Early Cost Estimating of Road Tunnel Construction Using Neural Networks

AbstractRoad tunnel construction is subject to underground uncertainties and risks, and as such it is difficult to predict the final construction cost, especially at the conception phase where issues are evaluated and important design decisions are made. A system assisting in the early cost estimati...

Full description

Saved in:
Bibliographic Details
Published inJournal of construction engineering and management Vol. 138; no. 6; pp. 679 - 687
Main Authors Petroutsatou, K, Georgopoulos, E, Lambropoulos, S, Pantouvakis, J. P
Format Journal Article
LanguageEnglish
Published Reston, VA American Society of Civil Engineers 01.06.2012
Subjects
Online AccessGet full text
ISSN0733-9364
1943-7862
1943-7862
DOI10.1061/(ASCE)CO.1943-7862.0000479

Cover

Abstract AbstractRoad tunnel construction is subject to underground uncertainties and risks, and as such it is difficult to predict the final construction cost, especially at the conception phase where issues are evaluated and important design decisions are made. A system assisting in the early cost estimation of road tunnels would therefore be of great value as it would allow the quick costing of alternative and more economical solutions. The development of such an early cost estimation system is discussed in this paper. First, the basic parameters (geological, geometrical, and work quantities-related) affecting temporary and permanent support and final construction cost are determined. After that, appropriate real-world data derived from the analysis of 33 twin tunnels of 46 km total length constructed for the Egnatia Motorway in northern Greece from 1998 to 2004 and related to work quantities is collected and normalized. Appropriate price lists are then applied to calculate the costs; subsequently, cost-estimating models are developed using two types of neural networks: (1) the multilayer feed-forward network; and (2) the general regression neural network. Finally, these models are compared against real quantities and costs for accuracy and robustness. The main conclusion is that the models developed are fit for their purpose and may lead to fairly accurate work quantities and cost estimates of road tunnels.
AbstractList AbstractRoad tunnel construction is subject to underground uncertainties and risks, and as such it is difficult to predict the final construction cost, especially at the conception phase where issues are evaluated and important design decisions are made. A system assisting in the early cost estimation of road tunnels would therefore be of great value as it would allow the quick costing of alternative and more economical solutions. The development of such an early cost estimation system is discussed in this paper. First, the basic parameters (geological, geometrical, and work quantities-related) affecting temporary and permanent support and final construction cost are determined. After that, appropriate real-world data derived from the analysis of 33 twin tunnels of 46 km total length constructed for the Egnatia Motorway in northern Greece from 1998 to 2004 and related to work quantities is collected and normalized. Appropriate price lists are then applied to calculate the costs; subsequently, cost-estimating models are developed using two types of neural networks: (1) the multilayer feed-forward network; and (2) the general regression neural network. Finally, these models are compared against real quantities and costs for accuracy and robustness. The main conclusion is that the models developed are fit for their purpose and may lead to fairly accurate work quantities and cost estimates of road tunnels.
Road tunnel construction is subject to underground uncertainties and risks, and as such it is difficult to predict the final construction cost, especially at the conception phase where issues are evaluated and important design decisions are made. A system assisting in the early cost estimation of road tunnels would therefore be of great value as it would allow the quick costing of alternative and more economical solutions. The development of such an early cost estimation system is discussed in this paper. First, the basic parameters (geological, geometrical, and work quantities-related) affecting temporary and permanent support and final construction cost are determined. After that, appropriate real-world data derived from the analysis of 33 twin tunnels of 46 km total length constructed for the Egnatia Motorway in northern Greece from 1998 to 2004 and related to work quantities is collected and normalized. Appropriate price lists are then applied to calculate the costs; subsequently, cost-estimating models are developed using two types of neural networks: (1) the multilayer feed-forward network; and (2) the general regression neural network. Finally, these models are compared against real quantities and costs for accuracy and robustness. The main conclusion is that the models developed are fit for their purpose and may lead to fairly accurate work quantities and cost estimates of road tunnels.
Author Pantouvakis, J. P
Georgopoulos, E
Petroutsatou, K
Lambropoulos, S
Author_xml – sequence: 1
  givenname: K
  surname: Petroutsatou
  fullname: Petroutsatou, K
  organization: National Technical Univ. of Athens Civil Engineer, , Greece, 26th Filias St., Nea Filothei Amarousiou, Athens, , P.C. 151 23 (corresponding author). E-mail
– sequence: 2
  givenname: E
  surname: Georgopoulos
  fullname: Georgopoulos, E
  organization: Technological Educational Institute of Kalamata Computer and Informatics Engineer; Assistant Professor, , . E-mail
– sequence: 3
  givenname: S
  surname: Lambropoulos
  fullname: Lambropoulos, S
  organization: National Technical Univ. of Athens Civil Engineer, Associate Professor, , . E-mail
– sequence: 4
  givenname: J. P
  surname: Pantouvakis
  fullname: Pantouvakis, J. P
  organization: National Technical Univ. of Athens Civil Engineer, Associate Professor, , . E-mail
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26020215$$DView record in Pascal Francis
BookMark eNp1kVFPwyAUhYnRxG36HxoTk_nQCaWF4dvS1GmyuES3Z0I7MJ0MJrRZ9u-lbpkPKi83wDmX7x764NxYIwG4QXCEIEH3w8lbXtzl8xFiKY7pmCQjGFZK2Rnonc7OQQ9SjGOGSXoJ-t6vIUQpYVkPTAvh9D7KrW-iwjf1RjS1eY-sil6tWEWL1hipw7XxjWurprYmWvpO8SJbJ3Qozc66D38FLpTQXl4f6wAsH4tF_hTP5tPnfDKLBSa0iaWkYyQFY4xQJEtSyjJTJaIoZRIyggkLe5oglWaKkRQKJohQKKAqJFO2wgPwcOjbmq3Y74TWfOsCtdtzBHmXCRe-kryyvBufd-PzYyTBPDyYt85-ttI3fFMHsdbCSNt6jsY4yyhkkATp7VEa2gmtnDBV7U9vJQQmMEHZD0_lrPdOql84vPsins__5CEH8zfy2rbOhOxOzv-NX6n2lIc
CODEN JCEMD4
Cites_doi 10.1007/s10064-004-0270-5
ContentType Journal Article
Copyright 2012. American Society of Civil Engineers
2014 INIST-CNRS
Copyright_xml – notice: 2012. American Society of Civil Engineers
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
F28
FR3
KR7
ADTOC
UNPAY
DOI 10.1061/(ASCE)CO.1943-7862.0000479
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1943-7862
EndPage 687
ExternalDocumentID oai:dspace.lib.ntua.gr:123456789/29711
26020215
10_1061__ASCE_CO_1943_7862_0000479
10_1061_ASCE_CO_1943_7862_0000479
GeographicLocations Greece
Europe
GroupedDBID -0O
02
0O
0R
29K
4
4.4
4S
5GY
8VB
AAIKC
AAYJJ
AAYOK
ABBOT
ABDBF
ABFLS
ABPTK
ACIWK
ACNET
ACVYA
ADVLX
ADZKS
AENEX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARKUK
CS3
D-I
E70
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
GQVBS
HZ
I-F
L7B
O9-
O~X
P2P
QWB
RAC
RXW
TAE
TAF
TH9
TN5
TUS
WH7
X
XZL
ZL0
-~X
.-4
.4S
.DC
0R~
2FS
6TJ
AAELQ
AAMNW
AAYXX
ABDPE
ACGFO
ACUHS
ADCOW
ADNWM
AEMOZ
AHHRU
AHQJS
AIRRX
ALNAR
CITATION
HZ~
H~9
K1G
WHG
XSW
ZY4
~02
ABTAH
IQODW
8FD
F28
FR3
KR7
ADTOC
UNPAY
ID FETCH-LOGICAL-a367t-ee781ea999671eb6beb5fb17149e096369b5f721f45f9640a9a6af1695f1e49d3
IEDL.DBID UNPAY
ISSN 0733-9364
1943-7862
IngestDate Sun Oct 26 03:47:54 EDT 2025
Mon Jul 21 10:50:12 EDT 2025
Wed Apr 02 07:27:13 EDT 2025
Wed Oct 01 01:52:37 EDT 2025
Wed Jul 21 07:22:50 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Construction cost
Data analysis
Tunnel construction
Estimation
Neural network
Modeling
Construction costs
Road tunnel
Neural networks
Cost estimation
Comparative study
Data gathering
Tunnels
Language English
License CC BY 4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a367t-ee781ea999671eb6beb5fb17149e096369b5f721f45f9640a9a6af1695f1e49d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1061/(ASCE)CO.1943-7862.0000479
PQID 1835570906
PQPubID 23500
PageCount 9
ParticipantIDs unpaywall_primary_10_1061_asce_co_1943_7862_0000479
proquest_miscellaneous_1835570906
pascalfrancis_primary_26020215
crossref_primary_10_1061__ASCE_CO_1943_7862_0000479
asce_journals_10_1061_ASCE_CO_1943_7862_0000479
ProviderPackageCode GQVBS
ABBOT
RAC
ACNET
ARKUK
ADVLX
ADZKS
-0O
E70
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Reston, VA
PublicationPlace_xml – name: Reston, VA
PublicationTitle Journal of construction engineering and management
PublicationYear 2012
Publisher American Society of Civil Engineers
Publisher_xml – name: American Society of Civil Engineers
References Alonso-Rodriquez, A. 1999; 5
Flood, I.; Kartam, N. 1994; 8
Marinos, P.; Hoek, E. 2001; 60
Bode, J. 1998; 40
Sinfield, J. V.; Einstein, H. H. 1998; 124
Creese, R. C.; Li, L. 1995; 37
Hegazy, T.; Ayed, A. 1998; 124
Hoek, E.; Marinos, P.; Benissi, M. 1998; 57
Wang, Q.; Stockton, D. J.; Baguley, P. 2000; 38
Hegazy, T.; Fazio, P.; Moselhi, O. 1994; 9
Petroutsatou, K.; Lambropoulos, S.; Pantouvakis, J. P. 2006; 6
Kim, G. H.; Seo, D. S.; Kang, K. I. 2005; 19
Al-Tabtabai, H.; Alex, P. A.; Tantash, M. 1999; 41
Hegazy, T.; Moselhi, O. 1994; 8
Williams, T. P. 2002; 20
Williams, T. P. 2005; 12
Emsley, M. W.; Lowe, D. J.; Roy, Duff A.; Harding, A.; Hickson, A. 2002; 20
Pewdum, W.; Rujirayanyong, T.; Sooksatra, V. 2009; 16
Flood I. (e_1_3_2_11_1) 1994; 8
e_1_3_2_28_1
e_1_3_2_29_1
Kim G. H. (e_1_3_2_16_1) 2005; 19
Rumelhart D. (e_1_3_2_24_1) 1986
Berry M. J. A. (e_1_3_2_6_1) 1997
Marinos P. (e_1_3_2_19_1) 2001; 60
e_1_3_2_20_1
Hegazy T. (e_1_3_2_13_1) 1994; 9
e_1_3_2_21_1
Sinfield J. V. (e_1_3_2_27_1) 1998; 124
e_1_3_2_25_1
e_1_3_2_26_1
Petroutsatou K. (e_1_3_2_22_1) 2006; 6
Burke R. (e_1_3_2_8_1) 1999
Williams T. P. (e_1_3_2_31_1) 2002; 20
Emsley M. W. (e_1_3_2_10_1) 2002; 20
Wang Q. (e_1_3_2_30_1) 2000; 38
e_1_3_2_17_1
e_1_3_2_18_1
Williams T. P. (e_1_3_2_32_1) 2005; 12
Bode J. (e_1_3_2_7_1) 1998; 40
Alonso-Rodriquez A. (e_1_3_2_2_1) 1999; 5
Asimakopoulos D. (e_1_3_2_4_1) 2002
Creese R. C. (e_1_3_2_9_1) 1995; 37
Hegazy T. (e_1_3_2_14_1) 1994; 8
Berk K. (e_1_3_2_5_1) 2000
Hoek E. (e_1_3_2_15_1) 1998; 57
Pewdum W. (e_1_3_2_23_1) 2009; 16
Al-Tabtabai H. (e_1_3_2_3_1) 1999; 41
Hegazy T. (e_1_3_2_12_1) 1998; 124
References_xml – volume: 9
  year: 1994
  publication-title: Developing practical neural network applications using back-propagation
– volume: 60
  issn: 1435-9529
  year: 2001
  publication-title: Estimating the geotechnical properties of heterogeneous rock masses such as flysch
– volume: 6
  issn: 1745-7645
  year: 2006
  publication-title: Road tunnel early cost estimates using multiple regression analysis
– volume: 12
  issn: 0969-9988
  year: 2005
  publication-title: Bidding ratios to predict highway project costs
– volume: 8
  issn: 0887-3801
  year: 1994
  publication-title: Analogy-based solution to mark-up estimation problem
– volume: 41
  issn: 0013-8010
  year: 1999
  publication-title: Preliminary cost estimation of highway construction using neural networks
– volume: 5
  issn: 1083-0898
  year: 1999
  publication-title: Forecasting economic magnitudes with neural network models
– volume: 124
  issn: 0733-9364
  year: 1998
  publication-title: Neural network model for parametric cost estimation of highway projects
– volume: 20
  issn: 0144-6193
  year: 2002
  publication-title: Data modelling and the application of a neural network approach to the prediction of total construction cost
– volume: 40
  issn: 0274-9696
  year: 1998
  publication-title: Neural networks for cost estimation
– volume: 124
  issn: 0733-9364
  year: 1998
  publication-title: Tunnel construction costs for tube transportation systems
– volume: 16
  issn: 0969-9988
  year: 2009
  publication-title: Forecasting final budget and duration of highway construction projects
– volume: 37
  issn: 0274-9696
  year: 1995
  publication-title: Cost estimation of timber bridges using neural networks
– volume: 19
  issn: 0887-3801
  year: 2005
  publication-title: Hybrid models of neural networks and genetic algorithms for predicting preliminary cost estimates
– volume: 38
  issn: 0020-7543
  year: 2000
  publication-title: Process cost modelling using neural networks
– volume: 8
  issn: 0887-3801
  year: 1994
  publication-title: Neural networks in civil engineering. I: Principles and understanding
– volume: 57
  issn: 1435-9529
  year: 1998
  publication-title: Applicability of the geological strength index (GSI) in the classification of very weak and sheered rock masses
– volume: 20
  issn: 0144-6193
  year: 2002
  publication-title: Predicting completed project cost using bidding data
– volume: 20
  issue: 3
  year: 2002
  ident: e_1_3_2_31_1
  publication-title: Predicting completed project cost using bidding data
– volume: 8
  issue: 1
  year: 1994
  ident: e_1_3_2_14_1
  publication-title: Analogy-based solution to mark-up estimation problem
– volume: 124
  issue: 1
  year: 1998
  ident: e_1_3_2_27_1
  publication-title: Tunnel construction costs for tube transportation systems
– volume: 16
  issue: 6
  year: 2009
  ident: e_1_3_2_23_1
  publication-title: Forecasting final budget and duration of highway construction projects
– volume: 12
  issue: 1
  year: 2005
  ident: e_1_3_2_32_1
  publication-title: Bidding ratios to predict highway project costs
– ident: e_1_3_2_20_1
  doi: 10.1007/s10064-004-0270-5
– ident: e_1_3_2_17_1
– volume: 20
  issue: 6
  year: 2002
  ident: e_1_3_2_10_1
  publication-title: Data modelling and the application of a neural network approach to the prediction of total construction cost
– ident: e_1_3_2_28_1
– volume-title: Data analysis and decisions making techniques
  year: 2002
  ident: e_1_3_2_4_1
– ident: e_1_3_2_25_1
– volume: 8
  issue: 2
  year: 1994
  ident: e_1_3_2_11_1
  publication-title: Neural networks in civil engineering. I: Principles and understanding
– volume-title: Learning internal representation by error propagationParallel distributed processing: Explorations in the microstructure of cognition
  year: 1986
  ident: e_1_3_2_24_1
– volume-title: Data mining techniques: For marketing, sales and customer support
  year: 1997
  ident: e_1_3_2_6_1
– volume-title: Data analysis with Microsoft Excel
  year: 2000
  ident: e_1_3_2_5_1
– ident: e_1_3_2_21_1
– volume: 38
  issue: 16
  year: 2000
  ident: e_1_3_2_30_1
  publication-title: Process cost modelling using neural networks
– volume-title: Project management: Planning and control techniques
  year: 1999
  ident: e_1_3_2_8_1
– volume: 9
  issue: 2
  year: 1994
  ident: e_1_3_2_13_1
  publication-title: Developing practical neural network applications using back-propagation
– volume: 57
  year: 1998
  ident: e_1_3_2_15_1
  publication-title: Applicability of the geological strength index (GSI) in the classification of very weak and sheered rock masses
– ident: e_1_3_2_18_1
– volume: 6
  issue: 3
  year: 2006
  ident: e_1_3_2_22_1
  publication-title: Road tunnel early cost estimates using multiple regression analysis
– volume: 40
  issue: 1
  year: 1998
  ident: e_1_3_2_7_1
  publication-title: Neural networks for cost estimation
– volume: 124
  issue: 3
  year: 1998
  ident: e_1_3_2_12_1
  publication-title: Neural network model for parametric cost estimation of highway projects
– volume: 41
  issue: 3
  year: 1999
  ident: e_1_3_2_3_1
  publication-title: Preliminary cost estimation of highway construction using neural networks
– volume: 37
  issue: 5
  year: 1995
  ident: e_1_3_2_9_1
  publication-title: Cost estimation of timber bridges using neural networks
– volume: 19
  issue: 2
  year: 2005
  ident: e_1_3_2_16_1
  publication-title: Hybrid models of neural networks and genetic algorithms for predicting preliminary cost estimates
– volume: 5
  issue: 4
  year: 1999
  ident: e_1_3_2_2_1
  publication-title: Forecasting economic magnitudes with neural network models
– ident: e_1_3_2_26_1
– volume: 60
  year: 2001
  ident: e_1_3_2_19_1
  publication-title: Estimating the geotechnical properties of heterogeneous rock masses such as flysch
– ident: e_1_3_2_29_1
SSID ssj0014695
Score 2.337299
Snippet AbstractRoad tunnel construction is subject to underground uncertainties and risks, and as such it is difficult to predict the final construction cost,...
Road tunnel construction is subject to underground uncertainties and risks, and as such it is difficult to predict the final construction cost, especially at...
SourceID unpaywall
proquest
pascalfrancis
crossref
asce
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 679
SubjectTerms Applied sciences
Building economics. Cost
Buildings. Public works
Computation methods. Tables. Charts
Construction costs
Cost engineering
Cost estimates
Exact sciences and technology
Mathematical models
Neural networks
Roads
Structural analysis. Stresses
Technical Papers
Tunnel construction
Tunnels (transportation)
Tunnels, galleries
Title Early Cost Estimating of Road Tunnel Construction Using Neural Networks
URI http://ascelibrary.org/doi/abs/10.1061/(ASCE)CO.1943-7862.0000479
https://www.proquest.com/docview/1835570906
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000479
UnpaywallVersion submittedVersion
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1943-7862
  dateEnd: 20140331
  omitProxy: true
  ssIdentifier: ssj0014695
  issn: 1943-7862
  databaseCode: ABDBF
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-65GErpftqabY2aNCH9cGpbdly9Jh6ycpgaeka6J6E5Eh9aLADSSjdX787f4SGwBh99MfJkk7S_c4n_Q7gFC2QdVk_8tAWGnRQgtDTUWw8aZxv0FyIrE8HnH-OxeUk-nEX3-1Ak7hwI3wvgvOvg1_p8Cy96qGvzb0E4XdJOBgl8hW0RYzwuwXtyfh68Luk2-Tck1xUkeT6_YZolArTi8yeZcV2Ybge07MN27Q3x1t65qr8FhsA9PUqn-unRz2bPbNFo7dw05zoqbagPPRWS9PL_mwTPP5_M9_Bfo1M2aAaSu9hx-YfYPcZX-FH-F7SIbO0WCzZENcGQrv5PSscuyn0lN2uaNMMoxygDSstK7ckMKIAwbLH1Z7zxQFMRsPb9NKrMzF4motk6Vmb9AOryTlKAmuEsSZ2hnKnS4s-EBcSr9GXdFHspIh8LbXQLhAydoGN5JQfQisvcnsETIdcOBtOp5qCvjHBIe2jpe67AO2pFB04J1WoeiotVBklF4GiLlLplaIuUtRFqu6iDvBGa2peUXSshf4l1d1Q8FoUHbyQgFAHvjQaVzjlKI6ic1ussEaIWuPElz5Wlq-Hwta3y2ZkxfanP71I6jO8CWkqlX-AjqGFirQnCIiWpgvtwcW3i1G3ngp_AVkt-lI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB512wOLVgv7Et0FZKQ9wCEliROnPlZRASFREFAJTpad2nvYKqnUVoj99TuTR0VVCSGOeYxje2zPNxn7G4DfaIGsy_qRh7bQoIMShJ6OYuNJ43yD5kJkfTrgfDUSF-Po8iF-aEGTuHAtfC-C0-PBXTo8Sa976GtzL0H4XRIORon8AB0RI_xuQ2c8uhk8lnSbnHuSiyqSXL_fEI1SYXqe2ZOs2CwM12N6tmabPs3wlp66Kr_FGgDdWuYz_fykp9MXtuhsB26bEz3VFpS_veXC9LJ_mwSPb2_mLnyukSkbVEPpC7Rs_hW2X_AVfoPzkg6ZpcV8wYa4NhDazf-wwrHbQk_Y_ZI2zTDKAdqw0rJySwIjChAse1TtOZ9_h_HZ8D698OpMDJ7mIll41ib9wGpyjpLAGmGsiZ2h3OnSog_EhcRr9CVdFDspIl9LLbQLhIxdYCM54T-gnRe53QOmQy6cDScTTUHfmOCQ9tFS912A9lSKLpySKlQ9leaqjJKLQFEXqfRaURcp6iJVd1EXeKM1NasoOlZCr0kdril4JYoOXkhAqAtHjcYVTjmKo-jcFkusEaLWOPGlj5Xlq6Gw8e2yGVmx-emf75L6BR9DmkrlH6B9aKMi7QECooU5rKfAf460-OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+Cost+Estimating+of+Road+Tunnel+Construction+Using+Neural+Networks&rft.jtitle=Journal+of+construction+engineering+and+management&rft.au=Petroutsatou%2C+K.&rft.au=Georgopoulos%2C+E.&rft.au=Lambropoulos%2C+S.&rft.au=Pantouvakis%2C+J.+P.&rft.date=2012-06-01&rft.issn=0733-9364&rft.eissn=1943-7862&rft.volume=138&rft.issue=6&rft.spage=679&rft.epage=687&rft_id=info:doi/10.1061%2F%28ASCE%29CO.1943-7862.0000479&rft.externalDBID=n%2Fa&rft.externalDocID=10_1061__ASCE_CO_1943_7862_0000479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-9364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-9364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-9364&client=summon