Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations

Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-pas...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 20; no. 11; pp. 4857 - 4868
Main Authors Park, Yutack, Kim, Jaesun, Hwang, Seungwoo, Han, Seungwu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.06.2024
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.4c00190

Cover

Abstract Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed “SevenNet-0”) and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.
AbstractList Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO , SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si N containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.
Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.
Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting significant attention due to their data efficiency and high accuracy. However, parallelizing GNN-IPs poses challenges because multiple message-passing layers complicate data communication within the spatial decomposition method, which is preferred by many molecular dynamics (MD) packages. In this article, we propose an efficient parallelization scheme compatible with GNN-IPs and develop a package, SevenNet (Scalable EquiVariance-Enabled Neural NETwork), based on the NequIP architecture. For MD simulations, SevenNet interfaces with the LAMMPS package. Through benchmark tests on a 32-GPU cluster with examples of SiO2, SevenNet achieves over 80% parallel efficiency in weak-scaling scenarios and exhibits nearly ideal strong-scaling performance as long as GPUs are fully utilized. However, the strong-scaling performance significantly declines with suboptimal GPU utilization, particularly affecting parallel efficiency in cases involving lightweight models or simulations with small numbers of atoms. We also pretrain SevenNet with a vast data set from the Materials Project (dubbed "SevenNet-0") and assess its performance on generating amorphous Si3N4 containing more than 100,000 atoms. By developing scalable GNN-IPs, this work aims to bridge the gap between advanced machine-learning models and large-scale MD simulations, offering researchers a powerful tool to explore complex material systems with high accuracy and efficiency.
Author Han, Seungwu
Kim, Jaesun
Park, Yutack
Hwang, Seungwoo
AuthorAffiliation Korea Institute for Advanced Study
Department of Materials Science and Engineering and Research Institute of Advanced Materials
AuthorAffiliation_xml – name: Department of Materials Science and Engineering and Research Institute of Advanced Materials
– name: Korea Institute for Advanced Study
Author_xml – sequence: 1
  givenname: Yutack
  orcidid: 0009-0008-8690-935X
  surname: Park
  fullname: Park, Yutack
  organization: Department of Materials Science and Engineering and Research Institute of Advanced Materials
– sequence: 2
  givenname: Jaesun
  orcidid: 0009-0000-6646-1318
  surname: Kim
  fullname: Kim, Jaesun
  organization: Department of Materials Science and Engineering and Research Institute of Advanced Materials
– sequence: 3
  givenname: Seungwoo
  orcidid: 0000-0002-1523-8340
  surname: Hwang
  fullname: Hwang, Seungwoo
  organization: Department of Materials Science and Engineering and Research Institute of Advanced Materials
– sequence: 4
  givenname: Seungwu
  orcidid: 0000-0003-3958-0922
  surname: Han
  fullname: Han, Seungwu
  email: hansw@snu.ac.kr
  organization: Korea Institute for Advanced Study
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38813770$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1PHDEQxS1ExHdPFVmiSZG7-GPX9paIJASJBCSgXo2NN_jw2oftVcR_H8MdFEhQzWje741G83bRZojBInRIyZwSRr-ByfOFKWbeGEJoRzbQDm2bbtYJJjZfe6q20W7OC0I4bxjfQttcKcqlJDtovDLgQXuLLyGB99bjY_83JlfuRjzEhE8TLO_wHztVtZbyL6Z7fBaKTVDi6Ay-jMWG4sBn7AL-Hb01k4eEvz8GqHrGV26sg-JiyPvo01BBe7Cue-jm54_rk1-z84vTs5Pj8xlw0ZSZAGN0SwZDLR8UFYoSzYSkg1TNYJXQt9qIlhrNOi41DJQRAULbRjIJrNV8D31Z7V2m-DDZXPrRZWO9h2DjlHtOBGtZJztW0aM36CJOKdTrKqUa0kglSaU-r6lJj_a2XyY3QnrsXx5ZAbICTIo5Jzu8IpT0T1n1Nav-Kat-nVW1iDcW48rzn0oC5z8yfl0Zn5WXa9_F_wOPVKpc
CitedBy_id crossref_primary_10_1088_1361_651X_adb483
crossref_primary_10_1021_jacsau_4c01160
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1088_1361_651X_ad9d63
crossref_primary_10_1126_sciadv_adp9662
crossref_primary_10_1039_D4DD00353E
crossref_primary_10_1016_j_compositesb_2024_111803
crossref_primary_10_1039_D4NH00487F
crossref_primary_10_1063_5_0255385
crossref_primary_10_1063_5_0231265
crossref_primary_10_20517_jmi_2024_67
crossref_primary_10_1021_jacs_4c14455
crossref_primary_10_1063_5_0236427
crossref_primary_10_1039_D4SC06530A
crossref_primary_10_1063_5_0234287
crossref_primary_10_1016_j_jechem_2025_03_007
crossref_primary_10_1021_acsami_4c08865
crossref_primary_10_1007_s11814_025_00397_1
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1016_j_actamat_2025_120747
crossref_primary_10_1016_j_commatsci_2025_113770
crossref_primary_10_1021_acsnano_4c12369
Cites_doi 10.1103/PhysRevB.76.235201
10.1038/s41524-021-00543-3
10.1146/annurev.pc.46.100195.003413
10.1063/1.5126336
10.1137/15M1054183
10.1039/C7DT02181J
10.1063/1.447334
10.1016/j.cpc.2021.108171
10.1038/s43588-023-00561-9
10.1038/s43588-022-00349-3
10.1103/PhysRevB.108.054312
10.1063/5.0083060
10.1103/PhysRevApplied.10.064052
10.1038/s41586-023-06735-9
10.1038/s42256-023-00716-3
10.1038/s41467-022-30687-9
10.1063/1.4997242
10.1088/1361-648X/ac9d7d
10.1016/j.actamat.2021.116980
10.1038/s43246-022-00315-6
10.1006/jcph.1995.1039
10.1021/acs.jctc.3c00050
10.1038/s41467-023-36329-y
10.1063/1.5056185
10.1021/ct800255r
10.1016/0927-0256(96)00008-0
10.1038/s41928-023-01030-x
10.1109/VLSIT.2007.4339708
10.1063/1.4966192
10.1038/s41524-020-0339-0
10.1021/acs.jctc.9b00181
10.1038/s41524-021-00650-1
10.1145/3458817.3487400
10.1103/PhysRevMaterials.3.093802
10.1088/1361-648x/aa680e
10.1021/ct500169q
10.1021/acs.chemmater.1c03279
10.1103/PhysRevLett.98.146401
10.1063/1.5019779
10.1103/PhysRevLett.77.3865
10.1063/1.4812323
10.1103/PhysRevLett.104.136403
10.1002/pssb.201800486
10.1038/s41467-022-29939-5
10.1145/3581784.3627041
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society Jun 11, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society Jun 11, 2024
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.4c00190
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 4868
ExternalDocumentID 38813770
10_1021_acs_jctc_4c00190
d215398210
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a364t-6accb50fc1e3f816810b2671f784fe86bdbc651cb2937baf1206a6be4727a25b3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Fri Jul 11 12:10:07 EDT 2025
Mon Jun 30 17:32:00 EDT 2025
Wed Feb 19 02:13:25 EST 2025
Tue Jul 01 02:03:37 EDT 2025
Thu Apr 24 22:59:38 EDT 2025
Tue Jun 25 16:50:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-6accb50fc1e3f816810b2671f784fe86bdbc651cb2937baf1206a6be4727a25b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0008-8690-935X
0000-0002-1523-8340
0000-0003-3958-0922
0009-0000-6646-1318
PMID 38813770
PQID 3084047870
PQPubID 2048741
PageCount 12
ParticipantIDs proquest_miscellaneous_3062529792
proquest_journals_3084047870
pubmed_primary_38813770
crossref_primary_10_1021_acs_jctc_4c00190
crossref_citationtrail_10_1021_acs_jctc_4c00190
acs_journals_10_1021_acs_jctc_4c00190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-11
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref2/cit2
ref34/cit34
ref37/cit37
Gilmer J. (ref39/cit39) 2017
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref21/cit21
Fuchs F. B. (ref30/cit30) 2020
ref46/cit46
ref49/cit49
ref13/cit13
Batatia I. (ref32/cit32) 2023
Schütt K. T. (ref40/cit40) 2021
ref24/cit24
ref38/cit38
Frank J. T. (ref20/cit20) 2023
ref50/cit50
ref54/cit54
ref6/cit6
Batatia I. (ref28/cit28) 2023
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
Gasteiger J. (ref31/cit31) 2022
Gasteiger J. (ref29/cit29) 2020
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
Kingma D. P. (ref48/cit48) 2017
ref26/cit26
ref55/cit55
Batatia I. (ref19/cit19) 2022
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
Geiger M. (ref42/cit42) 2022
ref33/cit33
ref4/cit4
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1103/PhysRevB.76.235201
– ident: ref17/cit17
  doi: 10.1038/s41524-021-00543-3
– ident: ref1/cit1
  doi: 10.1146/annurev.pc.46.100195.003413
– start-page: arXiv:2003.0312
  year: 2020
  ident: ref29/cit29
  publication-title: arXiv
– ident: ref7/cit7
  doi: 10.1063/1.5126336
– ident: ref4/cit4
  doi: 10.1137/15M1054183
– ident: ref50/cit50
  doi: 10.1039/C7DT02181J
– ident: ref46/cit46
  doi: 10.1063/1.447334
– ident: ref38/cit38
  doi: 10.1016/j.cpc.2021.108171
– ident: ref22/cit22
  doi: 10.1038/s43588-023-00561-9
– ident: ref25/cit25
  doi: 10.1038/s43588-022-00349-3
– ident: ref11/cit11
  doi: 10.1103/PhysRevB.108.054312
– ident: ref16/cit16
  doi: 10.1063/5.0083060
– ident: ref52/cit52
  doi: 10.1103/PhysRevApplied.10.064052
– ident: ref24/cit24
  doi: 10.1038/s41586-023-06735-9
– ident: ref27/cit27
  doi: 10.1038/s42256-023-00716-3
– ident: ref26/cit26
  doi: 10.1038/s41467-022-30687-9
– ident: ref51/cit51
  doi: 10.1063/1.4997242
– ident: ref12/cit12
  doi: 10.1088/1361-648X/ac9d7d
– ident: ref8/cit8
  doi: 10.1016/j.actamat.2021.116980
– ident: ref21/cit21
  doi: 10.1038/s43246-022-00315-6
– ident: ref35/cit35
  doi: 10.1006/jcph.1995.1039
– start-page: arXiv:1704.0121
  year: 2017
  ident: ref39/cit39
  publication-title: arXiv
– ident: ref14/cit14
  doi: 10.1021/acs.jctc.3c00050
– ident: ref33/cit33
  doi: 10.1038/s41467-023-36329-y
– ident: ref53/cit53
  doi: 10.1063/1.5056185
– ident: ref37/cit37
  doi: 10.1021/ct800255r
– ident: ref44/cit44
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref55/cit55
  doi: 10.1038/s41928-023-01030-x
– start-page: arXiv:2401.0009
  year: 2023
  ident: ref28/cit28
  publication-title: arXiv
– ident: ref56/cit56
  doi: 10.1109/VLSIT.2007.4339708
– ident: ref6/cit6
  doi: 10.1063/1.4966192
– ident: ref9/cit9
  doi: 10.1038/s41524-020-0339-0
– ident: ref18/cit18
  doi: 10.1021/acs.jctc.9b00181
– ident: ref58/cit58
  doi: 10.1038/s41524-021-00650-1
– ident: ref13/cit13
  doi: 10.1145/3458817.3487400
– start-page: arXiv.2205.0664
  year: 2022
  ident: ref19/cit19
  publication-title: arXiv
– ident: ref5/cit5
  doi: 10.1103/PhysRevMaterials.3.093802
– ident: ref43/cit43
  doi: 10.1088/1361-648x/aa680e
– ident: ref36/cit36
  doi: 10.1021/ct500169q
– ident: ref57/cit57
– start-page: arXiv:2206.0769
  year: 2023
  ident: ref32/cit32
  publication-title: arXiv
– ident: ref10/cit10
  doi: 10.1021/acs.chemmater.1c03279
– start-page: arXiv:2205.1427
  year: 2023
  ident: ref20/cit20
  publication-title: arXiv
– ident: ref2/cit2
  doi: 10.1103/PhysRevLett.98.146401
– start-page: arXiv:2102.0315
  year: 2021
  ident: ref40/cit40
  publication-title: arXiv
– start-page: arXiv:2207.0945
  year: 2022
  ident: ref42/cit42
  publication-title: arXiv
– ident: ref23/cit23
  doi: 10.1063/1.5019779
– ident: ref45/cit45
  doi: 10.1103/PhysRevLett.77.3865
– start-page: arXiv:2106.0890
  year: 2022
  ident: ref31/cit31
  publication-title: arXiv
– ident: ref47/cit47
  doi: 10.1063/1.4812323
– ident: ref3/cit3
  doi: 10.1103/PhysRevLett.104.136403
– ident: ref54/cit54
  doi: 10.1002/pssb.201800486
– start-page: arXiv:1412.6980
  year: 2017
  ident: ref48/cit48
  publication-title: arXiv
– ident: ref15/cit15
  doi: 10.1038/s41467-022-29939-5
– ident: ref41/cit41
– start-page: arXiv:2006.1050
  year: 2020
  ident: ref30/cit30
  publication-title: arXiv
– ident: ref34/cit34
  doi: 10.1145/3581784.3627041
SSID ssj0033423
Score 2.6600626
Snippet Message-passing graph neural network interatomic potentials (GNN-IPs), particularly those with equivariant representations such as NequIP, are attracting...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4857
SubjectTerms Accuracy
Algorithms
Amorphous materials
Computer simulation
Condensed Matter, Interfaces, and Materials
Data communication
Efficiency
Graph neural networks
Graphical representations
Machine learning
Message passing
Molecular dynamics
Neural networks
Scaling
Silicon dioxide
Simulation
Spatial data
Title Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations
URI http://dx.doi.org/10.1021/acs.jctc.4c00190
https://www.ncbi.nlm.nih.gov/pubmed/38813770
https://www.proquest.com/docview/3084047870
https://www.proquest.com/docview/3062529792
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHODCvpRNRoIDh5TYcez0iMomJBBSQeIW2Y4DBZqiJr3w9cxkKWIV18R2Ys8kfpOZvEfIvubSGK60lwgRegIAgqeVn3jMuo6LQmOlw4zu1bW8uBOX9-H9B03O1ww-Z0fa5u0nW9i2sIhHIDyf4VIpLN877vaat26ATHYlN6pAxkkW1SnJn0bAjcjmnzeiX9BlucucLVRyRXlJTojFJc_tcWHa9u07deM_JrBI5muwSY8r71giUy5bJrPdRuNthQx6YCL8eYre6BGqqkDjl4fhqF88DijAWXqOfNYUGTxgnOuqZJyWXxEhWB_0Lb0ZFlhvBE5M-xm9asR26UmldJ_TXn9QK4Tlq-Tu7PS2e-HVAgyeDqQoPKmtNaGfWuaCFAU6mG9g7VmqIpG6SJoEbBkyawAzKKNTxn2ppXECQJHmoQnWyHQ2zNwGob5yUnHr0shGwnQgJheJFhBeJjzQQRK2yAGsU1w_QHlc5sY5i8uDsHhxvXgtctRYLbY1izmKabz80eNw0uO1YvD4o-124wgftxL4EAQjhxGc3pucBkNhakVnbjjGNhBH8o7q8BZZrxxocrEgipDW0d_85xS3yBwH5IT1aIxtk-liNHY7gHwKs1u6_Dt2Ev68
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heoALfVBgW1qMRA8cssSO42SPaFtYCrtCLEjcIttxYFs2W22yl_76zuSxqFWLyjV-xPaM428y428ADrRQxohIe6mUoScRIHg68lOPW9dzcWiscuTRHY7U4EZ-vQ1vV4C3d2FwEAX2VFRO_Ed2AX5Ez77Z0nalJViCVvqLUElO9tZxf9x-fAMitKsoUiURT_K48Uz-rQc6j2zx-3n0D5BZHTYnL-FqOcwqxuR7d1Garv35B4Pjs-bxCjYa6MmOa115DSsufwNr_Tbj2yZMxygwukrFLvWccqxg5Ye72XxS3k8Zglt2SuzWjPg8sJ9RHUDOqn-KaLpPJ5ZdzkqKPkKVZpOcDdvUu-xznfe-YOPJtMkXVryFm5Mv1_2B16Rj8HSgZOkpba0J_cxyF2SUroP7RqiIZ1EsMxcrk6JkQ24NIojI6IwLX2llnESIpEVogi1YzWe52wHmR05FwrostrE0PbTQZaolGpupCHSQhh34hOuUNNupSCpPueBJ9RAXL2kWrwNHrfAS23CaU2qNhydaHC5b_Kj5PJ6ou9vqw-NQAh9NYmI0wuL9ZTEKihwtOnezBdVBq1L0op7owHatR8uXBXFMJI_-u_-c4h6sDa6HF8nF2ej8PawLxFQUqcb5LqyW84X7gJioNB-rXfALRuwHLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NmwS8bDA-1m2AJ40HHtLFju2kj6ijDMaqSmVob5HtOKzbmk5N-jD-eu7SpAgEE7zGH7F95_h3ufPvAA6N0NaK2ASZlCqQCBACE4dZwJ3v-URZpz15dM-G-uRcfrpQF2ug2rswOIgSeyprJz7t6tssbxgG-BE9v3KV60pH0AQt9Q2lcacTIuqP2w9wRKR2NU2qJPJJnjTeyT_1QGeSK389k_4CNOsDZ7AFX1dDreNMrruLynbd999YHP97Lo9hs4Gg7N1SZ57Ami-24WG_zfz2FKZjFBxdqWIjM6dcK1j55ttsPqkupwxBLvtALNeMeD2wn-EykJzV_xbRhJ9OHBvNKopCQtVmk4KdtSl42fFdYbC8ZOPJtMkbVj6D88H7L_2ToEnLEJhIyyrQxjmrwtxxH-WUtoOHVuiY53Eic59om6GEFXcWkURsTc5FqI22XiJUMkLZ6DmsF7PC7wALY69j4XyeuETaHlrqMjMSjc5MRCbKVAfe4DqlzbYq09pjLnhaP8TFS5vF68BRK8DUNdzmlGLj5p4Wb1ctbpe8HvfU3W914udQohBNY2I2wuKDVTEKihwupvCzBdVB61L04p7owIulLq1eFiUJkT2Gu_84xdfwYHQ8SD9_HJ7uwSOB0IoC1jjfh_VqvvAvERpV9lW9EX4AxXMJsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Parallel+Algorithm+for+Graph+Neural+Network+Interatomic+Potentials+in+Molecular+Dynamics+Simulations&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Park%2C+Yutack&rft.au=Kim%2C+Jaesun&rft.au=Hwang%2C+Seungwoo&rft.au=Han%2C+Seungwu&rft.date=2024-06-11&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=11&rft.spage=4857&rft.epage=4868&rft_id=info:doi/10.1021%2Facs.jctc.4c00190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_4c00190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon