Development of adaptive neuro fuzzy inference system –Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation

•The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA algorithms.•ANFIS-HHO, ANFIS-GWO and ANFIS-PSO models improve the predictive precision of OGE.•The results show that ANFIS-HHO is superior for groun...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 598; p. 126258
Main Authors Ghordoyee Milan, Sami, Roozbahani, Abbas, Arya Azar, Naser, Javadi, Saman
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2021
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2021.126258

Cover

Abstract •The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA algorithms.•ANFIS-HHO, ANFIS-GWO and ANFIS-PSO models improve the predictive precision of OGE.•The results show that ANFIS-HHO is superior for groundwater management in study area. The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer in Iran. The results of simulation / optimization models have been used to develop a predictive model based on machine learning. In the first stage, adaptive neuro-fuzzy inference system (ANFIS) was used to predict the Optimal Groundwater Exploitation (OGE) amount in each month having the amounts of several inputs, including the drop and amount of surface water at the end of the previous month and two months earlier, and the water demand of the current month. The results showed that the model’s performance in predicting the test data was undesirable. Therefore, to improve the prediction results, in the second stage several evolutionary optimization algorithms, i.e., particle swarm optimization (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO), were used to train ANFIS model. The results indicated the appropriate performance of HHO in ANFIS training, which significantly improved the prediction accuracy of this model. The best scenario for the ANFIS-HHO model included all the input parameters, which resulted in RMSE = 1.45, MAE = 1.15, and R2 = 0.99 respectively, for the test data. In addition, the Taylor diagram (RMSD = 1.40, STD = 15.5 and CC = 0.99) showed ANFIS-HHO accuracy in estimating the OGE value. ANFIS-HHO was also able to improve the accuracy of anfis by RMSE = 4 and MAE = 2 MCM. In general, ANFIS-POS, ANFIS-GWO and ANFIS-HHO had good predictive accuracy compared to ANFIS. The results assure the authors to suggest the developed approach to experts for timely and cost-effective prediction of OGE in similar study areas.
AbstractList •The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA algorithms.•ANFIS-HHO, ANFIS-GWO and ANFIS-PSO models improve the predictive precision of OGE.•The results show that ANFIS-HHO is superior for groundwater management in study area. The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer in Iran. The results of simulation / optimization models have been used to develop a predictive model based on machine learning. In the first stage, adaptive neuro-fuzzy inference system (ANFIS) was used to predict the Optimal Groundwater Exploitation (OGE) amount in each month having the amounts of several inputs, including the drop and amount of surface water at the end of the previous month and two months earlier, and the water demand of the current month. The results showed that the model’s performance in predicting the test data was undesirable. Therefore, to improve the prediction results, in the second stage several evolutionary optimization algorithms, i.e., particle swarm optimization (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO), were used to train ANFIS model. The results indicated the appropriate performance of HHO in ANFIS training, which significantly improved the prediction accuracy of this model. The best scenario for the ANFIS-HHO model included all the input parameters, which resulted in RMSE = 1.45, MAE = 1.15, and R2 = 0.99 respectively, for the test data. In addition, the Taylor diagram (RMSD = 1.40, STD = 15.5 and CC = 0.99) showed ANFIS-HHO accuracy in estimating the OGE value. ANFIS-HHO was also able to improve the accuracy of anfis by RMSE = 4 and MAE = 2 MCM. In general, ANFIS-POS, ANFIS-GWO and ANFIS-HHO had good predictive accuracy compared to ANFIS. The results assure the authors to suggest the developed approach to experts for timely and cost-effective prediction of OGE in similar study areas.
The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer in Iran. The results of simulation / optimization models have been used to develop a predictive model based on machine learning. In the first stage, adaptive neuro-fuzzy inference system (ANFIS) was used to predict the Optimal Groundwater Exploitation (OGE) amount in each month having the amounts of several inputs, including the drop and amount of surface water at the end of the previous month and two months earlier, and the water demand of the current month. The results showed that the model’s performance in predicting the test data was undesirable. Therefore, to improve the prediction results, in the second stage several evolutionary optimization algorithms, i.e., particle swarm optimization (PSO), gray wolf optimization (GWO), and Harris hawk optimization (HHO), were used to train ANFIS model. The results indicated the appropriate performance of HHO in ANFIS training, which significantly improved the prediction accuracy of this model. The best scenario for the ANFIS-HHO model included all the input parameters, which resulted in RMSE = 1.45, MAE = 1.15, and R² = 0.99 respectively, for the test data. In addition, the Taylor diagram (RMSD = 1.40, STD = 15.5 and CC = 0.99) showed ANFIS-HHO accuracy in estimating the OGE value. ANFIS-HHO was also able to improve the accuracy of anfis by RMSE = 4 and MAE = 2 MCM. In general, ANFIS-POS, ANFIS-GWO and ANFIS-HHO had good predictive accuracy compared to ANFIS. The results assure the authors to suggest the developed approach to experts for timely and cost-effective prediction of OGE in similar study areas.
ArticleNumber 126258
Author Roozbahani, Abbas
Arya Azar, Naser
Javadi, Saman
Ghordoyee Milan, Sami
Author_xml – sequence: 1
  givenname: Sami
  surname: Ghordoyee Milan
  fullname: Ghordoyee Milan, Sami
  email: s.milan@ut.ac.ir
  organization: Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Abbas
  surname: Roozbahani
  fullname: Roozbahani, Abbas
  email: roozbahany@ut.ac.ir
  organization: Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Naser
  surname: Arya Azar
  fullname: Arya Azar, Naser
  email: naseraryaazar92@gmail.com
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
– sequence: 4
  givenname: Saman
  surname: Javadi
  fullname: Javadi, Saman
  email: javadis@ut.ac.ir
  organization: Department of Water Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
BookMark eNqFkb9uFDEQhy0UJC6BR0ByGYq92N7_okCn5BIiRVAAteW1xzmfvPZiew82Fe9AydvxJOzqrqKJm5Gs3zejme8cnTnvAKG3lKwpodXVfr3fTSp4u2aE0TVlFSubF2hFm7rNWE3qM7QihLGMVm3xCp3HuCfzy_Nihf7cwAGsH3pwCXuNhRJDMgfADsbgsR6fniZsnIYATgKOU0zQ47-_fm8P3o7JeCfChIV99MGkXR_xbuqCUbj3CmzEl5tPt_dfsu3mHdY-4CGAMnKhlll-ntQLix-DH536IRIEDD8H600SS-Y1eqmFjfDmVC_Qt9vt1-uP2cPnu_vrzUMm8qpMGdCaNkpr3clOEtbJUlNSq7orO9pWDKRQdVGWRBct0_M_axltclkXQuWNYk1-gS6PfYfgv48QE-9NlGCtcODHyFnJClaS-ahztDxGZfAxBtB8CPMOYeKU8EUG3_OTDL7I4EcZM_f-P06elkxBGPss_eFIzyeFg4HAozSLD2UCyMSVN890-AfPS7C8
CitedBy_id crossref_primary_10_1007_s40815_022_01291_2
crossref_primary_10_1080_10106049_2021_1939439
crossref_primary_10_3233_JIFS_221125
crossref_primary_10_3390_su14052691
crossref_primary_10_1061_JHYEFF_HEENG_6263
crossref_primary_10_1007_s10661_021_09495_z
crossref_primary_10_1007_s13201_022_01686_4
crossref_primary_10_3390_rs15010152
crossref_primary_10_1007_s12517_022_09546_w
crossref_primary_10_1007_s13201_023_02001_5
crossref_primary_10_5327_Z2176_94781286
crossref_primary_10_1007_s11356_022_23224_0
crossref_primary_10_1007_s13201_024_02316_x
crossref_primary_10_1007_s43832_024_00125_6
crossref_primary_10_1186_s40645_023_00550_6
crossref_primary_10_3390_w15142656
crossref_primary_10_2166_wcc_2022_078
crossref_primary_10_1016_j_fuel_2022_124037
crossref_primary_10_1007_s13201_024_02260_w
crossref_primary_10_3390_w16040566
crossref_primary_10_1007_s41939_024_00545_w
crossref_primary_10_1007_s11831_025_10248_1
crossref_primary_10_1371_journal_pone_0315574
crossref_primary_10_3390_w15040813
crossref_primary_10_2166_nh_2024_191
crossref_primary_10_1016_j_jhydrol_2022_127984
crossref_primary_10_1007_s11356_022_19762_2
crossref_primary_10_1007_s13762_024_05917_w
crossref_primary_10_1080_17538947_2024_2378819
crossref_primary_10_1007_s12517_022_09851_4
crossref_primary_10_1117_1_JRS_15_024519
crossref_primary_10_1007_s11356_022_23899_5
crossref_primary_10_1016_j_jenvman_2021_113237
crossref_primary_10_3390_math11194221
crossref_primary_10_2139_ssrn_4004942
crossref_primary_10_1007_s11600_021_00724_0
crossref_primary_10_3390_met13020375
crossref_primary_10_1016_j_matpr_2023_06_226
crossref_primary_10_1038_s41598_022_12038_2
crossref_primary_10_1080_02626667_2024_2374868
crossref_primary_10_1007_s11269_021_02913_4
crossref_primary_10_3390_w14050751
crossref_primary_10_1007_s11053_021_09913_6
Cites_doi 10.1007/s12205-014-1193-8
10.1007/s11269-015-1035-6
10.1061/(ASCE)IR.1943-4774.0000300
10.1016/j.agwat.2014.04.003
10.1109/21.256541
10.1061/JYCEAJ.0000949
10.1016/j.jhydrol.2017.10.015
10.1080/02508060708691973
10.1016/j.scitotenv.2017.04.142
10.1016/0309-1708(95)00004-3
10.1016/j.jhydrol.2019.03.013
10.1016/j.jhydrol.2017.09.007
10.1016/j.future.2019.02.028
10.1016/j.agwat.2016.05.001
10.1016/j.jhydrol.2020.125033
10.1016/j.jhydrol.2010.07.023
10.1016/j.jhydrol.2012.04.007
10.1016/j.jhydrol.2019.124435
10.1016/j.jhydrol.2020.125509
10.1016/j.jhydrol.2018.08.078
10.1016/j.jhydrol.2019.124498
10.2166/hydro.2016.086
10.1007/s11269-016-1567-4
10.1016/j.jhydrol.2019.123981
10.1016/j.jhydrol.2019.01.062
10.1016/j.jher.2016.05.007
10.1007/s11269-009-9460-z
10.1016/j.jhydrol.2018.12.040
10.1007/s11269-013-0418-9
10.1016/j.agwat.2018.06.025
10.1016/j.jhydrol.2019.06.065
10.1016/j.chemolab.2018.04.016
10.1016/j.jhydrol.2014.09.049
10.1016/j.agwat.2004.10.014
10.1016/j.advengsoft.2013.12.007
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2021.126258
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2021_126258
S002216942100305X
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a365t-e1718dfffbcbc02bc5f107d7b5b1962ecad74550f492f7d7292183c74ad38d283
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Sat Sep 27 22:30:34 EDT 2025
Wed Oct 01 05:18:23 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Fri Feb 23 02:42:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conjunctive Use
ANFIS
ANFIS-PSO
ANFIS-GWO
ANFIS-HHO
Groundwater Management
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-e1718dfffbcbc02bc5f107d7b5b1962ecad74550f492f7d7292183c74ad38d283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524250258
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524250258
crossref_primary_10_1016_j_jhydrol_2021_126258
crossref_citationtrail_10_1016_j_jhydrol_2021_126258
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2021_126258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dehghani, Seifi, Riahi-Madvar (b0090) 2019; 576
Mirjalili, Mirjalili, Lewis (b0240) 2014; 69
Rezaei, Safavi, Zekri (b0320) 2017; 31
Asefpour Vakilian, Massah (b0465) 2018; 177
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0140) 2019; 97
Zhou, Guo, Chang (b0500) 2019; 570
Singh (b0415) 2014; 141
Chen, Chang, Huang, Chu (b0080) 2013; 27
Azad, Manoochehri, Kashi, Farzin, Karami, Nourani, Shiri (b0025) 2019; 571
Chen, Panahi, Khosravi, Pourghasemi, Rezaie, Parvinnezhad (b0075) 2019; 572
Singh (b0410) 2014; 519
Panahi, Sadhasivam, Pourghasemi, Rezaie, Lee (b0260) 2020; 588
Buras (b0050) 1963; 89
Peralta (b0270) 2001
Tabari, Kisi, Ezani, Hosseinzadeh Talaee (b0435) 2012; 444-445
Parsapour-Moghaddam, Abed-Elmdoust, Kerachian (b0265) 2015; 29
Ejaz, Peralta (b0105) 1995; 18
Luo, Yang, Qian, Wang, Chang, Ma, Li, Wu (b0210) 2020; 582
Rezaei, Safavi, Mirchi, Madani (b0325) 2017; 14
Rafipour-Langeroudi, Kerachian, Bazargan-Lari (b0300) 2014; 18
Adnan, Liang, Trajkovic, Zounemat-Kermani, Li, Kisi (b0005) 2019; 577
Jang (b0150) 1993; 23
Milan, Roozbahani, Banihabib (b0225) 2018; 566
Yaseen, Ebtehaj, Bonakdari, Deo, Danandeh Mehr, Mohtar, Diop, El-shafie, Singh (b0485) 2017; 554
Chen, Chang, Chang (b0070) 2018; 556
Roy, Schütze, Grundmann, Brettschneider, Jain (b0335) 2016; 18
Yousefi, Banihabib, Soltani, Roozbahani (b0490) 2018; 208
Safavi, Alijanian (b0340) 2011; 137
Karamouz, Tabari, Kerachian (b0170) 2007; 32
Chang, Huang, Cheng, Chang (b0055) 2017; 598
Montazar, Riazi, Behbahani (b0250) 2010; 24
Safavi, Enteshari (b0345) 2016; 173
Vedula, Mujumdar, Chandra Sekhar (b0470) 2005; 73
Todd, Mays (b0460) 2004; 3
Talei, Chua, Wong (b0450) 2010; 391
Roy, Barzegar, Quilty, Adamowski (b0330) 2020; 591
Tikhamarine, Souag-Gamane, Najah Ahmed, Kisi, El-Shafie (b0455) 2020; 582
Chen (10.1016/j.jhydrol.2021.126258_b0070) 2018; 556
Buras (10.1016/j.jhydrol.2021.126258_b0050) 1963; 89
Singh (10.1016/j.jhydrol.2021.126258_b0415) 2014; 141
Dehghani (10.1016/j.jhydrol.2021.126258_b0090) 2019; 576
Adnan (10.1016/j.jhydrol.2021.126258_b0005) 2019; 577
Yousefi (10.1016/j.jhydrol.2021.126258_b0490) 2018; 208
Mirjalili (10.1016/j.jhydrol.2021.126258_b0240) 2014; 69
Chen (10.1016/j.jhydrol.2021.126258_b0075) 2019; 572
Safavi (10.1016/j.jhydrol.2021.126258_b0345) 2016; 173
Ejaz (10.1016/j.jhydrol.2021.126258_b0105) 1995; 18
Singh (10.1016/j.jhydrol.2021.126258_b0410) 2014; 519
Milan (10.1016/j.jhydrol.2021.126258_b0225) 2018; 566
Chang (10.1016/j.jhydrol.2021.126258_b0055) 2017; 598
Chen (10.1016/j.jhydrol.2021.126258_b0080) 2013; 27
Safavi (10.1016/j.jhydrol.2021.126258_b0340) 2011; 137
Tikhamarine (10.1016/j.jhydrol.2021.126258_b0455) 2020; 582
Roy (10.1016/j.jhydrol.2021.126258_b0330) 2020; 591
Talei (10.1016/j.jhydrol.2021.126258_b0450) 2010; 391
Tabari (10.1016/j.jhydrol.2021.126258_b0435) 2012; 444-445
Karamouz (10.1016/j.jhydrol.2021.126258_b0170) 2007; 32
Zhou (10.1016/j.jhydrol.2021.126258_b0500) 2019; 570
Todd (10.1016/j.jhydrol.2021.126258_b0460) 2004; 3
Asefpour Vakilian (10.1016/j.jhydrol.2021.126258_b0465) 2018; 177
Vedula (10.1016/j.jhydrol.2021.126258_b0470) 2005; 73
Parsapour-Moghaddam (10.1016/j.jhydrol.2021.126258_b0265) 2015; 29
Montazar (10.1016/j.jhydrol.2021.126258_b0250) 2010; 24
Azad (10.1016/j.jhydrol.2021.126258_b0025) 2019; 571
Panahi (10.1016/j.jhydrol.2021.126258_b0260) 2020; 588
Luo (10.1016/j.jhydrol.2021.126258_b0210) 2020; 582
Roy (10.1016/j.jhydrol.2021.126258_b0335) 2016; 18
Rafipour-Langeroudi (10.1016/j.jhydrol.2021.126258_b0300) 2014; 18
Jang (10.1016/j.jhydrol.2021.126258_b0150) 1993; 23
Heidari (10.1016/j.jhydrol.2021.126258_b0140) 2019; 97
Yaseen (10.1016/j.jhydrol.2021.126258_b0485) 2017; 554
Peralta (10.1016/j.jhydrol.2021.126258_b0270) 2001
Rezaei (10.1016/j.jhydrol.2021.126258_b0325) 2017; 14
Rezaei (10.1016/j.jhydrol.2021.126258_b0320) 2017; 31
References_xml – volume: 141
  start-page: 23
  year: 2014
  end-page: 29
  ident: b0415
  article-title: Simulation–optimization modeling for conjunctive water use management
  publication-title: Agric. Water Manag.
– volume: 591
  start-page: 125509
  year: 2020
  ident: b0330
  article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones
  publication-title: J. Hydrol.
– volume: 208
  start-page: 224
  year: 2018
  end-page: 231
  ident: b0490
  article-title: Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater
  publication-title: Agric. Water Manag.
– volume: 18
  start-page: 454
  year: 2014
  end-page: 461
  ident: b0300
  article-title: Developing operating rules for conjunctive use of surface and groundwater considering the water quality issues
  publication-title: KSCE J. Civ. Eng.
– volume: 18
  start-page: 666
  year: 2016
  end-page: 686
  ident: b0335
  article-title: Optimal groundwater management using state-space surrogate models: a case study for an arid coastal region
  publication-title: J. Hydroinf.
– volume: 73
  start-page: 193
  year: 2005
  end-page: 221
  ident: b0470
  article-title: Conjunctive use modeling for multicrop irrigation
  publication-title: Agric. Water Manag.
– volume: 570
  start-page: 343
  year: 2019
  end-page: 355
  ident: b0500
  article-title: Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
– volume: 582
  start-page: 124498
  year: 2020
  ident: b0210
  article-title: Spring protection and sustainable management of groundwater resources in a spring field
  publication-title: J. Hydrol.
– volume: 177
  start-page: 55
  year: 2018
  end-page: 63
  ident: b0465
  article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 89
  start-page: 111
  year: 1963
  end-page: 131
  ident: b0050
  article-title: Conjunctive operation of dams and aquifers
  publication-title: J. Hydraul. Div.
– volume: 576
  start-page: 698
  year: 2019
  end-page: 725
  ident: b0090
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: J. Hydrol.
– volume: 31
  start-page: 1139
  year: 2017
  end-page: 1155
  ident: b0320
  article-title: A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning
  publication-title: Water Resour. Manage.
– volume: 444-445
  start-page: 78
  year: 2012
  end-page: 89
  ident: b0435
  article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment
  publication-title: J. Hydrol.
– volume: 29
  start-page: 3905
  year: 2015
  end-page: 3918
  ident: b0265
  article-title: A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources
  publication-title: Water Resour. Manage.
– volume: 582
  start-page: 124435
  year: 2020
  ident: b0455
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: J. Hydrol.
– volume: 24
  start-page: 577
  year: 2010
  end-page: 596
  ident: b0250
  article-title: Conjunctive water use planning in an irrigation command area
  publication-title: Water Resour. Manage.
– volume: 173
  start-page: 23
  year: 2016
  end-page: 34
  ident: b0345
  article-title: Conjunctive use of surface and ground water resources using the ant system optimization
  publication-title: Agric. Water Manag.
– volume: 588
  start-page: 125033
  year: 2020
  ident: b0260
  article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)
  publication-title: J. Hydrol.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0140
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Fut. Gen. Comput. Syst.
– volume: 554
  start-page: 263
  year: 2017
  end-page: 276
  ident: b0485
  article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
  publication-title: J. Hydrol.
– volume: 18
  start-page: 67
  year: 1995
  end-page: 75
  ident: b0105
  article-title: Maximizing conjunctive use of surface and ground water under surface water quality constraints
  publication-title: Adv. Water Resour.
– volume: 14
  start-page: 1
  year: 2017
  end-page: 18
  ident: b0325
  article-title: f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management
  publication-title: J. Hydro-environ. Res.
– volume: 519
  start-page: 1688
  year: 2014
  end-page: 1697
  ident: b0410
  article-title: Conjunctive use of water resources for sustainable irrigated agriculture
  publication-title: J. Hydrol.
– volume: 556
  start-page: 131
  year: 2018
  end-page: 142
  ident: b0070
  article-title: Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps
  publication-title: J. Hydrol.
– volume: 391
  start-page: 248
  year: 2010
  end-page: 262
  ident: b0450
  article-title: Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling
  publication-title: J. Hydrol.
– volume: 571
  start-page: 214
  year: 2019
  end-page: 224
  ident: b0025
  article-title: Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling
  publication-title: J. Hydrol.
– start-page: 691
  year: 2001
  end-page: 694
  ident: b0270
  article-title: Simulation/optimization applications and software for optimal ground-water and conjunctive water management
  publication-title: Int. Ground Water Modeling Center
– volume: 3
  start-page: 413
  year: 2004
  end-page: 448
  ident: b0460
  publication-title: Groundwater hydrology.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b0150
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybernet.
– volume: 137
  start-page: 383
  year: 2011
  end-page: 397
  ident: b0340
  article-title: Optimal crop planning and conjunctive use of surface water and groundwater resources using fuzzy dynamic programming
  publication-title: J. Irrig. Drain. Eng.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0240
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 27
  start-page: 4731
  year: 2013
  end-page: 4757
  ident: b0080
  article-title: Applying genetic algorithm and neural network to the conjunctive use of surface and subsurface water
  publication-title: Water Resour. Manage.
– volume: 32
  start-page: 163
  year: 2007
  end-page: 176
  ident: b0170
  article-title: Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources
  publication-title: Water Int.
– volume: 577
  start-page: 123981
  year: 2019
  ident: b0005
  article-title: Daily streamflow prediction using optimally pruned extreme learning machine
  publication-title: J. Hydrol.
– volume: 572
  start-page: 435
  year: 2019
  end-page: 448
  ident: b0075
  article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization
  publication-title: J. Hydrol.
– volume: 598
  start-page: 828
  year: 2017
  end-page: 838
  ident: b0055
  article-title: Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management
  publication-title: Sci. Total Environ.
– volume: 566
  start-page: 421
  year: 2018
  end-page: 434
  ident: b0225
  article-title: Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources
  publication-title: J. Hydrol.
– volume: 18
  start-page: 454
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126258_b0300
  article-title: Developing operating rules for conjunctive use of surface and groundwater considering the water quality issues
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-014-1193-8
– volume: 29
  start-page: 3905
  issue: 11
  year: 2015
  ident: 10.1016/j.jhydrol.2021.126258_b0265
  article-title: A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-015-1035-6
– start-page: 691
  year: 2001
  ident: 10.1016/j.jhydrol.2021.126258_b0270
  article-title: Simulation/optimization applications and software for optimal ground-water and conjunctive water management
  publication-title: Int. Ground Water Modeling Center
– volume: 137
  start-page: 383
  issue: 6
  year: 2011
  ident: 10.1016/j.jhydrol.2021.126258_b0340
  article-title: Optimal crop planning and conjunctive use of surface water and groundwater resources using fuzzy dynamic programming
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000300
– volume: 141
  start-page: 23
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126258_b0415
  article-title: Simulation–optimization modeling for conjunctive water use management
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.04.003
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 10.1016/j.jhydrol.2021.126258_b0150
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybernet.
  doi: 10.1109/21.256541
– volume: 89
  start-page: 111
  issue: 6
  year: 1963
  ident: 10.1016/j.jhydrol.2021.126258_b0050
  article-title: Conjunctive operation of dams and aquifers
  publication-title: J. Hydraul. Div.
  doi: 10.1061/JYCEAJ.0000949
– volume: 556
  start-page: 131
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126258_b0070
  article-title: Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.10.015
– volume: 32
  start-page: 163
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2021.126258_b0170
  article-title: Application of genetic algorithms and artificial neural networks in conjunctive use of surface and groundwater resources
  publication-title: Water Int.
  doi: 10.1080/02508060708691973
– volume: 598
  start-page: 828
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126258_b0055
  article-title: Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.142
– volume: 18
  start-page: 67
  issue: 2
  year: 1995
  ident: 10.1016/j.jhydrol.2021.126258_b0105
  article-title: Maximizing conjunctive use of surface and ground water under surface water quality constraints
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(95)00004-3
– volume: 572
  start-page: 435
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126258_b0075
  article-title: Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.013
– volume: 3
  start-page: 413
  year: 2004
  ident: 10.1016/j.jhydrol.2021.126258_b0460
  publication-title: Groundwater hydrology. John Wiley & Sons
– volume: 554
  start-page: 263
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126258_b0485
  article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.09.007
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126258_b0140
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Fut. Gen. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 173
  start-page: 23
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126258_b0345
  article-title: Conjunctive use of surface and ground water resources using the ant system optimization
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.05.001
– volume: 588
  start-page: 125033
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126258_b0260
  article-title: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125033
– volume: 391
  start-page: 248
  issue: 3-4
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126258_b0450
  article-title: Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall–runoff modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.07.023
– volume: 444-445
  start-page: 78
  year: 2012
  ident: 10.1016/j.jhydrol.2021.126258_b0435
  article-title: SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.04.007
– volume: 582
  start-page: 124435
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126258_b0455
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124435
– volume: 591
  start-page: 125509
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126258_b0330
  article-title: Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125509
– volume: 566
  start-page: 421
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126258_b0225
  article-title: Fuzzy optimization model and fuzzy inference system for conjunctive use of surface and groundwater resources
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.078
– volume: 582
  start-page: 124498
  year: 2020
  ident: 10.1016/j.jhydrol.2021.126258_b0210
  article-title: Spring protection and sustainable management of groundwater resources in a spring field
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124498
– volume: 18
  start-page: 666
  issue: 4
  year: 2016
  ident: 10.1016/j.jhydrol.2021.126258_b0335
  article-title: Optimal groundwater management using state-space surrogate models: a case study for an arid coastal region
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2016.086
– volume: 31
  start-page: 1139
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126258_b0320
  article-title: A hybrid fuzzy-based multi-objective PSO algorithm for conjunctive water use and optimal multi-crop pattern planning
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1567-4
– volume: 577
  start-page: 123981
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126258_b0005
  article-title: Daily streamflow prediction using optimally pruned extreme learning machine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123981
– volume: 571
  start-page: 214
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126258_b0025
  article-title: Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.01.062
– volume: 14
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhydrol.2021.126258_b0325
  article-title: f-MOPSO: An alternative multi-objective PSO algorithm for conjunctive water use management
  publication-title: J. Hydro-environ. Res.
  doi: 10.1016/j.jher.2016.05.007
– volume: 24
  start-page: 577
  issue: 3
  year: 2010
  ident: 10.1016/j.jhydrol.2021.126258_b0250
  article-title: Conjunctive water use planning in an irrigation command area
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-009-9460-z
– volume: 570
  start-page: 343
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126258_b0500
  article-title: Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.12.040
– volume: 27
  start-page: 4731
  issue: 14
  year: 2013
  ident: 10.1016/j.jhydrol.2021.126258_b0080
  article-title: Applying genetic algorithm and neural network to the conjunctive use of surface and subsurface water
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-013-0418-9
– volume: 208
  start-page: 224
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126258_b0490
  article-title: Multi-objective particle swarm optimization model for conjunctive use of treated wastewater and groundwater
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.06.025
– volume: 576
  start-page: 698
  year: 2019
  ident: 10.1016/j.jhydrol.2021.126258_b0090
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.065
– volume: 177
  start-page: 55
  year: 2018
  ident: 10.1016/j.jhydrol.2021.126258_b0465
  article-title: A fuzzy-based decision making software for enzymatic electrochemical nitrate biosensors
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.04.016
– volume: 519
  start-page: 1688
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126258_b0410
  article-title: Conjunctive use of water resources for sustainable irrigated agriculture
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.09.049
– volume: 73
  start-page: 193
  issue: 3
  year: 2005
  ident: 10.1016/j.jhydrol.2021.126258_b0470
  article-title: Conjunctive use modeling for multicrop irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2004.10.014
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.jhydrol.2021.126258_b0240
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
SSID ssj0000334
Score 2.5682817
Snippet •The approach for optimal extracting of groundwater resources is developed.•A novel insight on forecasting OGE is developed by hybridizing ANFIS and EA...
The present study deals with the optimal extraction of groundwater resources. This approach has been developed for optimal integrated operation in an aquifer...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126258
SubjectTerms algorithms
ANFIS
ANFIS-GWO
ANFIS-HHO
ANFIS-PSO
aquifers
Conjunctive Use
cost effectiveness
fuzzy logic
groundwater
groundwater extraction
Groundwater Management
Iran
prediction
surface water
Title Development of adaptive neuro fuzzy inference system –Evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation
URI https://dx.doi.org/10.1016/j.jhydrol.2021.126258
https://www.proquest.com/docview/2524250258
Volume 598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQPcAFtQUElCJX6gEOm2S972OEEoWi5gJIuVleP0iisBttEtByQP0PPfbf9Zd0ZtdbHhJC4rjWjm15xuNvNC9CvseBSjys_Cg9qR2wv6QTM-U6iQhN1ElYqBR6dH8Ow8GV_2MUjNbIaZMLg2GVVvfXOr3S1nakbU-zPZ9MMMeXMTdMfDBaUGpHmMHuR9jFoPXwGObR8Ty_qRiOfz9m8bSnrem4VEWOHgjmtlwGtkD82vv0QlNXz0__I9myuJF26619Ims6-0w2bAvzcblN_jwJ_6G5oUKJOaoyWlWspGZ1f1_SSZPeR-sKzvTvr9-9Wyt9oiipmF3nxWQ5vlnQcYnJXLRqlbOgx91h_-zC6XVPKMBcOi_QwYNUuFYOK93A7jBFJFN3AF8LqjG4zxYA3yFX_d7l6cCxnRcc4YXB0tEuPFnKGJPKVHZYKgMDZqKK0iCFG8u0FCrCdGjjJ8zAOEsQacnIF8qLFSCWXbKe5ZneIzRypdFhYATgHqzdJhKpO4HxtUxhxlTuE785by7trrA7xow38WdTbtnEkU28ZtM-af0nm9d1Od4iiBtm8mcCxuHteIv0W8N8DpcPPSoi0_lqwVmAFhvAxvjg_dN_IZv4VccAH5L1ZbHSXwHpLNOjSpSPyIfu2flg-A9aqQOW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9lAuiBYQLdAuEgc4OInXXj-OUZUoLW0utFJuq_U-SKLWjpyklXtA_AeO_Dt-SWfsNaVIqBLXtWd3tTM7-43mRciHhOs0wMqPKlDGA_tLeQnTvpfKyMa9lEVao0f3bByNLsKTCZ9skKM2FwbDKp3ub3R6ra3dSNedZncxm2GOL2N-lIZgtKDUTp6QrZCzGC2wzrf7OI9eEIRtyXD8_T6NpzvvzKeVLgt0QTC_4zMwBpJ_PVB_qer6_Rk-J88ccKT9Zm87ZMPku2Tb9TCfVi_Izz_if2hhqdRygbqM1iUrqV3f3lZ01ub30aaEM_31_cfg2omfLCsqL78W5Ww1vVrSaYXZXLTulbOkH_vj4fEXb9D_RAHn0kWJHh6kwrUKWOkKdoc5Irm-AfxaUoPRfa4C-EtyMRycH40813rBk0HEV57x4c3S1tpMZarHMsUt2Ik6zngGV5YZJXWM-dA2TJmFcZYi1FJxKHWQaIAsr8hmXuTmNaGxr6yJuJUAfLB4m0yV6XEbGpXBjJnaI2F73kK5XWF7jEvRBqDNhWOTQDaJhk17pPObbNEU5niMIGmZKR5ImIDH4zHS9y3zBdw-dKnI3BTrpWAcTTbAjcn-_09_SLZH52en4vR4_PkNeYpfmoDgt2RzVa7NO4A9q-ygFus7RckFKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+adaptive+neuro+fuzzy+inference+system+%E2%80%93Evolutionary+algorithms+hybrid+models+%28ANFIS-EA%29+for+prediction+of+optimal+groundwater+exploitation&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ghordoyee+Milan%2C+Sami&rft.au=Roozbahani%2C+Abbas&rft.au=Arya+Azar%2C+Naser&rft.au=Javadi%2C+Saman&rft.date=2021-07-01&rft.issn=0022-1694&rft.volume=598&rft.spage=126258&rft_id=info:doi/10.1016%2Fj.jhydrol.2021.126258&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2021_126258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon