Development of adaptive neuro fuzzy inference system –Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation
•The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA algorithms.•ANFIS-HHO, ANFIS-GWO and ANFIS-PSO models improve the predictive precision of OGE.•The results show that ANFIS-HHO is superior for groun...
        Saved in:
      
    
          | Published in | Journal of hydrology (Amsterdam) Vol. 598; p. 126258 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-1694 1879-2707  | 
| DOI | 10.1016/j.jhydrol.2021.126258 | 
Cover
| Abstract | •The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA algorithms.•ANFIS-HHO, ANFIS-GWO and ANFIS-PSO models improve the predictive precision of OGE.•The results show that ANFIS-HHO is superior for groundwater management in study area.
The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer in Iran. The results of simulation / optimization models have been used to develop a predictive model based on machine learning. In the first stage, adaptive neuro-fuzzy inference system (ANFIS) was used to predict the Optimal Groundwater Exploitation (OGE) amount in each month having the amounts of several inputs, including the drop and amount of surface water at the end of the previous month and two months earlier, and the water demand of the current month. The results showed that the model’s performance in predicting the test data was undesirable. Therefore, to improve the prediction results, in the second stage several evolutionary optimization algorithms, i.e., particle swarm optimization (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO), were used to train ANFIS model. The results indicated the appropriate performance of HHO in ANFIS training, which significantly improved the prediction accuracy of this model. The best scenario for the ANFIS-HHO model included all the input parameters, which resulted in RMSE = 1.45, MAE = 1.15, and R2 = 0.99 respectively, for the test data. In addition, the Taylor diagram (RMSD = 1.40, STD = 15.5 and CC = 0.99) showed ANFIS-HHO accuracy in estimating the OGE value. ANFIS-HHO was also able to improve the accuracy of anfis by RMSE = 4 and MAE = 2 MCM. In general, ANFIS-POS, ANFIS-GWO and ANFIS-HHO had good predictive accuracy compared to ANFIS. The results assure the authors to suggest the developed approach to experts for timely and cost-effective prediction of OGE in similar study areas. | 
    
|---|---|
| AbstractList | •The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA algorithms.•ANFIS-HHO, ANFIS-GWO and ANFIS-PSO models improve the predictive precision of OGE.•The results show that ANFIS-HHO is superior for groundwater management in study area.
The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer in Iran. The results of simulation / optimization models have been used to develop a predictive model based on machine learning. In the first stage, adaptive neuro-fuzzy inference system (ANFIS) was used to predict the Optimal Groundwater Exploitation (OGE) amount in each month having the amounts of several inputs, including the drop and amount of surface water at the end of the previous month and two months earlier, and the water demand of the current month. The results showed that the model’s performance in predicting the test data was undesirable. Therefore, to improve the prediction results, in the second stage several evolutionary optimization algorithms, i.e., particle swarm optimization (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO), were used to train ANFIS model. The results indicated the appropriate performance of HHO in ANFIS training, which significantly improved the prediction accuracy of this model. The best scenario for the ANFIS-HHO model included all the input parameters, which resulted in RMSE = 1.45, MAE = 1.15, and R2 = 0.99 respectively, for the test data. In addition, the Taylor diagram (RMSD = 1.40, STD = 15.5 and CC = 0.99) showed ANFIS-HHO accuracy in estimating the OGE value. ANFIS-HHO was also able to improve the accuracy of anfis by RMSE = 4 and MAE = 2 MCM. In general, ANFIS-POS, ANFIS-GWO and ANFIS-HHO had good predictive accuracy compared to ANFIS. The results assure the authors to suggest the developed approach to experts for timely and cost-effective prediction of OGE in similar study areas. The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer in Iran. The results of simulation / optimization models have been used to develop a predictive model based on machine learning. In the first stage, adaptive neuro-fuzzy inference system (ANFIS) was used to predict the Optimal Groundwater Exploitation (OGE) amount in each month having the amounts of several inputs, including the drop and amount of surface water at the end of the previous month and two months earlier, and the water demand of the current month. The results showed that the model’s performance in predicting the test data was undesirable. Therefore, to improve the prediction results, in the second stage several evolutionary optimization algorithms, i.e., particle swarm optimization (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO), were used to train ANFIS model. The results indicated the appropriate performance of HHO in ANFIS training, which significantly improved the prediction accuracy of this model. The best scenario for the ANFIS-HHO model included all the input parameters, which resulted in RMSE = 1.45, MAE = 1.15, and R² = 0.99 respectively, for the test data. In addition, the Taylor diagram (RMSD = 1.40, STD = 15.5 and CC = 0.99) showed ANFIS-HHO accuracy in estimating the OGE value. ANFIS-HHO was also able to improve the accuracy of anfis by RMSE = 4 and MAE = 2 MCM. In general, ANFIS-POS, ANFIS-GWO and ANFIS-HHO had good predictive accuracy compared to ANFIS. The results assure the authors to suggest the developed approach to experts for timely and cost-effective prediction of OGE in similar study areas.  | 
    
| ArticleNumber | 126258 | 
    
| Author | Roozbahani, Abbas Arya Azar, Naser Javadi, Saman Ghordoyee Milan, Sami  | 
    
| Author_xml | – sequence: 1 givenname: Sami surname: Ghordoyee Milan fullname: Ghordoyee Milan, Sami email: s.milan@ut.ac.ir organization: Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran – sequence: 2 givenname: Abbas surname: Roozbahani fullname: Roozbahani, Abbas email: roozbahany@ut.ac.ir organization: Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran – sequence: 3 givenname: Naser surname: Arya Azar fullname: Arya Azar, Naser email: naseraryaazar92@gmail.com organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran – sequence: 4 givenname: Saman surname: Javadi fullname: Javadi, Saman email: javadis@ut.ac.ir organization: Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran  | 
    
| BookMark | eNqFkb9uFDEQhy0UJC6BR0ByGYq92N7_okCn5BIiRVAAteW1xzmfvPZiew82Fe9AydvxJOzqrqKJm5Gs3zejme8cnTnvAKG3lKwpodXVfr3fTSp4u2aE0TVlFSubF2hFm7rNWE3qM7QihLGMVm3xCp3HuCfzy_Nihf7cwAGsH3pwCXuNhRJDMgfADsbgsR6fniZsnIYATgKOU0zQ47-_fm8P3o7JeCfChIV99MGkXR_xbuqCUbj3CmzEl5tPt_dfsu3mHdY-4CGAMnKhlll-ntQLix-DH536IRIEDD8H600SS-Y1eqmFjfDmVC_Qt9vt1-uP2cPnu_vrzUMm8qpMGdCaNkpr3clOEtbJUlNSq7orO9pWDKRQdVGWRBct0_M_axltclkXQuWNYk1-gS6PfYfgv48QE-9NlGCtcODHyFnJClaS-ahztDxGZfAxBtB8CPMOYeKU8EUG3_OTDL7I4EcZM_f-P06elkxBGPss_eFIzyeFg4HAozSLD2UCyMSVN890-AfPS7C8 | 
    
| CitedBy_id | crossref_primary_10_1007_s40815_022_01291_2 crossref_primary_10_1080_10106049_2021_1939439 crossref_primary_10_3233_JIFS_221125 crossref_primary_10_3390_su14052691 crossref_primary_10_1061_JHYEFF_HEENG_6263 crossref_primary_10_1007_s10661_021_09495_z crossref_primary_10_1007_s13201_022_01686_4 crossref_primary_10_3390_rs15010152 crossref_primary_10_1007_s12517_022_09546_w crossref_primary_10_1007_s13201_023_02001_5 crossref_primary_10_5327_Z2176_94781286 crossref_primary_10_1007_s11356_022_23224_0 crossref_primary_10_1007_s13201_024_02316_x crossref_primary_10_1007_s43832_024_00125_6 crossref_primary_10_1186_s40645_023_00550_6 crossref_primary_10_3390_w15142656 crossref_primary_10_2166_wcc_2022_078 crossref_primary_10_1016_j_fuel_2022_124037 crossref_primary_10_1007_s13201_024_02260_w crossref_primary_10_3390_w16040566 crossref_primary_10_1007_s41939_024_00545_w crossref_primary_10_1007_s11831_025_10248_1 crossref_primary_10_1371_journal_pone_0315574 crossref_primary_10_3390_w15040813 crossref_primary_10_2166_nh_2024_191 crossref_primary_10_1016_j_jhydrol_2022_127984 crossref_primary_10_1007_s11356_022_19762_2 crossref_primary_10_1007_s13762_024_05917_w crossref_primary_10_1080_17538947_2024_2378819 crossref_primary_10_1007_s12517_022_09851_4 crossref_primary_10_1117_1_JRS_15_024519 crossref_primary_10_1007_s11356_022_23899_5 crossref_primary_10_1016_j_jenvman_2021_113237 crossref_primary_10_3390_math11194221 crossref_primary_10_2139_ssrn_4004942 crossref_primary_10_1007_s11600_021_00724_0 crossref_primary_10_3390_met13020375 crossref_primary_10_1016_j_matpr_2023_06_226 crossref_primary_10_1038_s41598_022_12038_2 crossref_primary_10_1080_02626667_2024_2374868 crossref_primary_10_1007_s11269_021_02913_4 crossref_primary_10_3390_w14050751 crossref_primary_10_1007_s11053_021_09913_6  | 
    
| Cites_doi | 10.1007/s12205-014-1193-8 10.1007/s11269-015-1035-6 10.1061/(ASCE)IR.1943-4774.0000300 10.1016/j.agwat.2014.04.003 10.1109/21.256541 10.1061/JYCEAJ.0000949 10.1016/j.jhydrol.2017.10.015 10.1080/02508060708691973 10.1016/j.scitotenv.2017.04.142 10.1016/0309-1708(95)00004-3 10.1016/j.jhydrol.2019.03.013 10.1016/j.jhydrol.2017.09.007 10.1016/j.future.2019.02.028 10.1016/j.agwat.2016.05.001 10.1016/j.jhydrol.2020.125033 10.1016/j.jhydrol.2010.07.023 10.1016/j.jhydrol.2012.04.007 10.1016/j.jhydrol.2019.124435 10.1016/j.jhydrol.2020.125509 10.1016/j.jhydrol.2018.08.078 10.1016/j.jhydrol.2019.124498 10.2166/hydro.2016.086 10.1007/s11269-016-1567-4 10.1016/j.jhydrol.2019.123981 10.1016/j.jhydrol.2019.01.062 10.1016/j.jher.2016.05.007 10.1007/s11269-009-9460-z 10.1016/j.jhydrol.2018.12.040 10.1007/s11269-013-0418-9 10.1016/j.agwat.2018.06.025 10.1016/j.jhydrol.2019.06.065 10.1016/j.chemolab.2018.04.016 10.1016/j.jhydrol.2014.09.049 10.1016/j.agwat.2004.10.014 10.1016/j.advengsoft.2013.12.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2021 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.jhydrol.2021.126258 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 1879-2707 | 
    
| ExternalDocumentID | 10_1016_j_jhydrol_2021_126258 S002216942100305X  | 
    
| GeographicLocations | Iran | 
    
| GeographicLocations_xml | – name: Iran | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-a365t-e1718dfffbcbc02bc5f107d7b5b1962ecad74550f492f7d7292183c74ad38d283 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0022-1694 | 
    
| IngestDate | Sat Sep 27 22:30:34 EDT 2025 Wed Oct 01 05:18:23 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Fri Feb 23 02:42:28 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Conjunctive Use ANFIS ANFIS-PSO ANFIS-GWO ANFIS-HHO Groundwater Management  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a365t-e1718dfffbcbc02bc5f107d7b5b1962ecad74550f492f7d7292183c74ad38d283 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 2524250258 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_2524250258 crossref_primary_10_1016_j_jhydrol_2021_126258 crossref_citationtrail_10_1016_j_jhydrol_2021_126258 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126258  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2021 2021-07-00 20210701  | 
    
| PublicationDateYYYYMMDD | 2021-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of hydrology (Amsterdam) | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Dehghani, Seifi, Riahi-Madvar (b0090) 2019; 576 Mirjalili, Mirjalili, Lewis (b0240) 2014; 69 Rezaei, Safavi, Zekri (b0320) 2017; 31 Asefpour Vakilian, Massah (b0465) 2018; 177 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0140) 2019; 97 Zhou, Guo, Chang (b0500) 2019; 570 Singh (b0415) 2014; 141 Chen, Chang, Huang, Chu (b0080) 2013; 27 Azad, Manoochehri, Kashi, Farzin, Karami, Nourani, Shiri (b0025) 2019; 571 Chen, Panahi, Khosravi, Pourghasemi, Rezaie, Parvinnezhad (b0075) 2019; 572 Singh (b0410) 2014; 519 Panahi, Sadhasivam, Pourghasemi, Rezaie, Lee (b0260) 2020; 588 Buras (b0050) 1963; 89 Peralta (b0270) 2001 Tabari, Kisi, Ezani, Hosseinzadeh Talaee (b0435) 2012; 444-445 Parsapour-Moghaddam, Abed-Elmdoust, Kerachian (b0265) 2015; 29 Ejaz, Peralta (b0105) 1995; 18 Luo, Yang, Qian, Wang, Chang, Ma, Li, Wu (b0210) 2020; 582 Rezaei, Safavi, Mirchi, Madani (b0325) 2017; 14 Rafipour-Langeroudi, Kerachian, Bazargan-Lari (b0300) 2014; 18 Adnan, Liang, Trajkovic, Zounemat-Kermani, Li, Kisi (b0005) 2019; 577 Jang (b0150) 1993; 23 Milan, Roozbahani, Banihabib (b0225) 2018; 566 Yaseen, Ebtehaj, Bonakdari, Deo, Danandeh Mehr, Mohtar, Diop, El-shafie, Singh (b0485) 2017; 554 Chen, Chang, Chang (b0070) 2018; 556 Roy, Schütze, Grundmann, Brettschneider, Jain (b0335) 2016; 18 Yousefi, Banihabib, Soltani, Roozbahani (b0490) 2018; 208 Safavi, Alijanian (b0340) 2011; 137 Karamouz, Tabari, Kerachian (b0170) 2007; 32 Chang, Huang, Cheng, Chang (b0055) 2017; 598 Montazar, Riazi, Behbahani (b0250) 2010; 24 Safavi, Enteshari (b0345) 2016; 173 Vedula, Mujumdar, Chandra Sekhar (b0470) 2005; 73 Todd, Mays (b0460) 2004; 3 Talei, Chua, Wong (b0450) 2010; 391 Roy, Barzegar, Quilty, Adamowski (b0330) 2020; 591 Tikhamarine, Souag-Gamane, Najah Ahmed, Kisi, El-Shafie (b0455) 2020; 582 Chen (10.1016/j.jhydrol.2021.126258_b0070) 2018; 556 Buras (10.1016/j.jhydrol.2021.126258_b0050) 1963; 89 Singh (10.1016/j.jhydrol.2021.126258_b0415) 2014; 141 Dehghani (10.1016/j.jhydrol.2021.126258_b0090) 2019; 576 Adnan (10.1016/j.jhydrol.2021.126258_b0005) 2019; 577 Yousefi (10.1016/j.jhydrol.2021.126258_b0490) 2018; 208 Mirjalili (10.1016/j.jhydrol.2021.126258_b0240) 2014; 69 Chen (10.1016/j.jhydrol.2021.126258_b0075) 2019; 572 Safavi (10.1016/j.jhydrol.2021.126258_b0345) 2016; 173 Ejaz (10.1016/j.jhydrol.2021.126258_b0105) 1995; 18 Singh (10.1016/j.jhydrol.2021.126258_b0410) 2014; 519 Milan (10.1016/j.jhydrol.2021.126258_b0225) 2018; 566 Chang (10.1016/j.jhydrol.2021.126258_b0055) 2017; 598 Chen (10.1016/j.jhydrol.2021.126258_b0080) 2013; 27 Safavi (10.1016/j.jhydrol.2021.126258_b0340) 2011; 137 Tikhamarine (10.1016/j.jhydrol.2021.126258_b0455) 2020; 582 Roy (10.1016/j.jhydrol.2021.126258_b0330) 2020; 591 Talei (10.1016/j.jhydrol.2021.126258_b0450) 2010; 391 Tabari (10.1016/j.jhydrol.2021.126258_b0435) 2012; 444-445 Karamouz (10.1016/j.jhydrol.2021.126258_b0170) 2007; 32 Zhou (10.1016/j.jhydrol.2021.126258_b0500) 2019; 570 Todd (10.1016/j.jhydrol.2021.126258_b0460) 2004; 3 Asefpour Vakilian (10.1016/j.jhydrol.2021.126258_b0465) 2018; 177 Vedula (10.1016/j.jhydrol.2021.126258_b0470) 2005; 73 Parsapour-Moghaddam (10.1016/j.jhydrol.2021.126258_b0265) 2015; 29 Montazar (10.1016/j.jhydrol.2021.126258_b0250) 2010; 24 Azad (10.1016/j.jhydrol.2021.126258_b0025) 2019; 571 Panahi (10.1016/j.jhydrol.2021.126258_b0260) 2020; 588 Luo (10.1016/j.jhydrol.2021.126258_b0210) 2020; 582 Roy (10.1016/j.jhydrol.2021.126258_b0335) 2016; 18 Rafipour-Langeroudi (10.1016/j.jhydrol.2021.126258_b0300) 2014; 18 Jang (10.1016/j.jhydrol.2021.126258_b0150) 1993; 23 Heidari (10.1016/j.jhydrol.2021.126258_b0140) 2019; 97 Yaseen (10.1016/j.jhydrol.2021.126258_b0485) 2017; 554 Peralta (10.1016/j.jhydrol.2021.126258_b0270) 2001 Rezaei (10.1016/j.jhydrol.2021.126258_b0325) 2017; 14 Rezaei (10.1016/j.jhydrol.2021.126258_b0320) 2017; 31  | 
    
| References_xml | – volume: 141 start-page: 23 year: 2014 end-page: 29 ident: b0415 article-title: Simulation–optimization modeling for conjunctive water use management publication-title: Agric. Water Manag. – volume: 591 start-page: 125509 year: 2020 ident: b0330 article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones publication-title: J. Hydrol. – volume: 208 start-page: 224 year: 2018 end-page: 231 ident: b0490 article-title: Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater publication-title: Agric. Water Manag. – volume: 18 start-page: 454 year: 2014 end-page: 461 ident: b0300 article-title: Developing operating rules for conjunctive use of surface and groundwater considering the water quality issues publication-title: KSCE J. Civ. Eng. – volume: 18 start-page: 666 year: 2016 end-page: 686 ident: b0335 article-title: Optimal groundwater management using state-space surrogate models: a case study for an arid coastal region publication-title: J. Hydroinf. – volume: 73 start-page: 193 year: 2005 end-page: 221 ident: b0470 article-title: Conjunctive use modeling for multicrop irrigation publication-title: Agric. Water Manag. – volume: 570 start-page: 343 year: 2019 end-page: 355 ident: b0500 article-title: Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts publication-title: J. Hydrol. – volume: 582 start-page: 124498 year: 2020 ident: b0210 article-title: Spring protection and sustainable management of groundwater resources in a spring field publication-title: J. Hydrol. – volume: 177 start-page: 55 year: 2018 end-page: 63 ident: b0465 article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors publication-title: Chemom. Intell. Lab. Syst. – volume: 89 start-page: 111 year: 1963 end-page: 131 ident: b0050 article-title: Conjunctive operation of dams and aquifers publication-title: J. Hydraul. Div. – volume: 576 start-page: 698 year: 2019 end-page: 725 ident: b0090 article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization publication-title: J. Hydrol. – volume: 31 start-page: 1139 year: 2017 end-page: 1155 ident: b0320 article-title: A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning publication-title: Water Resour. Manage. – volume: 444-445 start-page: 78 year: 2012 end-page: 89 ident: b0435 article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment publication-title: J. Hydrol. – volume: 29 start-page: 3905 year: 2015 end-page: 3918 ident: b0265 article-title: A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources publication-title: Water Resour. Manage. – volume: 582 start-page: 124435 year: 2020 ident: b0455 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: J. Hydrol. – volume: 24 start-page: 577 year: 2010 end-page: 596 ident: b0250 article-title: Conjunctive water use planning in an irrigation command area publication-title: Water Resour. Manage. – volume: 173 start-page: 23 year: 2016 end-page: 34 ident: b0345 article-title: Conjunctive use of surface and ground water resources using the ant system optimization publication-title: Agric. Water Manag. – volume: 588 start-page: 125033 year: 2020 ident: b0260 article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR) publication-title: J. Hydrol. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b0140 article-title: Harris hawks optimization: Algorithm and applications publication-title: Fut. Gen. Comput. Syst. – volume: 554 start-page: 263 year: 2017 end-page: 276 ident: b0485 article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model publication-title: J. Hydrol. – volume: 18 start-page: 67 year: 1995 end-page: 75 ident: b0105 article-title: Maximizing conjunctive use of surface and ground water under surface water quality constraints publication-title: Adv. Water Resour. – volume: 14 start-page: 1 year: 2017 end-page: 18 ident: b0325 article-title: f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management publication-title: J. Hydro-environ. Res. – volume: 519 start-page: 1688 year: 2014 end-page: 1697 ident: b0410 article-title: Conjunctive use of water resources for sustainable irrigated agriculture publication-title: J. Hydrol. – volume: 556 start-page: 131 year: 2018 end-page: 142 ident: b0070 article-title: Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps publication-title: J. Hydrol. – volume: 391 start-page: 248 year: 2010 end-page: 262 ident: b0450 article-title: Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling publication-title: J. Hydrol. – volume: 571 start-page: 214 year: 2019 end-page: 224 ident: b0025 article-title: Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling publication-title: J. Hydrol. – start-page: 691 year: 2001 end-page: 694 ident: b0270 article-title: Simulation/optimization applications and software for optimal ground-water and conjunctive water management publication-title: Int. Ground Water Modeling Center – volume: 3 start-page: 413 year: 2004 end-page: 448 ident: b0460 publication-title: Groundwater hydrology. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: b0150 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybernet. – volume: 137 start-page: 383 year: 2011 end-page: 397 ident: b0340 article-title: Optimal crop planning and conjunctive use of surface water and groundwater resources using fuzzy dynamic programming publication-title: J. Irrig. Drain. Eng. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0240 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 27 start-page: 4731 year: 2013 end-page: 4757 ident: b0080 article-title: Applying genetic algorithm and neural network to the conjunctive use of surface and subsurface water publication-title: Water Resour. Manage. – volume: 32 start-page: 163 year: 2007 end-page: 176 ident: b0170 article-title: Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources publication-title: Water Int. – volume: 577 start-page: 123981 year: 2019 ident: b0005 article-title: Daily streamflow prediction using optimally pruned extreme learning machine publication-title: J. Hydrol. – volume: 572 start-page: 435 year: 2019 end-page: 448 ident: b0075 article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization publication-title: J. Hydrol. – volume: 598 start-page: 828 year: 2017 end-page: 838 ident: b0055 article-title: Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management publication-title: Sci. Total Environ. – volume: 566 start-page: 421 year: 2018 end-page: 434 ident: b0225 article-title: Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources publication-title: J. Hydrol. – volume: 18 start-page: 454 issue: 2 year: 2014 ident: 10.1016/j.jhydrol.2021.126258_b0300 article-title: Developing operating rules for conjunctive use of surface and groundwater considering the water quality issues publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-014-1193-8 – volume: 29 start-page: 3905 issue: 11 year: 2015 ident: 10.1016/j.jhydrol.2021.126258_b0265 article-title: A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources publication-title: Water Resour. Manage. doi: 10.1007/s11269-015-1035-6 – start-page: 691 year: 2001 ident: 10.1016/j.jhydrol.2021.126258_b0270 article-title: Simulation/optimization applications and software for optimal ground-water and conjunctive water management publication-title: Int. Ground Water Modeling Center – volume: 137 start-page: 383 issue: 6 year: 2011 ident: 10.1016/j.jhydrol.2021.126258_b0340 article-title: Optimal crop planning and conjunctive use of surface water and groundwater resources using fuzzy dynamic programming publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000300 – volume: 141 start-page: 23 year: 2014 ident: 10.1016/j.jhydrol.2021.126258_b0415 article-title: Simulation–optimization modeling for conjunctive water use management publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.04.003 – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 10.1016/j.jhydrol.2021.126258_b0150 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybernet. doi: 10.1109/21.256541 – volume: 89 start-page: 111 issue: 6 year: 1963 ident: 10.1016/j.jhydrol.2021.126258_b0050 article-title: Conjunctive operation of dams and aquifers publication-title: J. Hydraul. Div. doi: 10.1061/JYCEAJ.0000949 – volume: 556 start-page: 131 year: 2018 ident: 10.1016/j.jhydrol.2021.126258_b0070 article-title: Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.10.015 – volume: 32 start-page: 163 issue: 1 year: 2007 ident: 10.1016/j.jhydrol.2021.126258_b0170 article-title: Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources publication-title: Water Int. doi: 10.1080/02508060708691973 – volume: 598 start-page: 828 year: 2017 ident: 10.1016/j.jhydrol.2021.126258_b0055 article-title: Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.04.142 – volume: 18 start-page: 67 issue: 2 year: 1995 ident: 10.1016/j.jhydrol.2021.126258_b0105 article-title: Maximizing conjunctive use of surface and ground water under surface water quality constraints publication-title: Adv. Water Resour. doi: 10.1016/0309-1708(95)00004-3 – volume: 572 start-page: 435 year: 2019 ident: 10.1016/j.jhydrol.2021.126258_b0075 article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.013 – volume: 3 start-page: 413 year: 2004 ident: 10.1016/j.jhydrol.2021.126258_b0460 publication-title: Groundwater hydrology. John Wiley & Sons – volume: 554 start-page: 263 year: 2017 ident: 10.1016/j.jhydrol.2021.126258_b0485 article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.09.007 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.jhydrol.2021.126258_b0140 article-title: Harris hawks optimization: Algorithm and applications publication-title: Fut. Gen. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 173 start-page: 23 year: 2016 ident: 10.1016/j.jhydrol.2021.126258_b0345 article-title: Conjunctive use of surface and ground water resources using the ant system optimization publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.05.001 – volume: 588 start-page: 125033 year: 2020 ident: 10.1016/j.jhydrol.2021.126258_b0260 article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125033 – volume: 391 start-page: 248 issue: 3-4 year: 2010 ident: 10.1016/j.jhydrol.2021.126258_b0450 article-title: Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.07.023 – volume: 444-445 start-page: 78 year: 2012 ident: 10.1016/j.jhydrol.2021.126258_b0435 article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.04.007 – volume: 582 start-page: 124435 year: 2020 ident: 10.1016/j.jhydrol.2021.126258_b0455 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124435 – volume: 591 start-page: 125509 year: 2020 ident: 10.1016/j.jhydrol.2021.126258_b0330 article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125509 – volume: 566 start-page: 421 year: 2018 ident: 10.1016/j.jhydrol.2021.126258_b0225 article-title: Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.08.078 – volume: 582 start-page: 124498 year: 2020 ident: 10.1016/j.jhydrol.2021.126258_b0210 article-title: Spring protection and sustainable management of groundwater resources in a spring field publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124498 – volume: 18 start-page: 666 issue: 4 year: 2016 ident: 10.1016/j.jhydrol.2021.126258_b0335 article-title: Optimal groundwater management using state-space surrogate models: a case study for an arid coastal region publication-title: J. Hydroinf. doi: 10.2166/hydro.2016.086 – volume: 31 start-page: 1139 issue: 4 year: 2017 ident: 10.1016/j.jhydrol.2021.126258_b0320 article-title: A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1567-4 – volume: 577 start-page: 123981 year: 2019 ident: 10.1016/j.jhydrol.2021.126258_b0005 article-title: Daily streamflow prediction using optimally pruned extreme learning machine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123981 – volume: 571 start-page: 214 year: 2019 ident: 10.1016/j.jhydrol.2021.126258_b0025 article-title: Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.01.062 – volume: 14 start-page: 1 year: 2017 ident: 10.1016/j.jhydrol.2021.126258_b0325 article-title: f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management publication-title: J. Hydro-environ. Res. doi: 10.1016/j.jher.2016.05.007 – volume: 24 start-page: 577 issue: 3 year: 2010 ident: 10.1016/j.jhydrol.2021.126258_b0250 article-title: Conjunctive water use planning in an irrigation command area publication-title: Water Resour. Manage. doi: 10.1007/s11269-009-9460-z – volume: 570 start-page: 343 year: 2019 ident: 10.1016/j.jhydrol.2021.126258_b0500 article-title: Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.12.040 – volume: 27 start-page: 4731 issue: 14 year: 2013 ident: 10.1016/j.jhydrol.2021.126258_b0080 article-title: Applying genetic algorithm and neural network to the conjunctive use of surface and subsurface water publication-title: Water Resour. Manage. doi: 10.1007/s11269-013-0418-9 – volume: 208 start-page: 224 year: 2018 ident: 10.1016/j.jhydrol.2021.126258_b0490 article-title: Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.06.025 – volume: 576 start-page: 698 year: 2019 ident: 10.1016/j.jhydrol.2021.126258_b0090 article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.065 – volume: 177 start-page: 55 year: 2018 ident: 10.1016/j.jhydrol.2021.126258_b0465 article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.04.016 – volume: 519 start-page: 1688 year: 2014 ident: 10.1016/j.jhydrol.2021.126258_b0410 article-title: Conjunctive use of water resources for sustainable irrigated agriculture publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.09.049 – volume: 73 start-page: 193 issue: 3 year: 2005 ident: 10.1016/j.jhydrol.2021.126258_b0470 article-title: Conjunctive use modeling for multicrop irrigation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2004.10.014 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.jhydrol.2021.126258_b0240 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007  | 
    
| SSID | ssj0000334 | 
    
| Score | 2.5682817 | 
    
| Snippet | •The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA... The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 126258 | 
    
| SubjectTerms | algorithms ANFIS ANFIS-GWO ANFIS-HHO ANFIS-PSO aquifers Conjunctive Use cost effectiveness fuzzy logic groundwater groundwater extraction Groundwater Management Iran prediction surface water  | 
    
| Title | Development of adaptive neuro fuzzy inference system –Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation | 
    
| URI | https://dx.doi.org/10.1016/j.jhydrol.2021.126258 https://www.proquest.com/docview/2524250258  | 
    
| Volume | 598 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQPcAFtQUElCJX6gEOm2S972OEEoWi5gJIuVleP0iisBttEtByQP0PPfbf9Zd0ZtdbHhJC4rjWjm15xuNvNC9CvseBSjys_Cg9qR2wv6QTM-U6iQhN1ElYqBR6dH8Ow8GV_2MUjNbIaZMLg2GVVvfXOr3S1nakbU-zPZ9MMMeXMTdMfDBaUGpHmMHuR9jFoPXwGObR8Ty_qRiOfz9m8bSnrem4VEWOHgjmtlwGtkD82vv0QlNXz0__I9myuJF26619Ims6-0w2bAvzcblN_jwJ_6G5oUKJOaoyWlWspGZ1f1_SSZPeR-sKzvTvr9-9Wyt9oiipmF3nxWQ5vlnQcYnJXLRqlbOgx91h_-zC6XVPKMBcOi_QwYNUuFYOK93A7jBFJFN3AF8LqjG4zxYA3yFX_d7l6cCxnRcc4YXB0tEuPFnKGJPKVHZYKgMDZqKK0iCFG8u0FCrCdGjjJ8zAOEsQacnIF8qLFSCWXbKe5ZneIzRypdFhYATgHqzdJhKpO4HxtUxhxlTuE785by7trrA7xow38WdTbtnEkU28ZtM-af0nm9d1Od4iiBtm8mcCxuHteIv0W8N8DpcPPSoi0_lqwVmAFhvAxvjg_dN_IZv4VccAH5L1ZbHSXwHpLNOjSpSPyIfu2flg-A9aqQOW | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9lAuiBYQLdAuEgc4OInXXj-OUZUoLW0utFJuq_U-SKLWjpyklXtA_AeO_Dt-SWfsNaVIqBLXtWd3tTM7-43mRciHhOs0wMqPKlDGA_tLeQnTvpfKyMa9lEVao0f3bByNLsKTCZ9skKM2FwbDKp3ub3R6ra3dSNedZncxm2GOL2N-lIZgtKDUTp6QrZCzGC2wzrf7OI9eEIRtyXD8_T6NpzvvzKeVLgt0QTC_4zMwBpJ_PVB_qer6_Rk-J88ccKT9Zm87ZMPku2Tb9TCfVi_Izz_if2hhqdRygbqM1iUrqV3f3lZ01ub30aaEM_31_cfg2omfLCsqL78W5Ww1vVrSaYXZXLTulbOkH_vj4fEXb9D_RAHn0kWJHh6kwrUKWOkKdoc5Irm-AfxaUoPRfa4C-EtyMRycH40813rBk0HEV57x4c3S1tpMZarHMsUt2Ik6zngGV5YZJXWM-dA2TJmFcZYi1FJxKHWQaIAsr8hmXuTmNaGxr6yJuJUAfLB4m0yV6XEbGpXBjJnaI2F73kK5XWF7jEvRBqDNhWOTQDaJhk17pPObbNEU5niMIGmZKR5ImIDH4zHS9y3zBdw-dKnI3BTrpWAcTTbAjcn-_09_SLZH52en4vR4_PkNeYpfmoDgt2RzVa7NO4A9q-ygFus7RckFKw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+adaptive+neuro+fuzzy+inference+system+%E2%80%93Evolutionary+algorithms+hybrid+models+%28ANFIS-EA%29+for+prediction+of+optimal+groundwater+exploitation&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ghordoyee+Milan%2C+Sami&rft.au=Roozbahani%2C+Abbas&rft.au=Arya+Azar%2C+Naser&rft.au=Javadi%2C+Saman&rft.date=2021-07-01&rft.issn=0022-1694&rft.volume=598&rft.spage=126258&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2021_126258 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |