XMECP: Reaching State-of-the-Art MECP Optimization in Multiscale Complex Systems

The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism o...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 20; no. 9; pp. 3590 - 3600
Main Authors Xu, Jiawei, Hao, Jian, Bu, Caijie, Meng, Yajie, Xiao, Han, Zhang, Minyi, Li, Chunsen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.05.2024
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.4c00033

Cover

Abstract The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine–guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin–orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π–π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin–orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.
AbstractList The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine–guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin–orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π–π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin–orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.
The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine-guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin-orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π-π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin-orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine-guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin-orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π-π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin-orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.
Author Xiao, Han
Xu, Jiawei
Hao, Jian
Li, Chunsen
Meng, Yajie
Bu, Caijie
Zhang, Minyi
AuthorAffiliation Fujian Normal University
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
School of Chemical Sciences
Xiamen University
Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
University of Chinese Academy of Sciences
College of Chemistry and Materials Science
AuthorAffiliation_xml – name: Fujian Normal University
– name: School of Chemical Sciences
– name: University of Chinese Academy of Sciences
– name: College of Chemistry and Materials Science
– name: Xiamen University
– name: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
– name: Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0000-0002-2732-086X
  surname: Xu
  fullname: Xu, Jiawei
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jian
  surname: Hao
  fullname: Hao, Jian
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Caijie
  surname: Bu
  fullname: Bu, Caijie
  organization: Fujian Normal University
– sequence: 4
  givenname: Yajie
  orcidid: 0000-0003-4648-0057
  surname: Meng
  fullname: Meng, Yajie
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Han
  surname: Xiao
  fullname: Xiao, Han
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
– sequence: 6
  givenname: Minyi
  surname: Zhang
  fullname: Zhang, Minyi
  email: myzhang@fjirsm.ac.cn
  organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter
– sequence: 7
  givenname: Chunsen
  orcidid: 0000-0002-9142-0187
  surname: Li
  fullname: Li, Chunsen
  email: chunsen.li@fjirsm.ac.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38651739$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLw0AUhQdR1Fb3riTgxoWp88okcVdCfUBFsQruwmRyo1PyqJkJWH-9k7Z2IejqXrjfuRzOGaDduqkBoROCRwRTcimVGc2VVSOuMMaM7aBDEvDYjwUVu9udRAdoYMy8Jzhl--iARSIgIYsP0ePr_SR5vPKeQKp3Xb95Myst-E3h23fwx631-rv3sLC60l_S6qb2dO3dd6XVRskSvKSpFiV8erOlsVCZI7RXyNLA8WYO0cv15Dm59acPN3fJeOpLJrj1heBFRkXBBBAa4yxQeQwgZUiLHChVDHiY8YiGTEYAgmW5jGmeU6kYpc4-G6Lz9d9F23x0YGxaOUNQlrKGpjMpwzwgJIjDwKFnv9B507W1c-cowWkQBVHsqNMN1WUV5Omi1ZVsl-lPVg7Aa0C1jTEtFFuE4LSvI3V1pH0d6aYOJxG_JErbVYi2lbr8T3ixFq4uP27_xL8BXE2eGg
CitedBy_id crossref_primary_10_1063_5_0253902
crossref_primary_10_1039_D4CY00760C
crossref_primary_10_1039_D4TC00805G
Cites_doi 10.1080/00268970500417762
10.1007/s002140050309
10.1016/B978-0-12-821978-2.00012-X
10.1002/wcms.1340
10.1063/1.476732
10.1126/science.aaw4675
10.1016/j.sbi.2021.06.006
10.1021/acs.chemrev.0c01212
10.26434/chemrxiv-2022-gj75d
10.1016/j.cpletx.2019.100007
10.1063/5.0004835
10.1002/chem.202301570
10.1021/acs.jpcb.0c05761
10.1039/D3CP04900K
10.1021/jp9028968
10.1021/acs.jpcb.2c00969
10.1021/acs.jpclett.9b02120
10.1039/b201230h
10.1063/1.1545679
10.1039/c1cp22592h
10.1038/s41467-021-26673-2
10.1021/acs.jpca.0c11270
10.1021/jp0761618
10.1021/jacs.2c10165
10.3389/fchem.2014.00097
10.1146/annurev.biochem.78.080207.092132
10.1016/j.biotechadv.2021.107712
10.1103/PhysRevLett.52.997
10.1016/j.cplett.2004.06.011
10.1038/s41467-021-21200-9
10.1021/jacs.9b05323
10.1002/jcc.26072
10.1080/08927020290018769
10.1074/jbc.273.42.27035
10.1146/annurev.physchem.55.091602.094449
10.1021/jp908032x
10.1021/acs.jctc.3c00389
10.1002/wcms.83
10.1021/acs.jpca.3c03214
10.1063/1.445869
10.1038/s41557-022-00892-6
10.1002/jcc.22885
10.1038/nchem.2651
10.1021/jacs.1c12360
10.1021/bi030011f
10.1039/DF9633500077
10.1002/wcms.1163
10.1021/acs.jpca.1c07017
10.1021/acs.jctc.3c00577
10.1039/b515623h
10.1021/acs.jctc.8b00854
10.1021/acs.jctc.5b00255
10.1016/j.cplett.2013.10.065
10.1063/1.4952956
10.1080/00268976.2014.952696
10.1063/5.0180424
10.1016/j.jcat.2020.04.016
10.1016/0263-7855(96)00018-5
10.1002/wcms.1438
10.1021/ct1000268
10.1021/acs.jctc.9b01145
10.1021/acs.jpca.0c05216
10.1021/cr100023g
10.1021/jz301573j
10.1038/nature16989
10.1021/acs.jpca.9b03157
10.3390/catal9030221
10.1039/C8CS00354H
10.1038/s41929-023-01024-0
10.1016/j.bbagen.2013.07.015
10.1038/s43588-023-00422-5
10.1021/acs.jctc.6b00186
10.1039/C9CP00794F
10.1002/anie.202205735
10.1146/annurev-biochem-061516-044724
10.1021/acs.jpclett.6b02501
10.1021/ct200909j
10.1021/bi0330139
10.1021/acs.chemrev.5b00723
10.1002/agt2.91
10.1021/cr200177j
10.1126/science.abl4922
10.1063/5.0005188
10.1021/ct400314y
10.1021/acs.jctc.0c01075
10.1002/adma.201906064
10.1146/annurev-physchem-061020-053433
10.1021/cr0404646
10.1039/b508541a
10.1002/wcms.1606
10.1021/ct9004905
10.1021/acs.chemrev.7b00707
10.1039/D3DT01404E
10.1002/chem.200305415
10.1021/ja069176c
10.1021/acs.jpclett.0c02012
10.1063/1.5089637
10.1074/jbc.R115.648691
10.1016/j.cpc.2012.09.022
10.1021/acs.chemrev.5b00533
10.1021/acscatal.0c02795
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society May 14, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society May 14, 2024
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.4c00033
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 3600
ExternalDocumentID 38651739
10_1021_acs_jctc_4c00033
c33321973
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a364t-664fb26f36e1290b5cd9eeaa72fde22c3e47b48273a8ee63bda92dd2ac3223863
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Fri Jul 11 10:50:44 EDT 2025
Mon Jun 30 04:42:33 EDT 2025
Tue Apr 29 09:22:42 EDT 2025
Wed Oct 01 06:51:23 EDT 2025
Thu Apr 24 22:52:09 EDT 2025
Thu Feb 27 03:23:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a364t-664fb26f36e1290b5cd9eeaa72fde22c3e47b48273a8ee63bda92dd2ac3223863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2732-086X
0000-0003-4648-0057
0000-0002-9142-0187
PMID 38651739
PQID 3064258589
PQPubID 2048741
PageCount 11
ParticipantIDs proquest_miscellaneous_3045115975
proquest_journals_3064258589
pubmed_primary_38651739
crossref_primary_10_1021_acs_jctc_4c00033
crossref_citationtrail_10_1021_acs_jctc_4c00033
acs_journals_10_1021_acs_jctc_4c00033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-14
PublicationDateYYYYMMDD 2024-05-14
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref13/cit13
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref106/cit106
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
Li J. (ref2/cit2) 2024
ref34/cit34
ref37/cit37
Case D. A. (ref58/cit58) 2020
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
Frisch M. J. (ref36/cit36) 2016
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref95/cit95
ref108/cit108
ref104/cit104
(ref78/cit78) 2021
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1080/00268970500417762
– ident: ref32/cit32
  doi: 10.1007/s002140050309
– start-page: 658
  volume-title: Comprehensive Computational Chemistry
  year: 2024
  ident: ref2/cit2
  doi: 10.1016/B978-0-12-821978-2.00012-X
– ident: ref41/cit41
  doi: 10.1002/wcms.1340
– ident: ref75/cit75
  doi: 10.1063/1.476732
– ident: ref9/cit9
  doi: 10.1126/science.aaw4675
– ident: ref105/cit105
  doi: 10.1016/j.sbi.2021.06.006
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.0c01212
– ident: ref27/cit27
  doi: 10.26434/chemrxiv-2022-gj75d
– ident: ref26/cit26
  doi: 10.1016/j.cpletx.2019.100007
– ident: ref40/cit40
  doi: 10.1063/5.0004835
– ident: ref22/cit22
  doi: 10.1002/chem.202301570
– ident: ref56/cit56
  doi: 10.1021/acs.jpcb.0c05761
– ident: ref13/cit13
  doi: 10.1039/D3CP04900K
– ident: ref44/cit44
  doi: 10.1021/jp9028968
– ident: ref99/cit99
  doi: 10.1021/acs.jpcb.2c00969
– ident: ref72/cit72
  doi: 10.1021/acs.jpclett.9b02120
– ident: ref79/cit79
  doi: 10.1039/b201230h
– ident: ref28/cit28
  doi: 10.1063/1.1545679
– ident: ref91/cit91
  doi: 10.1039/c1cp22592h
– ident: ref83/cit83
  doi: 10.1038/s41467-021-26673-2
– ident: ref55/cit55
  doi: 10.1021/acs.jpca.0c11270
– ident: ref34/cit34
  doi: 10.1021/jp0761618
– ident: ref43/cit43
– ident: ref71/cit71
– volume-title: Amber 2020
  year: 2020
  ident: ref58/cit58
– ident: ref10/cit10
  doi: 10.1021/jacs.2c10165
– ident: ref16/cit16
  doi: 10.3389/fchem.2014.00097
– ident: ref81/cit81
  doi: 10.1146/annurev.biochem.78.080207.092132
– ident: ref94/cit94
  doi: 10.1016/j.biotechadv.2021.107712
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.52.997
– ident: ref51/cit51
  doi: 10.1016/j.cplett.2004.06.011
– ident: ref96/cit96
  doi: 10.1038/s41467-021-21200-9
– ident: ref107/cit107
  doi: 10.1021/jacs.9b05323
– ident: ref108/cit108
  doi: 10.1002/jcc.26072
– ident: ref66/cit66
  doi: 10.1080/08927020290018769
– ident: ref106/cit106
  doi: 10.1074/jbc.273.42.27035
– ident: ref24/cit24
  doi: 10.1146/annurev.physchem.55.091602.094449
– ident: ref29/cit29
  doi: 10.1021/jp908032x
– ident: ref48/cit48
  doi: 10.1021/acs.jctc.3c00389
– ident: ref3/cit3
  doi: 10.1002/wcms.83
– ident: ref47/cit47
  doi: 10.1021/acs.jpca.3c03214
– ident: ref64/cit64
  doi: 10.1063/1.445869
– ident: ref18/cit18
  doi: 10.1038/s41557-022-00892-6
– ident: ref69/cit69
  doi: 10.1002/jcc.22885
– ident: ref102/cit102
  doi: 10.1038/nchem.2651
– ident: ref12/cit12
  doi: 10.1021/jacs.1c12360
– ident: ref86/cit86
  doi: 10.1021/bi030011f
– ident: ref4/cit4
  doi: 10.1039/DF9633500077
– ident: ref50/cit50
– ident: ref65/cit65
  doi: 10.1002/wcms.1163
– ident: ref14/cit14
  doi: 10.1021/acs.jpca.1c07017
– ident: ref46/cit46
  doi: 10.1021/acs.jctc.3c00577
– ident: ref53/cit53
  doi: 10.1039/b515623h
– ident: ref67/cit67
  doi: 10.1021/acs.jctc.8b00854
– ident: ref62/cit62
  doi: 10.1021/acs.jctc.5b00255
– ident: ref19/cit19
  doi: 10.1016/j.cplett.2013.10.065
– ident: ref45/cit45
  doi: 10.1063/1.4952956
– ident: ref38/cit38
  doi: 10.1080/00268976.2014.952696
– ident: ref68/cit68
  doi: 10.1063/5.0180424
– ident: ref20/cit20
  doi: 10.1016/j.jcat.2020.04.016
– ident: ref70/cit70
  doi: 10.1016/0263-7855(96)00018-5
– ident: ref103/cit103
  doi: 10.1002/wcms.1438
– ident: ref35/cit35
  doi: 10.1021/ct1000268
– ident: ref92/cit92
  doi: 10.1021/acs.jctc.9b01145
– ident: ref49/cit49
  doi: 10.1021/acs.jpca.0c05216
– ident: ref76/cit76
  doi: 10.1021/cr100023g
– ident: ref73/cit73
  doi: 10.1021/jz301573j
– ident: ref100/cit100
  doi: 10.1038/nature16989
– volume-title: DNA Photodamage: From Light Absorption to Cellular Responses and Skin Cancer.
  year: 2021
  ident: ref78/cit78
– ident: ref90/cit90
  doi: 10.1021/acs.jpca.9b03157
– ident: ref84/cit84
  doi: 10.3390/catal9030221
– ident: ref101/cit101
  doi: 10.1039/C8CS00354H
– ident: ref42/cit42
– ident: ref95/cit95
  doi: 10.1038/s41929-023-01024-0
– ident: ref98/cit98
  doi: 10.1016/j.bbagen.2013.07.015
– ident: ref11/cit11
  doi: 10.1038/s43588-023-00422-5
– ident: ref63/cit63
  doi: 10.1021/acs.jctc.6b00186
– ident: ref88/cit88
  doi: 10.1039/C9CP00794F
– ident: ref89/cit89
  doi: 10.1002/anie.202205735
– ident: ref82/cit82
  doi: 10.1146/annurev-biochem-061516-044724
– ident: ref31/cit31
  doi: 10.1021/acs.jpclett.6b02501
– ident: ref59/cit59
  doi: 10.1021/ct200909j
– ident: ref87/cit87
  doi: 10.1021/bi0330139
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.5b00723
– ident: ref15/cit15
  doi: 10.1002/agt2.91
– ident: ref8/cit8
  doi: 10.1021/cr200177j
– ident: ref21/cit21
  doi: 10.1126/science.abl4922
– ident: ref39/cit39
  doi: 10.1063/5.0005188
– ident: ref61/cit61
  doi: 10.1021/ct400314y
– ident: ref93/cit93
  doi: 10.1021/acs.jctc.0c01075
– ident: ref7/cit7
  doi: 10.1002/adma.201906064
– ident: ref1/cit1
  doi: 10.1146/annurev-physchem-061020-053433
– ident: ref77/cit77
  doi: 10.1021/cr0404646
– ident: ref54/cit54
  doi: 10.1039/b508541a
– ident: ref37/cit37
  doi: 10.1002/wcms.1606
– ident: ref74/cit74
  doi: 10.1021/ct9004905
– ident: ref97/cit97
  doi: 10.1021/acs.chemrev.7b00707
– ident: ref23/cit23
  doi: 10.1039/D3DT01404E
– ident: ref33/cit33
  doi: 10.1002/chem.200305415
– ident: ref80/cit80
  doi: 10.1021/ja069176c
– ident: ref17/cit17
  doi: 10.1021/acs.jpclett.0c02012
– ident: ref57/cit57
  doi: 10.1063/1.5089637
– ident: ref85/cit85
  doi: 10.1074/jbc.R115.648691
– ident: ref60/cit60
  doi: 10.1016/j.cpc.2012.09.022
– volume-title: Gaussian 16
  year: 2016
  ident: ref36/cit36
– ident: ref52/cit52
  doi: 10.1021/acs.chemrev.5b00533
– ident: ref104/cit104
  doi: 10.1021/acscatal.0c02795
SSID ssj0033423
Score 2.4534507
Snippet The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3590
SubjectTerms Algorithms
Atomic energy levels
Complex systems
Electric fields
Electron transfer
Hydrogen bonds
Iron
Optimization
Oxygen
Quantum Electronic Structure
Residues
Spin-orbit interactions
Title XMECP: Reaching State-of-the-Art MECP Optimization in Multiscale Complex Systems
URI http://dx.doi.org/10.1021/acs.jctc.4c00033
https://www.ncbi.nlm.nih.gov/pubmed/38651739
https://www.proquest.com/docview/3064258589
https://www.proquest.com/docview/3045115975
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8ImI8GBg9vaTp2EG6paVUgFxCL1FtmOI7GliKQS4uvxuG4RW8U1tpPY48y8yYzfIHTEGmBGFSS1C0VAS5LEOnAEzJmMuLWJFA4n9y5E9y487zf7nzQ53yP4jNalLmsPutK1UAOA57NonokogvS9s9bNWOtyYLJz3KghME7S2Ickf7sDGCJdfjVEf6BLZ2U6y6NyRaUjJ4TkksfasFI1_f6TuvEfE1hBSx5s4rPR7lhFM6ZYQwutcY23dXTV77VbV6f42udUYoc9ySAnFhcSOw5DO760euXZH9jE9wV2p3ZLK12DQZ88mTfsmc830F2nfdvqEl9jgUguwooIEeaKiZwLA3-kVFNniTFSRizPDGOamzBSQBXKZWyM4CqTCcsyJrXVBDwWfBPNFYPCbEOSlNKskWc0jqwwmJJK6IQ3DZU8ZpmiATq2S5H6b6RMXfib0dRdtOuT-vUJUH0smFR7onKol_E0ZcTJZMTLiKRjSt-9saw_X8W5YdZxipMAHU6arSwgeiILMxhCH6Bys_5XM0Bboz0yeRgUTqURT3b-OcVdtMgsOIIsBBruobnqdWj2Lbip1IHb1R8wX_EV
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9lAu5V0WChgJDhy8re3ESbhVq1YLdEtVWmlvke04UkubRSQrVf31zHidrUBQlWv8iO1x5pGZ-QbgndwhMWopqF1bTlySF2jAcRJnJlMoEwUlJ08O9fg0-TxNpysg-lwYXESLM7XBiX-DLiC26dm569wwcaTHq3uwlupEkL21O_rWM19FgHYBIjUh4EmRR8_k32YgeeTa3-XRP5TMIGz2H8DxcpkhxuT7cN7Zobv-A8Hxv_bxEDai6sl2F3flEaz45jGsj_qKb0_gaDrZGx19ZMcxwpIFTZTPao5aIsdxjNrZV-QylzF9k501LOTwtkhrz4i7XPgrFnHQn8Lp_t7JaMxjxQVulE46rnVSW6lrpT39n7KpqwrvjclkXXkpnfJJZgk4VJnce61sZQpZVdI45Asq1-oZrDazxj-nkCnr5E5diTxDmkhrrHaFSr0wKpeVFQN4j0dRxi-mLYMzXIoyPMTzKeP5DGC7p0_pImw5Vc-4uGXEh-WIHwvIjlv6bvUkv1lKMMrQjMqLAbxdNiMtyJdiGj-bUx8CdkNrLB3A5uKqLF9GZVRFpooXd9ziG1gfn0wOyoNPh19ewn2JahPFJ4hkC1a7n3P_CtWezr4OF_0XqvX5dw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgIuUB6lCy0YCQ4cvK3txEm4oW1X5dGyAor2FtmOI0FLtiJZqeqvZ8brLAK1FVz9iu2x55GZ-QzwQu6SGLUU1K4tJy7JCzTgOIkzkymUiYKSkw-P9MFx8m6aTlcg7XNhcBItjtQGJz7d6rOqjggDYofKv7vODRNHury6AWupxptOGtHoc8-AFYHaBZjUhMAnRR69k5eNQDLJtX_KpCsUzSBwxnfh63KqIc7kZDjv7NBd_IXi-N9rWYc7UQVlbxZn5h6s-OY-3Br1L789gMn0cH80ec0-xUhLFjRSPqs5aosc-zGqZx-R2_yIaZzsW8NCLm-LNPeMuMypP2cRD_0hHI_3v4wOeHx5gRulk45rndRW6lppT_-pbOqqwntjMllXXkqnfJJZAhBVJvdeK1uZQlaVNA75g8q12oDVZtb4TQqdsk7u1pXIM6SLtMZqV6jUC6NyWVkxgJe4FWW8OW0ZnOJSlKEQ96eM-zOAnZ5GpYvw5fSKxuk1PV4te5wtoDuuabvVk_33VIJxhuZUXgzg-bIaaUE-FdP42ZzaEMAbWmXpAB4tjsvyY_ScqshU8fgfl_gMbk72xuWHt0fvn8BtidoThSmIZAtWu59zv43aT2efhrP-C9iq-_o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XMECP%3A+Reaching+State-of-the-Art+MECP+Optimization+in+Multiscale+Complex+Systems&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Xu%2C+Jiawei&rft.au=Hao%2C+Jian&rft.au=Bu%2C+Caijie&rft.au=Meng%2C+Yajie&rft.date=2024-05-14&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=9&rft.spage=3590&rft_id=info:doi/10.1021%2Facs.jctc.4c00033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon