End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem

Linear mixing models of compositional data have been developed in various branches of the earth sciences (e.g., geochemistry, petrology, mineralogy, sedimentology) for the purpose of summarizing variation among a series of observations in terms of proportional contributions of (theoretical) end memb...

Full description

Saved in:
Bibliographic Details
Published inMathematical Geology Vol. 29; no. 4; pp. 503 - 549
Main Author Weltje, Gert Jan
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.05.1997
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0882-8121
1874-8961
1874-8953
1573-8868
DOI10.1007/BF02775085

Cover

More Information
Summary:Linear mixing models of compositional data have been developed in various branches of the earth sciences (e.g., geochemistry, petrology, mineralogy, sedimentology) for the purpose of summarizing variation among a series of observations in terms of proportional contributions of (theoretical) end members. Methods of parameter estimation range from relatively straightforward normative partitioning by (nonnegative) least squares, to more sophisticated bilinear inversion techniques. Solving the bilinear mixing problem involves the estimation of both mixing proportions and end-member compositions from the data. Normative partitioning, also known as linear unmixing, thus can be regarded as a special situation of bilinear unmixing with (supposedly) known end members. Previous attempts to model linear mixing processes are reviewed briefly, and a new iterative strategy for solving the bilinear problem is developed. This end-member modeling algorithm is more robust and has better convergence properties than previously proposed numerical schemes. The bilinear unmixing solution is intrinsically nonunique, unless additional constraints on the model parameters are introduced. In situations where no a priori knowledge is available, the concept of an “ optimal ” solution may be used. This concept is based on the trade-off between mathematical and geological feasibility, two seemingly contradictory but equally desirable requirements of the unmixing solution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
content type line 23
ISSN:0882-8121
1874-8961
1874-8953
1573-8868
DOI:10.1007/BF02775085