Combining Deep Learning Neural Networks with Genetic Algorithms to Map Nanocluster Configuration Spaces with Quantum Accuracy at Low Computational Cost
The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem o...
Saved in:
| Published in | Journal of chemical information and modeling Vol. 63; no. 16; pp. 5045 - 5055 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
28.08.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9596 1549-960X 1549-960X |
| DOI | 10.1021/acs.jcim.3c00609 |
Cover
| Abstract | The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system’s global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system’s energy minima while mapping the configuration space as a function of energy. The algorithm’s simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm’s performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability. |
|---|---|
| AbstractList | The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability. The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability. |
| Author | von der Heyde, Johnathan Zaman, Nusaiba Kara, Abdelkader Malone, Walter |
| AuthorAffiliation | Department of Physics |
| AuthorAffiliation_xml | – name: Department of Physics |
| Author_xml | – sequence: 1 givenname: Johnathan surname: von der Heyde fullname: von der Heyde, Johnathan organization: Department of Physics – sequence: 2 givenname: Walter orcidid: 0000-0001-8245-322X surname: Malone fullname: Malone, Walter email: wmalone@tuskegee.edu organization: Department of Physics – sequence: 3 givenname: Nusaiba surname: Zaman fullname: Zaman, Nusaiba organization: Department of Physics – sequence: 4 givenname: Abdelkader orcidid: 0000-0003-1445-1315 surname: Kara fullname: Kara, Abdelkader organization: Department of Physics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37579032$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAURi3Uij5gzwpZYtMFM_gxsePlKIVSaShCgMQucpybwUNip7ajUX8Jfxd3HiwqwcqPe459db8LdOK8A4ReUTKnhNF32sT5xthhzg0hgqhn6JwWCzVTgvw4Oe4LJc7QRYwbQjhXgj1HZ1wWUhHOztHvyg-Nddat8TXAiFegw-50B1PQfV7S1odfEW9t-olvwEGyBi_7tQ_5Yog4efxJj_hOO2_6KSYIuPKus-usJ-sd_jpqAwf_y6Rdmga8NCaXzQPWCa_8NhvDOKUdn_-sfEwv0Gmn-wgvD-sl-v7h_bfq42z1-ea2Wq5mmotFmokWiqItuQTeKqlbziU1BZO8U4Z1omwaKpiBpgPJVVfwltFGyabVXR5E0xh-ia72747B308QUz3YaKDvtQM_xZqVBaULupAyo2-eoBs_hdzwjiolLZlgmXp9oKZmgLYegx10eKiPI88A2QMm-BgDdH8RSurHVOucav2Yan1INSviiWLsflopaNv_T3y7F3eVY7f_xP8Ap6K6dw |
| CitedBy_id | crossref_primary_10_1016_j_actamat_2024_120237 crossref_primary_10_1063_5_0244175 |
| Cites_doi | 10.1063/1.1811079 10.1016/0927-0256(96)00008-0 10.1016/j.apsusc.2004.09.004 10.1103/PhysRevLett.95.153002 10.1016/j.comptc.2017.09.008 10.1021/acs.jctc.8b00908 10.1063/1.4973838 10.1103/PhysRevB.97.195424 10.1021/jacs.7b10660 10.1021/jp208564h 10.1021/acscentsci.8b00551 10.1038/s41467-019-10827-4 10.1021/ct400706g 10.1103/PhysRevLett.75.288 10.1063/1.5020710 10.1140/epjd/e2008-00029-y 10.1016/j.apcata.2003.12.025 10.1016/j.susc.2020.121682 10.1016/j.ijhydene.2016.09.041 10.1088/1367-2630/15/9/095003 10.1088/1361-648X/aaf989 10.1007/BF01889983 10.1063/5.0014876 10.1103/PhysRevB.47.558 10.1063/1.3518040 10.1103/PhysRevLett.108.058301 10.1063/5.0016011 10.1063/1.1429658 10.1038/s41524-019-0181-4 10.1103/physrevb.80.035404 10.1038/s41467-019-12875-2 10.1021/j100072a012 10.1007/s11244-007-0284-x 10.1039/C7TA01812F 10.1103/PhysRevB.54.11169 10.1021/acs.jpclett.9b01428 10.1016/j.susc.2023.122252 10.1103/PhysRevLett.77.3865 10.1039/C4CP02200A 10.1021/acs.jpclett.8b01939 10.1063/1.3703014 10.1039/C4CP03133D 10.1088/0957-4484/17/8/024 10.1016/j.jcat.2005.04.001 10.1063/1.5037159 10.1021/acscombsci.6b00136 10.1021/acs.jctc.8b00524 10.1021/ct400195d 10.1504/IJNT.2012.045338 10.1126/science.1061696 10.1038/s41467-020-20342-6 10.1103/PhysRevB.50.17953 10.1038/s41524-020-00447-8 |
| ContentType | Journal Article |
| Copyright | 2023 American Chemical Society Copyright American Chemical Society Aug 28, 2023 |
| Copyright_xml | – notice: 2023 American Chemical Society – notice: Copyright American Chemical Society Aug 28, 2023 |
| DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1021/acs.jcim.3c00609 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-960X |
| EndPage | 5055 |
| ExternalDocumentID | 37579032 10_1021_acs_jcim_3c00609 h33528197 |
| Genre | Journal Article |
| GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P PQEST PQQKQ RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-a364t-6de55d837e3d97ad3371c5273f9c2f68bb162cebfe739f53d21b97bdaf962bbc3 |
| IEDL.DBID | ACS |
| ISSN | 1549-9596 1549-960X |
| IngestDate | Fri Jul 11 07:07:11 EDT 2025 Mon Jun 30 08:53:44 EDT 2025 Mon Jul 21 05:55:12 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 03:04:53 EDT 2025 Wed Aug 30 03:14:25 EDT 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a364t-6de55d837e3d97ad3371c5273f9c2f68bb162cebfe739f53d21b97bdaf962bbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8245-322X 0000-0003-1445-1315 |
| PMID | 37579032 |
| PQID | 2858718262 |
| PQPubID | 28739 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2851141477 proquest_journals_2858718262 pubmed_primary_37579032 crossref_primary_10_1021_acs_jcim_3c00609 crossref_citationtrail_10_1021_acs_jcim_3c00609 acs_journals_10_1021_acs_jcim_3c00609 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-28 |
| PublicationDateYYYYMMDD | 2023-08-28 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Journal of chemical information and modeling |
| PublicationTitleAlternate | J. Chem. Inf. Model |
| PublicationYear | 2023 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Larsen A. (ref53/cit53) 2017; 29 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
| References_xml | – ident: ref41/cit41 doi: 10.1063/1.1811079 – ident: ref57/cit57 doi: 10.1016/0927-0256(96)00008-0 – ident: ref27/cit27 doi: 10.1016/j.apsusc.2004.09.004 – ident: ref42/cit42 doi: 10.1103/PhysRevLett.95.153002 – ident: ref52/cit52 doi: 10.1016/j.comptc.2017.09.008 – ident: ref54/cit54 doi: 10.1021/acs.jctc.8b00908 – ident: ref40/cit40 doi: 10.1063/1.4973838 – ident: ref55/cit55 – ident: ref33/cit33 doi: 10.1103/PhysRevB.97.195424 – ident: ref46/cit46 doi: 10.1021/jacs.7b10660 – ident: ref22/cit22 doi: 10.1021/jp208564h – ident: ref48/cit48 doi: 10.1103/PhysRevB.97.195424 – ident: ref2/cit2 doi: 10.1021/acscentsci.8b00551 – ident: ref8/cit8 doi: 10.1038/s41467-019-10827-4 – ident: ref43/cit43 doi: 10.1021/ct400706g – ident: ref31/cit31 doi: 10.1103/PhysRevLett.75.288 – ident: ref15/cit15 doi: 10.1063/1.5020710 – ident: ref39/cit39 doi: 10.1140/epjd/e2008-00029-y – ident: ref28/cit28 doi: 10.1016/j.apcata.2003.12.025 – ident: ref23/cit23 doi: 10.1016/j.susc.2020.121682 – ident: ref20/cit20 doi: 10.1016/j.ijhydene.2016.09.041 – ident: ref9/cit9 doi: 10.1088/1367-2630/15/9/095003 – ident: ref29/cit29 doi: 10.1088/1361-648X/aaf989 – ident: ref30/cit30 doi: 10.1007/BF01889983 – ident: ref32/cit32 doi: 10.1063/5.0014876 – ident: ref56/cit56 doi: 10.1103/PhysRevB.47.558 – ident: ref37/cit37 doi: 10.1063/1.3518040 – ident: ref6/cit6 doi: 10.1103/PhysRevLett.108.058301 – ident: ref4/cit4 doi: 10.1063/5.0016011 – ident: ref36/cit36 doi: 10.1063/1.1429658 – ident: ref49/cit49 doi: 10.1038/s41524-019-0181-4 – ident: ref21/cit21 doi: 10.1103/physrevb.80.035404 – ident: ref1/cit1 doi: 10.1038/s41467-019-12875-2 – ident: ref19/cit19 doi: 10.1021/j100072a012 – ident: ref24/cit24 doi: 10.1007/s11244-007-0284-x – ident: ref10/cit10 doi: 10.1039/C7TA01812F – ident: ref58/cit58 doi: 10.1103/PhysRevB.54.11169 – ident: ref13/cit13 doi: 10.1021/acs.jpclett.9b01428 – ident: ref12/cit12 doi: 10.1016/j.susc.2023.122252 – ident: ref59/cit59 doi: 10.1103/PhysRevLett.77.3865 – volume: 29 start-page: 273002 year: 2017 ident: ref53/cit53 publication-title: J. Phys.: Condens. Matter – ident: ref34/cit34 doi: 10.1038/s41524-019-0181-4 – ident: ref16/cit16 doi: 10.1039/C4CP02200A – ident: ref5/cit5 doi: 10.1021/acs.jpclett.8b01939 – ident: ref38/cit38 doi: 10.1063/1.3703014 – ident: ref50/cit50 doi: 10.1039/C4CP03133D – ident: ref17/cit17 doi: 10.1088/0957-4484/17/8/024 – ident: ref26/cit26 doi: 10.1016/j.jcat.2005.04.001 – ident: ref51/cit51 doi: 10.1063/1.5037159 – ident: ref35/cit35 doi: 10.1063/1.5037159 – ident: ref47/cit47 doi: 10.1021/acscombsci.6b00136 – ident: ref3/cit3 doi: 10.1021/acs.jctc.8b00524 – ident: ref7/cit7 doi: 10.1021/ct400195d – ident: ref18/cit18 doi: 10.1504/IJNT.2012.045338 – ident: ref25/cit25 doi: 10.1126/science.1061696 – ident: ref11/cit11 doi: 10.1038/s41467-020-20342-6 – ident: ref61/cit61 doi: 10.1103/PhysRevB.50.17953 – ident: ref14/cit14 doi: 10.1038/s41524-020-00447-8 |
| SSID | ssj0033962 |
| Score | 2.4318526 |
| Snippet | The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5045 |
| SubjectTerms | Bimetals Computational efficiency Computing costs Configurations Deep learning Density functional theory Genetic algorithms Intermetallic compounds Machine learning Machine Learning and Deep Learning Nanoclusters Neural networks Performance evaluation Substrates |
| Title | Combining Deep Learning Neural Networks with Genetic Algorithms to Map Nanocluster Configuration Spaces with Quantum Accuracy at Low Computational Cost |
| URI | http://dx.doi.org/10.1021/acs.jcim.3c00609 https://www.ncbi.nlm.nih.gov/pubmed/37579032 https://www.proquest.com/docview/2858718262 https://www.proquest.com/docview/2851141477 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-960X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033962 issn: 1549-9596 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODS8mZLQUaCA4dsN7Zjx8fVQlUhqIRKpd4ie-ysCrubVZOogj_Sv9uxk2zFq-oxtseJPWN7xjP5hpC3XjoonRRJXgIkAs21xDhfJhOQYDJmzMTEANkjeXgiPp1mp9cwOX968Fm6b6Aef4ez5ZhDAA_Rd8k9JpUK4XvT2fGw63KuY_LQgDiW6EwPLsl_9RAOIqh_P4j-o13GU-Zgp0tXVEdwwhBc8mPcNnYMv_6GbrzFAB6S7V7ZpNNOOh6RO371mNyfDTnenpBL3A5sTBFBP3i_pj3a6pwGzA6kPOqCxGsarmtpgKjGnuh0Ma_OsWBZ06aiX8ya4h5dwaINoAs0_EN4Nm87yaLH6xDz1dF_bZGN7ZJOAbAaflLT0M_VBe0yS_S3kvhUN0_JycHHb7PDpE_VkBguRZNI57PMobHrudPKOM5VCgHbrdTASplbm0oG3pZecV1m3LHUamWdKZFt1gJ_RrZW1cq_IFQoZyCXTtrgRbYO9WqmjTBCg_NSqBF5hzNa9EutLqIXnaVFLMRpLvppHpH9gb8F9HjnIe3G4gaK9xuKdYf1cUPbvUFkrj-F5Rnan2iwsRF5s6lGlgYnjFn5qo1t0ARNhcKBPO9EbfMyrjKlJ5zt3nKIL8kDhjpXuOJm-R7Zas5b_wp1pMa-jovjCkmhEIA |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGeBgvfH8UBhgJHnhI19iOEz9WhalAVwm2SXuL7LNTDdqmWhIh-Ef4dzk7SScQTPAY2-fYvrN957N_R8hLJy0UVoooKwAigeZapK0rohFI0AnTeqTDBdm5nJ6K92fJ2Q6J-7cw2IgKa6qCE_8SXSA-8Gmf4Xw15OAxRNQ1cj2RIvb21nhy3C--nKsQQ9QDj0UqUb1n8k81-P0Iql_3o78omWGzObxFPm2bGe6YfBk2tRnC998QHP-rH7fJzU71pONWVu6QHbe-S_YmfcS3e-QHLg4mBIygb5zb0A57dUE9ggdSztsr4xX1h7fUA1ZjTXS8XJQXmLCqaF3SI72huGKXsGw8BAP1LwrPF00rZ_R442-AtfQfG2Rqs6JjAMyGb1TXdFZ-pW2cie6MEr-q-j45PXx7MplGXeCGSHMp6khalyQWTV_HrUq15TyNwSO9FQpYITNjYsnAmcKlXBUJtyw2KjVWF8g9Y4A_ILvrcu0eESpSqyGTVhrvUzYWtWymtNBCgXVSpAPyCkc07yZelQefOovzkIjDnHfDPCAHPZtz6NDPfRCO5RUUr7cUmxb544qy-73kXDaFZQlao2i-sQF5sc1GlnqXjF67sgll0CCNRYodedhK3PZnPE1SNeLs8T928TnZm54czfLZu_mHJ-QGQ23MH36zbJ_s1heNe4raU22ehfnyE-bNGOI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELfGkICX8XesMMBI8MBDusaOnfqx6qgGjAo0hvYW2WenGrRNtCRC8EX4upydpAgEEzzG9jm272zf-ezfEfLMSQu5lUk0zgGiBM21SFuXRyOQoAXTeqTDBdm5PDpNXp-Jsy0i-rcw2IgKa6qCE9_P6tLmHcJAfODTP8H5asjB44ioK-SqkDjTvUY0PekXYM5ViCPqwcciJVTvnfxTDX5PgurXPekvimbYcGY3ycdNU8M9k8_DpjZD-PYbiuN_9-UW2elUUDppZeY22XLrO-T6tI_8dpd8x0XChMAR9NC5knYYrAvqkTyQct5eHa-oP8SlHrgaa6KT5aK4wIRVReuCvtUlxZW7gGXjoRiof1l4vmhaeaMnpb8J1tK_b5C5zYpOADAbvlJd0-PiC23jTXRnlfhV1ffI6ezlh-lR1AVwiDSXSR1J64SwaAI7blWqLedpDB7xLVfAcjk2JpYMnMldylUuuGWxUamxOkcOGgN8l2yvi7XbIzRJrYaxtNJ437KxqG0zpROdKLBOJumAPMcRzboJWGXBt87iLCTiMGfdMA_IQc_qDDoUdB-MY3kJxYsNRdkigFxSdr-Xnp9NYWOBVimacWxAnm6ykaXeNaPXrmhCGTRM4yTFjtxvpW7zM56KVI04e_CPXXxCrr07nGXHr-ZvHpIbDJUyfwbOxvtku75o3CNUomrzOEyZH9bhG2U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Deep+Learning+Neural+Networks+with+Genetic+Algorithms+to+Map+Nanocluster+Configuration+Spaces+with+Quantum+Accuracy+at+Low+Computational+Cost&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=von+der+Heyde%2C+Johnathan&rft.au=Malone%2C+Walter&rft.au=Zaman%2C+Nusaiba&rft.au=Kara%2C+Abdelkader&rft.date=2023-08-28&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=63&rft.issue=16&rft.spage=5045&rft.epage=5055&rft_id=info:doi/10.1021%2Facs.jcim.3c00609&rft.externalDocID=h33528197 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |