New Inferences on Magma Dynamics in Melilitite‐Carbonatite Volcanoes: The Case Study of Mt. Vulture (Southern Italy)

This study provides the first micro‐thermometric data of fluid inclusions (FIs) in mafic loose (disaggregated) xenocrysts and ultramafic xenoliths in explosive products of the melilitite‐carbonatite Mt. Vulture volcano (southern Italy). Pure CO2 late stage FIs hosted in rock‐forming minerals of wehr...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 49; no. 21
Main Authors Carnevale, G., Caracausi, A., Rotolo, S. G., Paternoster, M., Zanon, V.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.11.2022
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1029/2022GL099075

Cover

Abstract This study provides the first micro‐thermometric data of fluid inclusions (FIs) in mafic loose (disaggregated) xenocrysts and ultramafic xenoliths in explosive products of the melilitite‐carbonatite Mt. Vulture volcano (southern Italy). Pure CO2 late stage FIs hosted in rock‐forming minerals of wehrlite xenoliths and clinopyroxene xenocrysts were trapped at the local crust‐mantle boundary (32 km). In contrast, trapping pressures within the loose olivine xenocrysts are from 3.2 to 4.5 kbar (8–13 km). Considering the ongoing degassing of mantle‐derived CO2 rich gases, together with seismic evidences of the presence of low amount of melts at depth, and the tectonic control of the past volcanic activity, our study opens new perspective about the hazardous nature of the “quiescent” melilitite‐carbonatite volcanoes. Plain Language Summary The study of fluid inclusions (FIs) (small amount of fluid trapped within minerals) provides important information on variable environments and magmatological processes in which the host minerals were formed. Investigation of the FIs with respect to their composition, trapping pressure and temperature, allow us to constrain magma ascent history. To understand the last explosive volcanic activity of Mt. Vulture volcano (southern Italy), we investigated FIs in mafic minerals and mantle fragments brought to the surface by a melilitite‐carbonatite magma. Our results show the presence of CO2‐rich FIs with trapping pressure corresponding to a depth of 32 km in mantle fragments, and a shallower depth (8–13 km) in mafic mineral. Estimates on magma ascent rate show rapid ascent dynamics to the surface. Our study emphasizes the importance of a multidisciplinary approach that combine geochemistry and petrology to investigate a volcanic system even if the volcano is considered “quiescent,” as is the case of Mt. Vulture volcano, where mantle degassing is still ongoing. Key Points Micro‐thermometric analyses show the occurrence of high‐density CO2‐rich fluid inclusions hosted by minerals within wehrlite xenoliths Ascent rate between melilitite‐carbonatite (≈20 m/s) and kimberlite (≈45 m/s) magma is comparable Melilitite‐carbonatite volcanoes can be hazardous even after long time of quiescence (>105 years)
AbstractList This study provides the first micro‐thermometric data of fluid inclusions (FIs) in mafic loose (disaggregated) xenocrysts and ultramafic xenoliths in explosive products of the melilitite‐carbonatite Mt. Vulture volcano (southern Italy). Pure CO2 late stage FIs hosted in rock‐forming minerals of wehrlite xenoliths and clinopyroxene xenocrysts were trapped at the local crust‐mantle boundary (32 km). In contrast, trapping pressures within the loose olivine xenocrysts are from 3.2 to 4.5 kbar (8–13 km). Considering the ongoing degassing of mantle‐derived CO2 rich gases, together with seismic evidences of the presence of low amount of melts at depth, and the tectonic control of the past volcanic activity, our study opens new perspective about the hazardous nature of the “quiescent” melilitite‐carbonatite volcanoes. Plain Language Summary The study of fluid inclusions (FIs) (small amount of fluid trapped within minerals) provides important information on variable environments and magmatological processes in which the host minerals were formed. Investigation of the FIs with respect to their composition, trapping pressure and temperature, allow us to constrain magma ascent history. To understand the last explosive volcanic activity of Mt. Vulture volcano (southern Italy), we investigated FIs in mafic minerals and mantle fragments brought to the surface by a melilitite‐carbonatite magma. Our results show the presence of CO2‐rich FIs with trapping pressure corresponding to a depth of 32 km in mantle fragments, and a shallower depth (8–13 km) in mafic mineral. Estimates on magma ascent rate show rapid ascent dynamics to the surface. Our study emphasizes the importance of a multidisciplinary approach that combine geochemistry and petrology to investigate a volcanic system even if the volcano is considered “quiescent,” as is the case of Mt. Vulture volcano, where mantle degassing is still ongoing. Key Points Micro‐thermometric analyses show the occurrence of high‐density CO2‐rich fluid inclusions hosted by minerals within wehrlite xenoliths Ascent rate between melilitite‐carbonatite (≈20 m/s) and kimberlite (≈45 m/s) magma is comparable Melilitite‐carbonatite volcanoes can be hazardous even after long time of quiescence (>105 years)
This study provides the first micro‐thermometric data of fluid inclusions (FIs) in mafic loose (disaggregated) xenocrysts and ultramafic xenoliths in explosive products of the melilitite‐carbonatite Mt. Vulture volcano (southern Italy). Pure CO 2 late stage FIs hosted in rock‐forming minerals of wehrlite xenoliths and clinopyroxene xenocrysts were trapped at the local crust‐mantle boundary (32 km). In contrast, trapping pressures within the loose olivine xenocrysts are from 3.2 to 4.5 kbar (8–13 km). Considering the ongoing degassing of mantle‐derived CO 2 rich gases, together with seismic evidences of the presence of low amount of melts at depth, and the tectonic control of the past volcanic activity, our study opens new perspective about the hazardous nature of the “quiescent” melilitite‐carbonatite volcanoes. The study of fluid inclusions (FIs) (small amount of fluid trapped within minerals) provides important information on variable environments and magmatological processes in which the host minerals were formed. Investigation of the FIs with respect to their composition, trapping pressure and temperature, allow us to constrain magma ascent history. To understand the last explosive volcanic activity of Mt. Vulture volcano (southern Italy), we investigated FIs in mafic minerals and mantle fragments brought to the surface by a melilitite‐carbonatite magma. Our results show the presence of CO 2 ‐rich FIs with trapping pressure corresponding to a depth of 32 km in mantle fragments, and a shallower depth (8–13 km) in mafic mineral. Estimates on magma ascent rate show rapid ascent dynamics to the surface. Our study emphasizes the importance of a multidisciplinary approach that combine geochemistry and petrology to investigate a volcanic system even if the volcano is considered “quiescent,” as is the case of Mt. Vulture volcano, where mantle degassing is still ongoing. Micro‐thermometric analyses show the occurrence of high‐density CO 2 ‐rich fluid inclusions hosted by minerals within wehrlite xenoliths Ascent rate between melilitite‐carbonatite (≈20 m/s) and kimberlite (≈45 m/s) magma is comparable Melilitite‐carbonatite volcanoes can be hazardous even after long time of quiescence (>10 5  years)
This study provides the first micro‐thermometric data of fluid inclusions (FIs) in mafic loose (disaggregated) xenocrysts and ultramafic xenoliths in explosive products of the melilitite‐carbonatite Mt. Vulture volcano (southern Italy). Pure CO2 late stage FIs hosted in rock‐forming minerals of wehrlite xenoliths and clinopyroxene xenocrysts were trapped at the local crust‐mantle boundary (32 km). In contrast, trapping pressures within the loose olivine xenocrysts are from 3.2 to 4.5 kbar (8–13 km). Considering the ongoing degassing of mantle‐derived CO2 rich gases, together with seismic evidences of the presence of low amount of melts at depth, and the tectonic control of the past volcanic activity, our study opens new perspective about the hazardous nature of the “quiescent” melilitite‐carbonatite volcanoes.
Author Caracausi, A.
Rotolo, S. G.
Zanon, V.
Paternoster, M.
Carnevale, G.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0002-7886-8091
  surname: Carnevale
  fullname: Carnevale, G.
  email: gabriele.carnevale@unipa.it
  organization: Università degli Studi di Palermo
– sequence: 2
  givenname: A.
  orcidid: 0000-0003-2510-2890
  surname: Caracausi
  fullname: Caracausi, A.
  organization: Sezione di Palermo
– sequence: 3
  givenname: S. G.
  orcidid: 0000-0001-7523-1338
  surname: Rotolo
  fullname: Rotolo, S. G.
  organization: Sezione di Palermo
– sequence: 4
  givenname: M.
  orcidid: 0000-0003-0212-0949
  surname: Paternoster
  fullname: Paternoster, M.
  organization: Università degli Studi della Basilicata
– sequence: 5
  givenname: V.
  orcidid: 0000-0001-6990-7610
  surname: Zanon
  fullname: Zanon, V.
  organization: Universidade dos Açores
BookMark eNp9kM1OGzEUhS1EJULaXR_AUjetRML1z4xn2FWhDZESkAplO3KcO8RoYoPtIZodj8Az9kk6EVmgSnR1f_Sde3TPMTl03iEhnxmMGfDylAPn0zmUJajsgAxYKeWoAFCHZABQ9j1X-RE5jvEeAAQINiBPl7ilM1djQGcwUu_oQt9tND3vnN5YE6ntN9jYxiab8M_zy0SHpXd6N9Fb3xjtPMYzerNGOtER6XVqVx31NV2kMb1tm9QGpF-vfZvWGBydJd103z6SD7VuIn7a1yH5_fPHzeRiNL-azibf5yMtciVGSnPDTCnzpSwlcGFUvcwKlFrnTIolMFNIqDOtWI-AUcgLpbIVyBUvwGQohuTL692H4B9bjKm6921wvWXFlcgUU1nOe4q_Uib4GAPWlbGp_9C7FLRtKgbVLt_qbb696OQf0UOwGx269_C9x9Y22P2Xraa_5nnGQIi_5iCLPQ
CitedBy_id crossref_primary_10_1111_ter_12745
crossref_primary_10_1016_j_epsl_2024_118864
crossref_primary_10_1016_j_scitotenv_2023_165367
crossref_primary_10_5194_ejm_35_665_2023
crossref_primary_10_3390_geosciences14120349
Cites_doi 10.2138/rmg.2008.69.5
10.1016/j.epsl.2016.04.037
10.1007/s00445-009-0294-6
10.1016/j.epsl.2009.12.052
10.1016/j.gsf.2019.09.012
10.1016/j.gca.2010.09.024
10.2138/rmg.2013.75.10
10.1016/j.gexplo.2016.01.001
10.1016/j.lithos.2007.05.011
10.1016/j.tecto.2009.10.016
10.1016/j.jvolgeores.2015.05.002
10.1038/s41598-019-45471-x
10.1016/S0377-0273(97)00004-8
10.1016/j.lithos.2007.10.012
10.1016/S0012-821X(02)00563-0
10.1002/2013JB010890
10.1126/science.289.5479.609
10.1093/petroj/40.1.133
10.1016/j.earscirev.2012.07.002
10.1016/j.jvolgeores.2019.01.025
10.1016/S0009-2541(02)00268-1
10.1038/s41561-021-00764-7
10.1180/002646100549634
10.2475/ajs.291.1.1
10.4095/225115
10.1016/j.jvolgeores.2012.12.005
10.1016/j.lithos.2007.10.010
10.1180/002646100549643
10.3390/min11020203
10.5281/zenodo.6426785
10.1130/g49510.1
10.1130/G39621.1
10.1016/j.gr.2020.03.013
10.1002/ggge.20111
10.1038/s41598-021-93945-8
10.1126/science.283.5406.1314
10.1007/978-3-319-42491-0_8
10.2138/gselements.17.5.327
10.3390/min10030267
10.1016/j.epsl.2014.11.049
10.1016/0012-821X(93)90059-I
10.1038/nature10740
10.1016/j.tecto.2004.07.032
10.1016/j.lithos.2018.10.010
10.1038/s41467-020-18157-6
10.1146/annurev-earth-032320-104243
10.1093/petrology/egq081
10.1016/j.earscirev.2020.103256
10.1007/s00410-002-0383-4
10.1144/jgs2014-085
10.1016/j.gca.2022.06.002
10.1029/91jb00600
10.1029/2007TC002143
10.5382/rev.18.01
10.1016/j.lithos.2005.03.022
10.1007/s11430-017-9185-2
10.1016/j.lithos.2007.05.004
10.1016/j.jvolgeores.2006.02.010
10.1007/s007100200007
10.1016/j.jvolgeores.2018.01.025
10.1093/petrology/egq033
10.1111/j.1365-3121.2008.00858.x
10.1146/annurev-earth-032320-084733
ContentType Journal Article
Copyright 2022. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2022. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2022GL099075
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID 10_1029_2022GL099075
GRL65103
Genre article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia
  funderid: CIRCNA/OCT/0016/2019
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a3673-7a2c1c946b494023c7fb58e4aa6143b01c840f5a7146b0c7e28775d04d280c5e3
ISSN 0094-8276
IngestDate Fri Jul 25 10:29:34 EDT 2025
Tue Jul 01 01:41:36 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Wed Jan 22 17:21:41 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3673-7a2c1c946b494023c7fb58e4aa6143b01c840f5a7146b0c7e28775d04d280c5e3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-7886-8091
0000-0003-0212-0949
0000-0003-2510-2890
0000-0001-6990-7610
0000-0001-7523-1338
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022GL099075
PQID 2735717562
PQPubID 54723
PageCount 10
ParticipantIDs proquest_journals_2735717562
crossref_citationtrail_10_1029_2022GL099075
crossref_primary_10_1029_2022GL099075
wiley_primary_10_1029_2022GL099075_GRL65103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 November 2022
PublicationDateYYYYMMDD 2022-11-16
PublicationDate_xml – month: 11
  year: 2022
  text: 16 November 2022
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_9_2_4_1
e_1_2_9_1_15_1
e_1_2_9_2_2_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_4_1
Scrocca D. (e_1_2_9_2_6_1) 2007; 7
e_1_2_9_1_60_1
e_1_2_9_1_62_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
Bodnar R. J. (e_1_2_9_1_6_1) 2003
e_1_2_9_1_8_1
e_1_2_9_1_50_1
e_1_2_9_1_52_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_56_1
e_1_2_9_2_8_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_58_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_2_5_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_2_3_1
e_1_2_9_1_33_1
Buettner A. (e_1_2_9_1_10_1) 2006
e_1_2_9_1_31_1
e_1_2_9_1_3_1
e_1_2_9_1_5_1
Szabó C. (e_1_2_9_1_57_1) 1996; 4
e_1_2_9_1_61_1
e_1_2_9_1_63_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
Giannandrea P. (e_1_2_9_1_24_1) 2006; 125
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
Lloyd F. E. (e_1_2_9_1_36_1) 2003; 15
e_1_2_9_1_51_1
e_1_2_9_1_53_1
e_1_2_9_1_55_1
e_1_2_9_1_19_1
e_1_2_9_1_17_1
e_1_2_9_1_38_1
e_1_2_9_1_59_1
e_1_2_9_2_7_1
References_xml – start-page: 213
  volume-title: Fluid inclusions: Analysis and Interpretation
  year: 2003
  ident: e_1_2_9_1_6_1
– ident: e_1_2_9_2_4_1
  doi: 10.2138/rmg.2008.69.5
– ident: e_1_2_9_1_43_1
  doi: 10.1016/j.epsl.2016.04.037
– ident: e_1_2_9_1_60_1
  doi: 10.1007/s00445-009-0294-6
– ident: e_1_2_9_1_39_1
  doi: 10.1016/j.epsl.2009.12.052
– volume: 4
  start-page: 240
  issue: 3
  year: 1996
  ident: e_1_2_9_1_57_1
  article-title: Changing magma ascent rates in the Nograd‐Gomor volcanic field northern Hungary southern Slovakia: Evidence from CO2‐rich fluid inclusions in metasomatized upper mantle xenoliths
  publication-title: Petrology
– ident: e_1_2_9_1_46_1
  doi: 10.1016/j.gsf.2019.09.012
– ident: e_1_2_9_1_21_1
  doi: 10.1016/j.gca.2010.09.024
– ident: e_1_2_9_1_29_1
  doi: 10.2138/rmg.2013.75.10
– ident: e_1_2_9_1_45_1
  doi: 10.1016/j.gexplo.2016.01.001
– ident: e_1_2_9_1_49_1
  doi: 10.1016/j.lithos.2007.05.011
– ident: e_1_2_9_1_40_1
  doi: 10.1016/j.tecto.2009.10.016
– ident: e_1_2_9_1_26_1
  doi: 10.1016/j.jvolgeores.2015.05.002
– volume: 15
  start-page: 65
  year: 2003
  ident: e_1_2_9_1_36_1
  article-title: Pelletal lapilli in diatremes – Some Inspiration from the old masters
  publication-title: Geolines
– ident: e_1_2_9_1_37_1
  doi: 10.1038/s41598-019-45471-x
– ident: e_1_2_9_1_56_1
  doi: 10.1016/S0377-0273(97)00004-8
– ident: e_1_2_9_2_8_1
  doi: 10.1016/j.lithos.2007.10.012
– ident: e_1_2_9_1_23_1
  doi: 10.1016/S0012-821X(02)00563-0
– ident: e_1_2_9_1_28_1
  doi: 10.1002/2013JB010890
– ident: e_1_2_9_1_32_1
  doi: 10.1126/science.289.5479.609
– start-page: 73
  volume-title: La Geologia del Monte Vulture
  year: 2006
  ident: e_1_2_9_1_10_1
– ident: e_1_2_9_1_17_1
  doi: 10.1093/petroj/40.1.133
– ident: e_1_2_9_1_58_1
  doi: 10.1016/j.earscirev.2012.07.002
– ident: e_1_2_9_1_42_1
  doi: 10.1016/j.jvolgeores.2019.01.025
– ident: e_1_2_9_2_2_1
  doi: 10.1016/S0009-2541(02)00268-1
– ident: e_1_2_9_1_27_1
  doi: 10.1038/s41561-021-00764-7
– ident: e_1_2_9_1_30_1
  doi: 10.1180/002646100549634
– ident: e_1_2_9_2_7_1
  doi: 10.2475/ajs.291.1.1
– ident: e_1_2_9_1_61_1
  doi: 10.4095/225115
– ident: e_1_2_9_1_11_1
  doi: 10.1016/j.jvolgeores.2012.12.005
– ident: e_1_2_9_2_3_1
  doi: 10.1016/j.lithos.2007.10.010
– ident: e_1_2_9_2_5_1
  doi: 10.1180/002646100549643
– ident: e_1_2_9_1_15_1
  doi: 10.3390/min11020203
– ident: e_1_2_9_1_16_1
  doi: 10.5281/zenodo.6426785
– ident: e_1_2_9_1_8_1
  doi: 10.1130/g49510.1
– ident: e_1_2_9_1_52_1
  doi: 10.1130/G39621.1
– ident: e_1_2_9_1_4_1
  doi: 10.1016/j.gr.2020.03.013
– ident: e_1_2_9_1_12_1
  doi: 10.1002/ggge.20111
– ident: e_1_2_9_1_31_1
  doi: 10.1038/s41598-021-93945-8
– ident: e_1_2_9_1_44_1
  doi: 10.1126/science.283.5406.1314
– ident: e_1_2_9_1_47_1
  doi: 10.1007/978-3-319-42491-0_8
– ident: e_1_2_9_1_2_1
  doi: 10.2138/gselements.17.5.327
– ident: e_1_2_9_1_55_1
  doi: 10.3390/min10030267
– ident: e_1_2_9_1_14_1
  doi: 10.1016/j.epsl.2014.11.049
– ident: e_1_2_9_1_18_1
  doi: 10.1016/0012-821X(93)90059-I
– ident: e_1_2_9_1_51_1
  doi: 10.1038/nature10740
– ident: e_1_2_9_1_33_1
  doi: 10.1016/j.tecto.2004.07.032
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.lithos.2018.10.010
– ident: e_1_2_9_1_5_1
  doi: 10.1038/s41467-020-18157-6
– ident: e_1_2_9_1_62_1
  doi: 10.1146/annurev-earth-032320-104243
– ident: e_1_2_9_1_9_1
  doi: 10.1093/petrology/egq081
– ident: e_1_2_9_1_38_1
  doi: 10.1016/j.earscirev.2020.103256
– ident: e_1_2_9_1_22_1
  doi: 10.1007/s00410-002-0383-4
– ident: e_1_2_9_1_48_1
  doi: 10.1144/jgs2014-085
– ident: e_1_2_9_1_19_1
  doi: 10.1016/j.gca.2022.06.002
– ident: e_1_2_9_1_35_1
  doi: 10.1029/91jb00600
– ident: e_1_2_9_1_50_1
  doi: 10.1029/2007TC002143
– ident: e_1_2_9_1_59_1
  doi: 10.5382/rev.18.01
– ident: e_1_2_9_1_53_1
  doi: 10.1016/j.lithos.2005.03.022
– ident: e_1_2_9_1_63_1
  doi: 10.1007/s11430-017-9185-2
– ident: e_1_2_9_1_20_1
  doi: 10.1016/j.lithos.2007.05.004
– ident: e_1_2_9_1_54_1
  doi: 10.1016/j.jvolgeores.2006.02.010
– ident: e_1_2_9_1_3_1
  doi: 10.1007/s007100200007
– volume: 7
  start-page: 283
  year: 2007
  ident: e_1_2_9_2_6_1
  article-title: Structural setting along the CROP‐04 deep seismic profile (Southern Apennines‐Italy)
  publication-title: Bollettino della Societa Geologica Italiana
– volume: 125
  start-page: 67
  issue: 1
  year: 2006
  ident: e_1_2_9_1_24_1
  article-title: Unità stratigrafiche a limiti inconformi e storia evolutiva del vulcano medio‐pleistocenico di Monte Vulture (Appennino meridionale, Italia)
  publication-title: Bollettino della Societa Geologica Italiana
– ident: e_1_2_9_1_41_1
  doi: 10.1016/j.jvolgeores.2018.01.025
– ident: e_1_2_9_1_7_1
  doi: 10.1093/petrology/egq033
– ident: e_1_2_9_1_13_1
  doi: 10.1111/j.1365-3121.2008.00858.x
– ident: e_1_2_9_1_25_1
  doi: 10.1146/annurev-earth-032320-084733
SSID ssj0003031
Score 2.4406419
Snippet This study provides the first micro‐thermometric data of fluid inclusions (FIs) in mafic loose (disaggregated) xenocrysts and ultramafic xenoliths in explosive...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ascent
Carbon dioxide
carbonatite volcanoes
Degassing
Depth
Dynamics
explosive eruptions
Fluid inclusions
Fragments
Gases
Geochemistry
Lava
Magma
micro‐thermometry
Minerals
Mt. Vulture volcano
Olivine
Petrology
Tectonics
Trapping
Volcanic activity
Volcanoes
Title New Inferences on Magma Dynamics in Melilitite‐Carbonatite Volcanoes: The Case Study of Mt. Vulture (Southern Italy)
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL099075
https://www.proquest.com/docview/2735717562
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWrZC4VDxFS0E-gASKEvJwYofbqkBa1EWo6q4qLpHjdQrSklTdXaRy4icgfiK_hPErm0JBhUsUjew4ynzxjMfj-RB6zBPOIsqIz9mM-YTAL8WJUKypFVgTmfJIqID--G22NyFvjtPjweB7L2tptawC8eXScyX_o1WQgV7VKdl_0Gz3UBDAPegXrqBhuF5Jxyo5cd-d2NNx_zE_-cS9l4ZmXqe6juVcpb8qGjyX17DLzyoVNAeZN23n8HFbkxmnSezArOnsQr31Pl4G3lQX59C-qCbcU9xp--Czn7sogvVtC9meOq3bGkIfvLk-LtQ57jB0owqM6zBqEfTEXPDVQqcWjDrxYavYdXWANui1fsdVFLN1nCLjoB-6gFVvZEip19NxTnwWU1sL28zAOQFZaKhw3RRtqppaKJoT1b9N_WGsKqeqYYoDtdtnCFkuVtj-xfJ1-Yh6Jz7Oy37va2gjpjRKh2hjNJ28n3T2HYy-4WG0L2-PU0D_5_3-Fx2d9eqlvwbSTszRTbRpVx94ZKB0Cw1kcxtdLzS78znc6XxgsbiDPgO08BpauG2whhZ20MIfQdJB68fXbz1Q4Q5ULzBACitIYQ0p3NYYIIUtpPBTByisAfXsLpq8fnW0u-dbig6fJxlNfMpjEYmcZBXJCbh_gtZVyiThHNy-pAojwUhYp5yCQa5CQSUs0Gk6C8ksZqFIZXIPDZu2kfcRZmqHG-ynTBj46HXKKhGB-UnqXKr9wHQLee57lsLWr1c0KvPyMu1toSdd61NTt-UP7Xacakr7Zy9KcOlTCn51FsOgWl1_fUZZHB5kqjLl9hUHfYBurH-HHTRcnq3kQ_Btl9UjC7afNseapg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58IHoRn1itugcFRaJNspvdeCtV22rrQWwRL2Gz3YigiTRV6M2f4G_0lziTpLUeFLwlYbIhuzsz3zx2hpA95SppC8ksJXvSYgxYSjGNXVND0CaGK1ujQ7997TU67PKO3xV9TvEsTF4fYuxwQ87I5DUyODqki2oDWCQTzHan3sLAjuDTZBaBDXDmbLXbue-MhTFI6Lxpns8s6QivyH2HEU4m3_-plb6h5iRgzTTOxRJZLKAireZru0ymTLxC5upZK94hXGXJmzpdJW8gqWhzdHIvpUlM2-rhWdGzvN18Sh_hCfwuproNzOf7R031Q3Sbwx3tJk8wvYlJTynsGVoDtUYxu3BIk4i2B8e0mxXnMPQga7dn-jFtAmIfHq6RzsX5ba1hFf0ULOV6wrWEcrStfeaFzAez0dUiCrk0TCnQ0W5YsTVYexFXAqRnWNHCgDUleK_Ceo6saG7cdTITJ7HZIFRiOBKEnXElAKqIy1DbICvcyDcYvOElcjSaz0AXxcax58VTkAW9HT-YnP0S2R9Tv-RFNn6hK4-WJihYLQ0Af3GwSQHHwUez5fpzjKB-0_KwjODmv6h3yXzjtt0KWs3rqy2ygDR4ItH2ymRm0H812wBNBuFOsf2-AD3N1vQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46UXwRrziveVBQpLq2SZP6JtPN6SYibogvJc1SEbSVdQp78yf4G_0lntN2cz4o-NaW05QmOfeT7xCyo1wlbSGZpWRXWowBSymmsWtqCNrEcGVrDOi3rrzzNru443dFwA3PwuT4EKOAG3JGJq-RwV-6UQE2gBiZ4LU79SbmdQSfJFMIlOeUyNRJp33fHsliENB5zzyfWdIRXlH6DiMcjb__Uyl9W5rj9mqmcGrzZK6wFOlJvrQLZMLEi2S6nnXiHcBVVrup0yXyBoKKNoYH91KaxLSlHp4VPc27zaf0EZ7A32KlW998vn9UVS_EqDnc0U7yBLObmPSYwpahVdBqFIsLBzSJaKt_SDsZNoehe1m3PdOLaQMM9sH-MmnXzm6r51bRTsFSridcSyhH29pnXsh88BpdLaKQS8OUAhXthhVbg7MXcSVAeIYVLQw4U4J3K6zryIrmxl0hpTiJzSqhErORIOuMK8GeirgMtQ2iwo18g7kbXiYHw_kMdIE1ji0vnoIs5-34wfjsl8nuiPolx9j4hW5juDRBwWlpAOYXB5cUzDj4aLZcf44R1G-aHqIIrv2LepvMXJ_Wgmbj6nKdzCIJnke0vQ1S6vdezSYYJv1wq9h9XwBE1h0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Inferences+on+Magma+Dynamics+in+Melilitite%E2%80%90Carbonatite+Volcanoes%3A+The+Case+Study+of+Mt.+Vulture+%28Southern+Italy%29&rft.jtitle=Geophysical+research+letters&rft.au=Carnevale%2C+G.&rft.au=Caracausi%2C+A.&rft.au=Rotolo%2C+S.+G.&rft.au=Paternoster%2C+M.&rft.date=2022-11-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=21&rft_id=info:doi/10.1029%2F2022GL099075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2022GL099075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon