Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations
Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-pas...
Saved in:
| Published in | Journal of chemical theory and computation Vol. 20; no. 11; pp. 4857 - 4868 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
11.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9618 1549-9626 1549-9626 |
| DOI | 10.1021/acs.jctc.4c00190 |
Cover
| Abstract | Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed “SevenNet-0”) and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency. |
|---|---|
| AbstractList | Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO
, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si
N
containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency. Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency. Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency. |
| Author | Han, Seungwu Kim, Jaesun Park, Yutack Hwang, Seungwoo |
| AuthorAffiliation | Korea Institute for Advanced Study Department of Materials Science and Engineering and Research Institute of Advanced Materials |
| AuthorAffiliation_xml | – name: Department of Materials Science and Engineering and Research Institute of Advanced Materials – name: Korea Institute for Advanced Study |
| Author_xml | – sequence: 1 givenname: Yutack orcidid: 0009-0008-8690-935X surname: Park fullname: Park, Yutack organization: Department of Materials Science and Engineering and Research Institute of Advanced Materials – sequence: 2 givenname: Jaesun orcidid: 0009-0000-6646-1318 surname: Kim fullname: Kim, Jaesun organization: Department of Materials Science and Engineering and Research Institute of Advanced Materials – sequence: 3 givenname: Seungwoo orcidid: 0000-0002-1523-8340 surname: Hwang fullname: Hwang, Seungwoo organization: Department of Materials Science and Engineering and Research Institute of Advanced Materials – sequence: 4 givenname: Seungwu orcidid: 0000-0003-3958-0922 surname: Han fullname: Han, Seungwu email: hansw@snu.ac.kr organization: Korea Institute for Advanced Study |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38813770$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kb1PHDEQxS1ExHdPFVmiSZG7-GPX9paIJASJBCSgXo2NN_jw2oftVcR_H8MdFEhQzWje741G83bRZojBInRIyZwSRr-ByfOFKWbeGEJoRzbQDm2bbtYJJjZfe6q20W7OC0I4bxjfQttcKcqlJDtovDLgQXuLLyGB99bjY_83JlfuRjzEhE8TLO_wHztVtZbyL6Z7fBaKTVDi6Ay-jMWG4sBn7AL-Hb01k4eEvz8GqHrGV26sg-JiyPvo01BBe7Cue-jm54_rk1-z84vTs5Pj8xlw0ZSZAGN0SwZDLR8UFYoSzYSkg1TNYJXQt9qIlhrNOi41DJQRAULbRjIJrNV8D31Z7V2m-DDZXPrRZWO9h2DjlHtOBGtZJztW0aM36CJOKdTrKqUa0kglSaU-r6lJj_a2XyY3QnrsXx5ZAbICTIo5Jzu8IpT0T1n1Nav-Kat-nVW1iDcW48rzn0oC5z8yfl0Zn5WXa9_F_wOPVKpc |
| CitedBy_id | crossref_primary_10_1088_1361_651X_adb483 crossref_primary_10_1021_jacsau_4c01160 crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1088_1361_651X_ad9d63 crossref_primary_10_1126_sciadv_adp9662 crossref_primary_10_1039_D4DD00353E crossref_primary_10_1016_j_compositesb_2024_111803 crossref_primary_10_1039_D4NH00487F crossref_primary_10_1063_5_0255385 crossref_primary_10_1063_5_0231265 crossref_primary_10_20517_jmi_2024_67 crossref_primary_10_1021_jacs_4c14455 crossref_primary_10_1063_5_0236427 crossref_primary_10_1039_D4SC06530A crossref_primary_10_1063_5_0234287 crossref_primary_10_1016_j_jechem_2025_03_007 crossref_primary_10_1021_acsami_4c08865 crossref_primary_10_1007_s11814_025_00397_1 crossref_primary_10_1016_j_cossms_2025_101214 crossref_primary_10_1016_j_actamat_2025_120747 crossref_primary_10_1016_j_commatsci_2025_113770 crossref_primary_10_1021_acsnano_4c12369 |
| Cites_doi | 10.1103/PhysRevB.76.235201 10.1038/s41524-021-00543-3 10.1146/annurev.pc.46.100195.003413 10.1063/1.5126336 10.1137/15M1054183 10.1039/C7DT02181J 10.1063/1.447334 10.1016/j.cpc.2021.108171 10.1038/s43588-023-00561-9 10.1038/s43588-022-00349-3 10.1103/PhysRevB.108.054312 10.1063/5.0083060 10.1103/PhysRevApplied.10.064052 10.1038/s41586-023-06735-9 10.1038/s42256-023-00716-3 10.1038/s41467-022-30687-9 10.1063/1.4997242 10.1088/1361-648X/ac9d7d 10.1016/j.actamat.2021.116980 10.1038/s43246-022-00315-6 10.1006/jcph.1995.1039 10.1021/acs.jctc.3c00050 10.1038/s41467-023-36329-y 10.1063/1.5056185 10.1021/ct800255r 10.1016/0927-0256(96)00008-0 10.1038/s41928-023-01030-x 10.1109/VLSIT.2007.4339708 10.1063/1.4966192 10.1038/s41524-020-0339-0 10.1021/acs.jctc.9b00181 10.1038/s41524-021-00650-1 10.1145/3458817.3487400 10.1103/PhysRevMaterials.3.093802 10.1088/1361-648x/aa680e 10.1021/ct500169q 10.1021/acs.chemmater.1c03279 10.1103/PhysRevLett.98.146401 10.1063/1.5019779 10.1103/PhysRevLett.77.3865 10.1063/1.4812323 10.1103/PhysRevLett.104.136403 10.1002/pssb.201800486 10.1038/s41467-022-29939-5 10.1145/3581784.3627041 |
| ContentType | Journal Article |
| Copyright | 2024 American Chemical Society Copyright American Chemical Society Jun 11, 2024 |
| Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society Jun 11, 2024 |
| DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1021/acs.jctc.4c00190 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| EndPage | 4868 |
| ExternalDocumentID | 38813770 10_1021_acs_jctc_4c00190 d215398210 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-a364t-6accb50fc1e3f816810b2671f784fe86bdbc651cb2937baf1206a6be4727a25b3 |
| IEDL.DBID | ACS |
| ISSN | 1549-9618 1549-9626 |
| IngestDate | Fri Jul 11 12:10:07 EDT 2025 Mon Jun 30 17:32:00 EDT 2025 Wed Feb 19 02:13:25 EST 2025 Tue Jul 01 02:03:37 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Tue Jun 25 16:50:41 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a364t-6accb50fc1e3f816810b2671f784fe86bdbc651cb2937baf1206a6be4727a25b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0008-8690-935X 0000-0002-1523-8340 0000-0003-3958-0922 0009-0000-6646-1318 |
| PMID | 38813770 |
| PQID | 3084047870 |
| PQPubID | 2048741 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_3062529792 proquest_journals_3084047870 pubmed_primary_38813770 crossref_primary_10_1021_acs_jctc_4c00190 crossref_citationtrail_10_1021_acs_jctc_4c00190 acs_journals_10_1021_acs_jctc_4c00190 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-11 |
| PublicationDateYYYYMMDD | 2024-06-11 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J. Chem. Theory Comput |
| PublicationYear | 2024 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref2/cit2 ref34/cit34 ref37/cit37 Gilmer J. (ref39/cit39) 2017 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref21/cit21 Fuchs F. B. (ref30/cit30) 2020 ref46/cit46 ref49/cit49 ref13/cit13 Batatia I. (ref32/cit32) 2023 Schütt K. T. (ref40/cit40) 2021 ref24/cit24 ref38/cit38 Frank J. T. (ref20/cit20) 2023 ref50/cit50 ref54/cit54 ref6/cit6 Batatia I. (ref28/cit28) 2023 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 Gasteiger J. (ref31/cit31) 2022 Gasteiger J. (ref29/cit29) 2020 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 Kingma D. P. (ref48/cit48) 2017 ref26/cit26 ref55/cit55 Batatia I. (ref19/cit19) 2022 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 Geiger M. (ref42/cit42) 2022 ref33/cit33 ref4/cit4 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref49/cit49 doi: 10.1103/PhysRevB.76.235201 – ident: ref17/cit17 doi: 10.1038/s41524-021-00543-3 – ident: ref1/cit1 doi: 10.1146/annurev.pc.46.100195.003413 – start-page: arXiv:2003.0312 year: 2020 ident: ref29/cit29 publication-title: arXiv – ident: ref7/cit7 doi: 10.1063/1.5126336 – ident: ref4/cit4 doi: 10.1137/15M1054183 – ident: ref50/cit50 doi: 10.1039/C7DT02181J – ident: ref46/cit46 doi: 10.1063/1.447334 – ident: ref38/cit38 doi: 10.1016/j.cpc.2021.108171 – ident: ref22/cit22 doi: 10.1038/s43588-023-00561-9 – ident: ref25/cit25 doi: 10.1038/s43588-022-00349-3 – ident: ref11/cit11 doi: 10.1103/PhysRevB.108.054312 – ident: ref16/cit16 doi: 10.1063/5.0083060 – ident: ref52/cit52 doi: 10.1103/PhysRevApplied.10.064052 – ident: ref24/cit24 doi: 10.1038/s41586-023-06735-9 – ident: ref27/cit27 doi: 10.1038/s42256-023-00716-3 – ident: ref26/cit26 doi: 10.1038/s41467-022-30687-9 – ident: ref51/cit51 doi: 10.1063/1.4997242 – ident: ref12/cit12 doi: 10.1088/1361-648X/ac9d7d – ident: ref8/cit8 doi: 10.1016/j.actamat.2021.116980 – ident: ref21/cit21 doi: 10.1038/s43246-022-00315-6 – ident: ref35/cit35 doi: 10.1006/jcph.1995.1039 – start-page: arXiv:1704.0121 year: 2017 ident: ref39/cit39 publication-title: arXiv – ident: ref14/cit14 doi: 10.1021/acs.jctc.3c00050 – ident: ref33/cit33 doi: 10.1038/s41467-023-36329-y – ident: ref53/cit53 doi: 10.1063/1.5056185 – ident: ref37/cit37 doi: 10.1021/ct800255r – ident: ref44/cit44 doi: 10.1016/0927-0256(96)00008-0 – ident: ref55/cit55 doi: 10.1038/s41928-023-01030-x – start-page: arXiv:2401.0009 year: 2023 ident: ref28/cit28 publication-title: arXiv – ident: ref56/cit56 doi: 10.1109/VLSIT.2007.4339708 – ident: ref6/cit6 doi: 10.1063/1.4966192 – ident: ref9/cit9 doi: 10.1038/s41524-020-0339-0 – ident: ref18/cit18 doi: 10.1021/acs.jctc.9b00181 – ident: ref58/cit58 doi: 10.1038/s41524-021-00650-1 – ident: ref13/cit13 doi: 10.1145/3458817.3487400 – start-page: arXiv.2205.0664 year: 2022 ident: ref19/cit19 publication-title: arXiv – ident: ref5/cit5 doi: 10.1103/PhysRevMaterials.3.093802 – ident: ref43/cit43 doi: 10.1088/1361-648x/aa680e – ident: ref36/cit36 doi: 10.1021/ct500169q – ident: ref57/cit57 – start-page: arXiv:2206.0769 year: 2023 ident: ref32/cit32 publication-title: arXiv – ident: ref10/cit10 doi: 10.1021/acs.chemmater.1c03279 – start-page: arXiv:2205.1427 year: 2023 ident: ref20/cit20 publication-title: arXiv – ident: ref2/cit2 doi: 10.1103/PhysRevLett.98.146401 – start-page: arXiv:2102.0315 year: 2021 ident: ref40/cit40 publication-title: arXiv – start-page: arXiv:2207.0945 year: 2022 ident: ref42/cit42 publication-title: arXiv – ident: ref23/cit23 doi: 10.1063/1.5019779 – ident: ref45/cit45 doi: 10.1103/PhysRevLett.77.3865 – start-page: arXiv:2106.0890 year: 2022 ident: ref31/cit31 publication-title: arXiv – ident: ref47/cit47 doi: 10.1063/1.4812323 – ident: ref3/cit3 doi: 10.1103/PhysRevLett.104.136403 – ident: ref54/cit54 doi: 10.1002/pssb.201800486 – start-page: arXiv:1412.6980 year: 2017 ident: ref48/cit48 publication-title: arXiv – ident: ref15/cit15 doi: 10.1038/s41467-022-29939-5 – ident: ref41/cit41 – start-page: arXiv:2006.1050 year: 2020 ident: ref30/cit30 publication-title: arXiv – ident: ref34/cit34 doi: 10.1145/3581784.3627041 |
| SSID | ssj0033423 |
| Score | 2.6600626 |
| Snippet | Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4857 |
| SubjectTerms | Accuracy Algorithms Amorphous materials Computer simulation Condensed Matter, Interfaces, and Materials Data communication Efficiency Graph neural networks Graphical representations Machine learning Message passing Molecular dynamics Neural networks Scaling Silicon dioxide Simulation Spatial data |
| Title | Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations |
| URI | http://dx.doi.org/10.1021/acs.jctc.4c00190 https://www.ncbi.nlm.nih.gov/pubmed/38813770 https://www.proquest.com/docview/3084047870 https://www.proquest.com/docview/3062529792 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh5TYcez0iMomJBBSQeIW2Y4DBZqiJr3w9cxkKWIV18R2Ys8kfpOZvEfIvubSGK60lwgRegIAgqeVn3jMuo6LQmOlw4zu1bW8uBOX9-H9B03O1ww-Z0fa5u0nW9i2sIhHIDyf4VIpLN877vaat26ATHYlN6pAxkkW1SnJn0bAjcjmnzeiX9BlucucLVRyRXlJTojFJc_tcWHa9u07deM_JrBI5muwSY8r71giUy5bJrPdRuNthQx6YCL8eYre6BGqqkDjl4fhqF88DijAWXqOfNYUGTxgnOuqZJyWXxEhWB_0Lb0ZFlhvBE5M-xm9asR26UmldJ_TXn9QK4Tlq-Tu7PS2e-HVAgyeDqQoPKmtNaGfWuaCFAU6mG9g7VmqIpG6SJoEbBkyawAzKKNTxn2ppXECQJHmoQnWyHQ2zNwGob5yUnHr0shGwnQgJheJFhBeJjzQQRK2yAGsU1w_QHlc5sY5i8uDsHhxvXgtctRYLbY1izmKabz80eNw0uO1YvD4o-124wgftxL4EAQjhxGc3pucBkNhakVnbjjGNhBH8o7q8BZZrxxocrEgipDW0d_85xS3yBwH5IT1aIxtk-liNHY7gHwKs1u6_Dt2Ev68 |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heoALfVBgW1qMRA8cssSO42SPaFtYCrtCLEjcIttxYFs2W22yl_76zuSxqFWLyjV-xPaM428y428ADrRQxohIe6mUoScRIHg68lOPW9dzcWiscuTRHY7U4EZ-vQ1vV4C3d2FwEAX2VFRO_Ed2AX5Ez77Z0nalJViCVvqLUElO9tZxf9x-fAMitKsoUiURT_K48Uz-rQc6j2zx-3n0D5BZHTYnL-FqOcwqxuR7d1Garv35B4Pjs-bxCjYa6MmOa115DSsufwNr_Tbj2yZMxygwukrFLvWccqxg5Ye72XxS3k8Zglt2SuzWjPg8sJ9RHUDOqn-KaLpPJ5ZdzkqKPkKVZpOcDdvUu-xznfe-YOPJtMkXVryFm5Mv1_2B16Rj8HSgZOkpba0J_cxyF2SUroP7RqiIZ1EsMxcrk6JkQ24NIojI6IwLX2llnESIpEVogi1YzWe52wHmR05FwrostrE0PbTQZaolGpupCHSQhh34hOuUNNupSCpPueBJ9RAXL2kWrwNHrfAS23CaU2qNhydaHC5b_Kj5PJ6ou9vqw-NQAh9NYmI0wuL9ZTEKihwtOnezBdVBq1L0op7owHatR8uXBXFMJI_-u_-c4h6sDa6HF8nF2ej8PawLxFQUqcb5LqyW84X7gJioNB-rXfALRuwHLQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NmwS8bDA-1m2AJ40HHtLFju2kj6ijDMaqSmVob5HtOKzbmk5N-jD-eu7SpAgEE7zGH7F95_h3ufPvAA6N0NaK2ASZlCqQCBACE4dZwJ3v-URZpz15dM-G-uRcfrpQF2ug2rswOIgSeyprJz7t6tssbxgG-BE9v3KV60pH0AQt9Q2lcacTIuqP2w9wRKR2NU2qJPJJnjTeyT_1QGeSK389k_4CNOsDZ7AFX1dDreNMrruLynbd999YHP97Lo9hs4Gg7N1SZ57Ami-24WG_zfz2FKZjFBxdqWIjM6dcK1j55ttsPqkupwxBLvtALNeMeD2wn-EykJzV_xbRhJ9OHBvNKopCQtVmk4KdtSl42fFdYbC8ZOPJtMkbVj6D88H7L_2ToEnLEJhIyyrQxjmrwtxxH-WUtoOHVuiY53Eic59om6GEFXcWkURsTc5FqI22XiJUMkLZ6DmsF7PC7wALY69j4XyeuETaHlrqMjMSjc5MRCbKVAfe4DqlzbYq09pjLnhaP8TFS5vF68BRK8DUNdzmlGLj5p4Wb1ctbpe8HvfU3W914udQohBNY2I2wuKDVTEKihwupvCzBdVB61L04p7owIulLq1eFiUJkT2Gu_84xdfwYHQ8SD9_HJ7uwSOB0IoC1jjfh_VqvvAvERpV9lW9EX4AxXMJsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Parallel+Algorithm+for+Graph+Neural+Network+Interatomic+Potentials+in+Molecular+Dynamics+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Park%2C+Yutack&rft.au=Kim%2C+Jaesun&rft.au=Hwang%2C+Seungwoo&rft.au=Han%2C+Seungwu&rft.date=2024-06-11&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=11&rft.spage=4857&rft.epage=4868&rft_id=info:doi/10.1021%2Facs.jctc.4c00190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_4c00190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |