Structural equation modeling : applications using Mplus

Presents a useful guide for applications of SEM whilst systematically demonstrating various SEM models using M plus Focusing on the conceptual and practical aspects of Structural Equation Modeling (SEM), this book demonstrates basic concepts and examples of various SEM models, along with updates on...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Jichuan, Wang, Xiaoqian
Format eBook Book
LanguageEnglish
Published Hoboken Wiley 2019
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition2
SeriesWiley Series in Probability and Statistics
Subjects
Online AccessGet full text
ISBN1119422701
9781119422709
9781119422723
1119422728
DOI10.1002/9781119422730

Cover

Table of Contents:
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction to structural equation modeling -- 1.1 Introduction -- 1.2 Model formulation -- 1.2.1 Measurement models -- 1.2.2 Structural models -- 1.2.3 Model formulation in equations -- 1.3 Model identification -- 1.4 Model estimation -- 1.4.1 Bayes estimator -- 1.5 Model fit evaluation -- 1.5.1 The model X2 statistic -- 1.5.2 Comparative fit index (CFI) -- 1.5.3 Tucker Lewis index (TLI) or non‐normed fit index (NNFI) -- 1.5.4 Root mean square error of approximation (RMSEA) -- 1.5.5 Root mean‐square residual (RMR), standardized RMR (SRMR), and weighted RMR (WRMR) -- 1.5.6 Information criteria indices -- 1.5.7 Model fit evaluation with Bayes estimator -- 1.5.8 Model comparison -- 1.6 Model modification -- 1.7 Computer programs for SEM -- Chapter 2 Confirmatory factor analysis -- 2.1 Introduction -- 2.2 Basics of CFA models -- 2.2.1 Latent variables/factors -- 2.2.2 Indicator variables -- 2.2.3 Item parceling -- 2.2.4 Factor loadings -- 2.2.5 Measurement errors -- 2.2.6 Item reliability -- 2.2.7 Scale reliability -- 2.3 CFA models with continuous indicators -- 2.3.1 Alternative methods for factor scaling -- 2.3.2 Model estimated item reliability -- 2.3.3 Model modification based on modification indices -- 2.3.4 Model estimated scale reliability -- 2.3.5 Item parceling -- 2.4 CFA models with non‐normal and censored continuous indicators -- 2.4.1 Testing non‐normality -- 2.4.2 CFA models with non‐normal indicators -- 2.4.3 CFA models with censored data -- 2.5 CFA models with categorical indicators -- 2.5.1 CFA models with binary indicators -- 2.5.2 CFA models with ordinal categorical indicators -- 2.6 The item response theory (IRT) model and the graded response model (GRM) -- 2.6.1 The item response theory (IRT) model -- 2.6.2 The graded response model (GRM)
  • 5.1 Introduction -- 5.2 Multigroup CFA models -- 5.2.1 Multigroup first‐order CFA -- 5.2.2 Multigroup second‐order CFA -- 5.2.3 Multigroup CFA with categorical indicators -- 5.3 Multigroup SEM -- 5.3.1 Testing invariance of structural path coefficients across groups -- 5.3.2 Testing invariance of indirect effects across groups -- 5.4 Multigroup latent growth modeling (LGM) -- 5.4.1 Testing invariance of the growth function -- 5.4.2 Testing invariance of latent growth factor means -- Chapter 6 Mixture modeling -- 6.1 Introduction -- 6.2 Latent class analysis (LCA) modeling -- 6.2.1 Description of LCA models -- 6.2.2 Defining the latent classes -- 6.2.3 Predicting class membership -- 6.2.4 Unconditional LCA -- 6.2.5 Directly including covariates into LCA models -- 6.2.6 Approaches for auxiliary variables in LCA models -- 6.2.7 Implementing the PC, three‐step, Lanza's, and BCH methods -- 6.2.8 LCA with residual covariances -- 6.3 Extending LCA to longitudinal data analysis -- 6.3.1 Longitudinal latent class analysis (LLCA) -- 6.3.2 Latent transition analysis (LTA) models -- 6.4 Growth mixture modeling (GMM) -- 6.4.1 Unconditional growth mixture modeling (GMM) -- 6.4.2 GMM with covariates and a distal outcome -- 6.5 Factor mixture modeling (FMM) -- 6.5.1 LCFA models -- 6.A Including covariates in LTA model -- 6.B Manually implementing three-step mixture modeling -- Chapter 7 Sample size for structural equation modeling -- 7.1 Introduction -- 7.2 The rules of thumb for sample size in SEM -- 7.3 The Satorra‐Saris method for estimating sample size -- 7.3.1 Application of The Satorra‐Saris method to CFA models -- 7.3.2 Application of the Satorra‐Saris's method to latent growth models -- 7.4 Monte Carlo simulation for estimating sample sizes -- 7.4.1 Application of a Monte Carlo simulation to CFA models
  • 2.7 Higher‐order CFA models -- 2.8 Bifactor models -- 2.9 Bayesian CFA models -- 2.10 Plausible values of latent variables -- 2.A BSI-18 instrument -- 2.B Item reliability -- 2.C Cronbach's alpha coefficient -- 2.D Calculating probabilities using probit regression coefficients -- Chapter 3 Structural equation models -- 3.1 Introduction -- 3.2 Multiple indicators, multiple causes (MIMIC) model -- 3.2.1 Interaction effects between covariates -- 3.2.2 Differential item functioning (DIF) -- 3.3 General structural equation models -- 3.3.1 Testing indirect effects -- 3.4 Correcting for measurement error in single indicator variables -- 3.5 Testing interactions involving latent variables -- 3.6 Moderated mediating effect models -- 3.6.1 Bootstrap confidence intervals -- 3.6.2 Estimating counterfactual‐based causal effects in Mplus -- 3.7 Using plausible values of latent variables in secondary analysis -- 3.8 Bayesian structural equation modeling (BSEM) -- 3.A Influence of measurement errors -- 3.B Fraction of missing information (FMI) -- Chapter 4 Latent growth modeling (LGM) for longitudinal data analysis -- 4.1 Introduction -- 4.2 Linear LGM -- 4.2.1 Unconditional linear LGM -- 4.2.2 LGM with time‐invariant covariates -- 4.2.3 LGM with time‐invariant and time‐varying covariates -- 4.3 Nonlinear LGM -- 4.3.1 LGM with polynomial time functions -- 4.3.2 Piecewise LGM -- 4.3.3 Free time scores -- 4.3.4 LGM with distal outcomes -- 4.4 Multiprocess LGM -- 4.5 Two‐part LGM -- 4.6 LGM with categorical outcomes -- 4.7 LGM with individually varying times of observation -- 4.8 Dynamic structural equation modeling (DSEM) -- 4.8.1 DSEM using observed centering for covariates -- 4.8.2 Residual DSEM (RDSEM) using observed centering for covariates -- 4.8.3 Residual DSEM (RDSEM) using latent variable centering for covariates -- Chapter 5 Multigroup modeling
  • 7.4.2 Application of a Monte Carlo simulation to latent growth models -- 7.4.3 Application of a Monte Carlo simulation to latent growth models with covariates -- 7.4.4 Application of a Monte Carlo simulation to latent growth models with missing values -- 7.5 Estimate sample size for SEM based on model fit indexes -- 7.5.1 Application of the MacCallum-Browne-Sugawara's method -- 7.5.2 Application of Kim's method -- 7.6 Estimate sample sizes for latent class analysis (LCA) model -- References -- Index -- Wiley Series in Probability and Statistics -- EULA