016/j.geoderma.2020.114429_b0200 article-title: Rényi dimensions analysis of soil particle-size distributions publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2004.04.007 – volume: 1 start-page: 181 year: 2003 ident: 10.1016/j.geoderma.2020.114429_b0015 article-title: The world at your feet: desert biological soil crusts publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2 – volume: 8 start-page: 776 year: 2015 ident: 10.1016/j.geoderma.2020.114429_b0075 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nat. Geosci. doi: 10.1038/ngeo2520 – volume: 23 start-page: 1805 year: 1992 ident: 10.1016/j.geoderma.2020.114429_b0205 article-title: Chloride interference in total nitrogen analysis by the kjeldahl method publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103629209368705 – start-page: 225 year: 1982 ident: 10.1016/j.geoderma.2020.114429_b0165 article-title: Lithium, sodium and potassium – volume: 52 start-page: 93 year: 2001 ident: 10.1016/j.geoderma.2020.114429_b0185 article-title: Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2001.t01-1-00362.x – volume: 117 start-page: 117 year: 2003 ident: 10.1016/j.geoderma.2020.114429_b0195 article-title: On the fractal scaling of soil data. Particle-size distributions publication-title: Geoderma doi: 10.1016/S0016-7061(03)00138-1 – volume: 160 start-page: 367 year: 2011 ident: 10.1016/j.geoderma.2020.114429_b0310 article-title: The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China publication-title: Geoderma doi: 10.1016/j.geoderma.2010.10.005 – volume: 61 start-page: 14 year: 2013 ident: 10.1016/j.geoderma.2020.114429_b0040 article-title: Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.02.002 – volume: 44 start-page: 571 year: 2004 ident: 10.1016/j.geoderma.2020.114429_b0210 article-title: Surface soil water dynamics in pastures in northern New South Wales. 3. Evapotranspiration publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA03041 – volume: 51 start-page: 326 year: 2013 ident: 10.1016/j.geoderma.2020.114429_b0080 article-title: Global desertification: drivers and feedbacks publication-title: Adv. Water. Res. doi: 10.1016/j.advwatres.2012.01.013 – volume: 65 start-page: 77 year: 2012 ident: 10.1016/j.geoderma.2020.114429_b0170 article-title: Successional stages of biological soil crusts and their microstructure variability in shapotou region (China) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1066-0 – volume: 144 start-page: 113 year: 2001 ident: 10.1016/j.geoderma.2020.114429_b0155 article-title: Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(00)00365-0 – volume: 1–14 year: 2019 ident: 10.1016/j.geoderma.2020.114429_b0100 article-title: Fractal features of sandy soil particle-size distributions during the rangeland desertification process on the eastern Qinghai-Tibet Plateau publication-title: J. Soil Sedim. – volume: 23 start-page: 2481 year: 2019 ident: 10.1016/j.geoderma.2020.114429_b0175 article-title: The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-23-2481-2019 – volume: 171 start-page: 245 year: 2018 ident: 10.1016/j.geoderma.2020.114429_b0140 article-title: Litter crusts promote herb species formation by improving surface microhabitats in a desert ecosystem publication-title: Catena doi: 10.1016/j.catena.2018.07.024 – volume: 116 start-page: 236 year: 2010 ident: 10.1016/j.geoderma.2020.114429_b0230 article-title: Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.11.023 – volume: 60 start-page: 220 year: 2013 ident: 10.1016/j.geoderma.2020.114429_b0260 article-title: Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.01.030 – volume: 15 start-page: 148 year: 2012 ident: 10.1016/j.geoderma.2020.114429_b0045 article-title: Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems publication-title: Ecosystems doi: 10.1007/s10021-011-9499-6 – year: 2005 ident: 10.1016/j.geoderma.2020.114429_b0005 – volume: 398 start-page: 229 year: 2016 ident: 10.1016/j.geoderma.2020.114429_b0065 article-title: Effect of mixing herbaceous litter with tree litters on decomposition and N release in boreal plantations publication-title: Plant Soil doi: 10.1007/s11104-015-2648-5 – year: 1974 ident: 10.1016/j.geoderma.2020.114429_b0095 – volume: 5 start-page: 480 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2020.114429_b0180 article-title: Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees publication-title: J. Arid Land doi: 10.1007/s40333-013-0184-9 |
SSID | ssj0017020 |
Score | 2.4890268 |
Snippet | •Litter coverage accelerates biocrusts’ decomposition in sandy ecosystems.•Litter-covered biocrusts can further improve topsoil nutrients and... Ecological restoration of sandy inland ecosystems is important for achieving global sustainability. In the world’s semi-arid regions, soil crusts play crucial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114429 |
SubjectTerms | biological soil crusts clay Ecological restoration ecosystems fractal dimensions particle size distribution Populus simonii potassium sand fraction Sandy ecosystem sandy soils silt Soil crust soil density Soil nutrient Soil organic matter Soil particle size soil quality soil water topsoil total nitrogen total phosphorus |
Title | Litter cover promotes biocrust decomposition and surface soil functions in sandy ecosystem |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114429 https://www.proquest.com/docview/2551940214 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS-RAEC10vOhB1HVx_KIFr9lJTzqd9HEQZfzAk4LspUl3V5aIZIbJzMGLv92upCO7i-DBU0hChVBVqVehX70GOPeoXGCGIpKZk5FAE0eFFDaKnXJJTj27adU-7-X0Udw8pU9rcNHPwhCtMtT-rqa31TpcGQVvjuZVRTO-XGaE0D5PYzWW67Ax9mifD2Bjcn07vf9YTMjioM7IZUQGfw0KP_sw0Z5jrQTRuFXOFW23-SlG_VetWwi62oHt0DuySfd6u7CG9R5sTf4sgn4G_oDfdxWN5zBLzEw2b7l22DBTzSwNVzCHxCEPRC1W1I41q0VZWGTNrHphhHJtIrKqZo2__cq8Qaf2vA-PV5cPF9MobJ8QFYnMl5F0uSrzWGCMtMW58Z0VOl5QcCxmSiouvJOdpYMaO2dcmghhJS9LEiHMkp8wqGc1HgBDpQyKFNNUGoHKGY4JclGSMpCwDoeQ9g7TNmiL0xYXL7onkT3r3tGaHK07Rw9h9GE379Q1vrRQfTz0P3miPQR8aXvWB1D7j4hWRooaZ6tG-_8qrgTJxx1-4_lHsElnHQPtGAbLxQpPfMuyNKew_uuNn4bEfAeXje2L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8YlvI3gt227TdHNcRFl13ZOCeAlNMpWKdJft7sF_b6ZNRUXw4KmQMCXMTGem5JtvAC5cVs4wRR6I1IqAow6DTHAThFbauE81u67ZPsdi-Mhvn5KnJbhse2EIVuljfxPT62jtV7pem91pUVCPbyRSytDOT0PZE8uwwmmodQdWBjd3w_HnZUIaenbGSAQk8KVR-NWZiWaO1RREvZo5l9fV5q856ke0rlPQ9SZs-NqRDZrjbcESltuwPniZef4M3IHnUUHtOcwQMpNNa6wdVkwXE0PNFcwiYcg9UItlpWXVYpZnBlk1Kd4YZbnaEVlRssptvzMn0LA978Lj9dXD5TDw4xOCLBb9eSBsX-b9kGOINOJcu8oKbZSRcQymUsiIOyVbQw_Zs1bbJObciCjPiYQwjfegU05K3AeGUmrkCSaJ0Byl1RHGGPGcmIG4sXgASaswZTy3OI24eFMtiOxVtYpWpGjVKPoAup9y04Zd408J2dpDffMT5VLAn7LnrQGV-4joZiQrcbKolPuviiQn-rjDf7z_DFaHD_cjNboZ3x3BGu00aLRj6MxnCzxx5ctcn3r3_AAyJ-9x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Litter+cover+promotes+biocrust+decomposition+and+surface+soil+functions+in+sandy+ecosystem&rft.jtitle=Geoderma&rft.au=Wu%2C+Gao-Lin&rft.au=Zhang%2C+Meng-Qi&rft.au=Liu%2C+Yu&rft.au=L%C3%B3pez%E2%80%90Vicente%2C+Manuel&rft.date=2020-09-01&rft.issn=0016-7061&rft.volume=374+p.114429-&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114429&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |