Combining Deep Learning Neural Networks with Genetic Algorithms to Map Nanocluster Configuration Spaces with Quantum Accuracy at Low Computational Cost

The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem o...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 63; no. 16; pp. 5045 - 5055
Main Authors von der Heyde, Johnathan, Malone, Walter, Zaman, Nusaiba, Kara, Abdelkader
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.08.2023
Subjects
Online AccessGet full text
ISSN1549-9596
1549-960X
1549-960X
DOI10.1021/acs.jcim.3c00609

Cover

Abstract The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system’s global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system’s energy minima while mapping the configuration space as a function of energy. The algorithm’s simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm’s performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.
AbstractList The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.
The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.
Author von der Heyde, Johnathan
Zaman, Nusaiba
Kara, Abdelkader
Malone, Walter
AuthorAffiliation Department of Physics
AuthorAffiliation_xml – name: Department of Physics
Author_xml – sequence: 1
  givenname: Johnathan
  surname: von der Heyde
  fullname: von der Heyde, Johnathan
  organization: Department of Physics
– sequence: 2
  givenname: Walter
  orcidid: 0000-0001-8245-322X
  surname: Malone
  fullname: Malone, Walter
  email: wmalone@tuskegee.edu
  organization: Department of Physics
– sequence: 3
  givenname: Nusaiba
  surname: Zaman
  fullname: Zaman, Nusaiba
  organization: Department of Physics
– sequence: 4
  givenname: Abdelkader
  orcidid: 0000-0003-1445-1315
  surname: Kara
  fullname: Kara, Abdelkader
  organization: Department of Physics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37579032$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURi3Uij5gzwpZYtMFM_gxsePlKIVSaShCgMQucpybwUNip7ajUX8Jfxd3HiwqwcqPe459db8LdOK8A4ReUTKnhNF32sT5xthhzg0hgqhn6JwWCzVTgvw4Oe4LJc7QRYwbQjhXgj1HZ1wWUhHOztHvyg-Nddat8TXAiFegw-50B1PQfV7S1odfEW9t-olvwEGyBi_7tQ_5Yog4efxJj_hOO2_6KSYIuPKus-usJ-sd_jpqAwf_y6Rdmga8NCaXzQPWCa_8NhvDOKUdn_-sfEwv0Gmn-wgvD-sl-v7h_bfq42z1-ea2Wq5mmotFmokWiqItuQTeKqlbziU1BZO8U4Z1omwaKpiBpgPJVVfwltFGyabVXR5E0xh-ia72747B308QUz3YaKDvtQM_xZqVBaULupAyo2-eoBs_hdzwjiolLZlgmXp9oKZmgLYegx10eKiPI88A2QMm-BgDdH8RSurHVOucav2Yan1INSviiWLsflopaNv_T3y7F3eVY7f_xP8Ap6K6dw
CitedBy_id crossref_primary_10_1016_j_actamat_2024_120237
crossref_primary_10_1063_5_0244175
Cites_doi 10.1063/1.1811079
10.1016/0927-0256(96)00008-0
10.1016/j.apsusc.2004.09.004
10.1103/PhysRevLett.95.153002
10.1016/j.comptc.2017.09.008
10.1021/acs.jctc.8b00908
10.1063/1.4973838
10.1103/PhysRevB.97.195424
10.1021/jacs.7b10660
10.1021/jp208564h
10.1021/acscentsci.8b00551
10.1038/s41467-019-10827-4
10.1021/ct400706g
10.1103/PhysRevLett.75.288
10.1063/1.5020710
10.1140/epjd/e2008-00029-y
10.1016/j.apcata.2003.12.025
10.1016/j.susc.2020.121682
10.1016/j.ijhydene.2016.09.041
10.1088/1367-2630/15/9/095003
10.1088/1361-648X/aaf989
10.1007/BF01889983
10.1063/5.0014876
10.1103/PhysRevB.47.558
10.1063/1.3518040
10.1103/PhysRevLett.108.058301
10.1063/5.0016011
10.1063/1.1429658
10.1038/s41524-019-0181-4
10.1103/physrevb.80.035404
10.1038/s41467-019-12875-2
10.1021/j100072a012
10.1007/s11244-007-0284-x
10.1039/C7TA01812F
10.1103/PhysRevB.54.11169
10.1021/acs.jpclett.9b01428
10.1016/j.susc.2023.122252
10.1103/PhysRevLett.77.3865
10.1039/C4CP02200A
10.1021/acs.jpclett.8b01939
10.1063/1.3703014
10.1039/C4CP03133D
10.1088/0957-4484/17/8/024
10.1016/j.jcat.2005.04.001
10.1063/1.5037159
10.1021/acscombsci.6b00136
10.1021/acs.jctc.8b00524
10.1021/ct400195d
10.1504/IJNT.2012.045338
10.1126/science.1061696
10.1038/s41467-020-20342-6
10.1103/PhysRevB.50.17953
10.1038/s41524-020-00447-8
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright American Chemical Society Aug 28, 2023
Copyright_xml – notice: 2023 American Chemical Society
– notice: Copyright American Chemical Society Aug 28, 2023
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.3c00609
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 5055
ExternalDocumentID 37579032
10_1021_acs_jcim_3c00609
h33528197
Genre Journal Article
GroupedDBID ---
-~X
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
PQEST
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a364t-6de55d837e3d97ad3371c5273f9c2f68bb162cebfe739f53d21b97bdaf962bbc3
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Fri Jul 11 07:07:11 EDT 2025
Mon Jun 30 08:53:44 EDT 2025
Mon Jul 21 05:55:12 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 03:04:53 EDT 2025
Wed Aug 30 03:14:25 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-6de55d837e3d97ad3371c5273f9c2f68bb162cebfe739f53d21b97bdaf962bbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8245-322X
0000-0003-1445-1315
PMID 37579032
PQID 2858718262
PQPubID 28739
PageCount 11
ParticipantIDs proquest_miscellaneous_2851141477
proquest_journals_2858718262
pubmed_primary_37579032
crossref_primary_10_1021_acs_jcim_3c00609
crossref_citationtrail_10_1021_acs_jcim_3c00609
acs_journals_10_1021_acs_jcim_3c00609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-28
PublicationDateYYYYMMDD 2023-08-28
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Larsen A. (ref53/cit53) 2017; 29
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref41/cit41
  doi: 10.1063/1.1811079
– ident: ref57/cit57
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref27/cit27
  doi: 10.1016/j.apsusc.2004.09.004
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.95.153002
– ident: ref52/cit52
  doi: 10.1016/j.comptc.2017.09.008
– ident: ref54/cit54
  doi: 10.1021/acs.jctc.8b00908
– ident: ref40/cit40
  doi: 10.1063/1.4973838
– ident: ref55/cit55
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.97.195424
– ident: ref46/cit46
  doi: 10.1021/jacs.7b10660
– ident: ref22/cit22
  doi: 10.1021/jp208564h
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.97.195424
– ident: ref2/cit2
  doi: 10.1021/acscentsci.8b00551
– ident: ref8/cit8
  doi: 10.1038/s41467-019-10827-4
– ident: ref43/cit43
  doi: 10.1021/ct400706g
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.75.288
– ident: ref15/cit15
  doi: 10.1063/1.5020710
– ident: ref39/cit39
  doi: 10.1140/epjd/e2008-00029-y
– ident: ref28/cit28
  doi: 10.1016/j.apcata.2003.12.025
– ident: ref23/cit23
  doi: 10.1016/j.susc.2020.121682
– ident: ref20/cit20
  doi: 10.1016/j.ijhydene.2016.09.041
– ident: ref9/cit9
  doi: 10.1088/1367-2630/15/9/095003
– ident: ref29/cit29
  doi: 10.1088/1361-648X/aaf989
– ident: ref30/cit30
  doi: 10.1007/BF01889983
– ident: ref32/cit32
  doi: 10.1063/5.0014876
– ident: ref56/cit56
  doi: 10.1103/PhysRevB.47.558
– ident: ref37/cit37
  doi: 10.1063/1.3518040
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.108.058301
– ident: ref4/cit4
  doi: 10.1063/5.0016011
– ident: ref36/cit36
  doi: 10.1063/1.1429658
– ident: ref49/cit49
  doi: 10.1038/s41524-019-0181-4
– ident: ref21/cit21
  doi: 10.1103/physrevb.80.035404
– ident: ref1/cit1
  doi: 10.1038/s41467-019-12875-2
– ident: ref19/cit19
  doi: 10.1021/j100072a012
– ident: ref24/cit24
  doi: 10.1007/s11244-007-0284-x
– ident: ref10/cit10
  doi: 10.1039/C7TA01812F
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.54.11169
– ident: ref13/cit13
  doi: 10.1021/acs.jpclett.9b01428
– ident: ref12/cit12
  doi: 10.1016/j.susc.2023.122252
– ident: ref59/cit59
  doi: 10.1103/PhysRevLett.77.3865
– volume: 29
  start-page: 273002
  year: 2017
  ident: ref53/cit53
  publication-title: J. Phys.: Condens. Matter
– ident: ref34/cit34
  doi: 10.1038/s41524-019-0181-4
– ident: ref16/cit16
  doi: 10.1039/C4CP02200A
– ident: ref5/cit5
  doi: 10.1021/acs.jpclett.8b01939
– ident: ref38/cit38
  doi: 10.1063/1.3703014
– ident: ref50/cit50
  doi: 10.1039/C4CP03133D
– ident: ref17/cit17
  doi: 10.1088/0957-4484/17/8/024
– ident: ref26/cit26
  doi: 10.1016/j.jcat.2005.04.001
– ident: ref51/cit51
  doi: 10.1063/1.5037159
– ident: ref35/cit35
  doi: 10.1063/1.5037159
– ident: ref47/cit47
  doi: 10.1021/acscombsci.6b00136
– ident: ref3/cit3
  doi: 10.1021/acs.jctc.8b00524
– ident: ref7/cit7
  doi: 10.1021/ct400195d
– ident: ref18/cit18
  doi: 10.1504/IJNT.2012.045338
– ident: ref25/cit25
  doi: 10.1126/science.1061696
– ident: ref11/cit11
  doi: 10.1038/s41467-020-20342-6
– ident: ref61/cit61
  doi: 10.1103/PhysRevB.50.17953
– ident: ref14/cit14
  doi: 10.1038/s41524-020-00447-8
SSID ssj0033962
Score 2.4318526
Snippet The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5045
SubjectTerms Bimetals
Computational efficiency
Computing costs
Configurations
Deep learning
Density functional theory
Genetic algorithms
Intermetallic compounds
Machine learning
Machine Learning and Deep Learning
Nanoclusters
Neural networks
Performance evaluation
Substrates
Title Combining Deep Learning Neural Networks with Genetic Algorithms to Map Nanocluster Configuration Spaces with Quantum Accuracy at Low Computational Cost
URI http://dx.doi.org/10.1021/acs.jcim.3c00609
https://www.ncbi.nlm.nih.gov/pubmed/37579032
https://www.proquest.com/docview/2858718262
https://www.proquest.com/docview/2851141477
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-960X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033962
  issn: 1549-9596
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODS8mZLQUaCA4dsN7Zjx8fVQlUhqIRKpd4ie-ysCrubVZOogj_Sv9uxk2zFq-oxtseJPWN7xjP5hpC3XjoonRRJXgIkAs21xDhfJhOQYDJmzMTEANkjeXgiPp1mp9cwOX968Fm6b6Aef4ez5ZhDAA_Rd8k9JpUK4XvT2fGw63KuY_LQgDiW6EwPLsl_9RAOIqh_P4j-o13GU-Zgp0tXVEdwwhBc8mPcNnYMv_6GbrzFAB6S7V7ZpNNOOh6RO371mNyfDTnenpBL3A5sTBFBP3i_pj3a6pwGzA6kPOqCxGsarmtpgKjGnuh0Ma_OsWBZ06aiX8ya4h5dwaINoAs0_EN4Nm87yaLH6xDz1dF_bZGN7ZJOAbAaflLT0M_VBe0yS_S3kvhUN0_JycHHb7PDpE_VkBguRZNI57PMobHrudPKOM5VCgHbrdTASplbm0oG3pZecV1m3LHUamWdKZFt1gJ_RrZW1cq_IFQoZyCXTtrgRbYO9WqmjTBCg_NSqBF5hzNa9EutLqIXnaVFLMRpLvppHpH9gb8F9HjnIe3G4gaK9xuKdYf1cUPbvUFkrj-F5Rnan2iwsRF5s6lGlgYnjFn5qo1t0ARNhcKBPO9EbfMyrjKlJ5zt3nKIL8kDhjpXuOJm-R7Zas5b_wp1pMa-jovjCkmhEIA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGeBgvfH8UBhgJHnhI19iOEz9WhalAVwm2SXuL7LNTDdqmWhIh-Ef4dzk7SScQTPAY2-fYvrN957N_R8hLJy0UVoooKwAigeZapK0rohFI0AnTeqTDBdm5nJ6K92fJ2Q6J-7cw2IgKa6qCE_8SXSA-8Gmf4Xw15OAxRNQ1cj2RIvb21nhy3C--nKsQQ9QDj0UqUb1n8k81-P0Iql_3o78omWGzObxFPm2bGe6YfBk2tRnC998QHP-rH7fJzU71pONWVu6QHbe-S_YmfcS3e-QHLg4mBIygb5zb0A57dUE9ggdSztsr4xX1h7fUA1ZjTXS8XJQXmLCqaF3SI72huGKXsGw8BAP1LwrPF00rZ_R442-AtfQfG2Rqs6JjAMyGb1TXdFZ-pW2cie6MEr-q-j45PXx7MplGXeCGSHMp6khalyQWTV_HrUq15TyNwSO9FQpYITNjYsnAmcKlXBUJtyw2KjVWF8g9Y4A_ILvrcu0eESpSqyGTVhrvUzYWtWymtNBCgXVSpAPyCkc07yZelQefOovzkIjDnHfDPCAHPZtz6NDPfRCO5RUUr7cUmxb544qy-73kXDaFZQlao2i-sQF5sc1GlnqXjF67sgll0CCNRYodedhK3PZnPE1SNeLs8T928TnZm54czfLZu_mHJ-QGQ23MH36zbJ_s1heNe4raU22ehfnyE-bNGOI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfGkICX8XesMMBI8MBDusaOnfqx6qgGjAo0hvYW2WenGrRNtCRC8EX4upydpAgEEzzG9jm272zf-ezfEfLMSQu5lUk0zgGiBM21SFuXRyOQoAXTeqTDBdm5PDpNXp-Jsy0i-rcw2IgKa6qCE9_P6tLmHcJAfODTP8H5asjB44ioK-SqkDjTvUY0PekXYM5ViCPqwcciJVTvnfxTDX5PgurXPekvimbYcGY3ycdNU8M9k8_DpjZD-PYbiuN_9-UW2elUUDppZeY22XLrO-T6tI_8dpd8x0XChMAR9NC5knYYrAvqkTyQct5eHa-oP8SlHrgaa6KT5aK4wIRVReuCvtUlxZW7gGXjoRiof1l4vmhaeaMnpb8J1tK_b5C5zYpOADAbvlJd0-PiC23jTXRnlfhV1ffI6ezlh-lR1AVwiDSXSR1J64SwaAI7blWqLedpDB7xLVfAcjk2JpYMnMldylUuuGWxUamxOkcOGgN8l2yvi7XbIzRJrYaxtNJ437KxqG0zpROdKLBOJumAPMcRzboJWGXBt87iLCTiMGfdMA_IQc_qDDoUdB-MY3kJxYsNRdkigFxSdr-Xnp9NYWOBVimacWxAnm6ykaXeNaPXrmhCGTRM4yTFjtxvpW7zM56KVI04e_CPXXxCrr07nGXHr-ZvHpIbDJUyfwbOxvtku75o3CNUomrzOEyZH9bhG2U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Deep+Learning+Neural+Networks+with+Genetic+Algorithms+to+Map+Nanocluster+Configuration+Spaces+with+Quantum+Accuracy+at+Low+Computational+Cost&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=von+der+Heyde%2C+Johnathan&rft.au=Malone%2C+Walter&rft.au=Zaman%2C+Nusaiba&rft.au=Kara%2C+Abdelkader&rft.date=2023-08-28&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=63&rft.issue=16&rft.spage=5045&rft.epage=5055&rft_id=info:doi/10.1021%2Facs.jcim.3c00609&rft.externalDocID=h33528197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon