XMECP: Reaching State-of-the-Art MECP Optimization in Multiscale Complex Systems
The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism o...
Saved in:
| Published in | Journal of chemical theory and computation Vol. 20; no. 9; pp. 3590 - 3600 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
14.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9618 1549-9626 1549-9626 |
| DOI | 10.1021/acs.jctc.4c00033 |
Cover
| Abstract | The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine–guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin–orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π–π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin–orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds. |
|---|---|
| AbstractList | The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine–guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin–orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π–π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin–orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds. The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine-guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin-orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π-π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin-orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds.The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in multiscale complex systems. This article introduces the basic capabilities of the XMECP program by theoretically investigating the MECP mechanism of several example systems including (1) the photosensitization mechanism of benzophenone, (2) photoinduced proton-coupled electron transfer in the cytosine-guanine base pair in DNA, (3) the spin-flip process in oxygen activation catalyzed by an iron-containing 2-oxoglutarate-dependent oxygenase (Fe/2OGX), and (4) the photochemical pathway of flavoprotein adjusted by the intensity of an external electric field. MECPs related to multistate reaction and multistate reactivity in large-scale complex biochemical systems can be well-treated by workflows suggested by the XMECP program. The branching plane updating the MECP optimization algorithm is strongly recommended as it provides derivative coupling vector (DCV) with explicit calculation and can equivalently evaluate contributions from non-QM residues to DCV, which can be nonadiabatic coupling or spin-orbit coupling in different cases. In the discussed QM/MM examples, we also found that the influence on the QM region by DCV can occur through noncovalent interactions and decay with distance. In the example of DNA base pairs, the nonadiabatic coupling occurs across the π-π stacking structure formed in the double-helix system. In contrast to general intuition, in the example of Fe/2OGX, the central ferrous and oxygen part contribute little to the spin-orbit coupling; however, a nearby arginine residue, which is treated by molecular mechanics in the QM/MM method, contributes significantly via two hydrogen bonds formed with α-ketoglutarate (α-KG). This indicates that the arginine residue plays a significant role in oxygen activation, driving the initial triplet state toward the productive quintet state, which is more than the previous knowledge that the arginine residue can bind α-KG at the reaction site by hydrogen bonds. |
| Author | Xiao, Han Xu, Jiawei Hao, Jian Li, Chunsen Meng, Yajie Bu, Caijie Zhang, Minyi |
| AuthorAffiliation | Fujian Normal University State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter School of Chemical Sciences Xiamen University Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry University of Chinese Academy of Sciences College of Chemistry and Materials Science |
| AuthorAffiliation_xml | – name: Fujian Normal University – name: School of Chemical Sciences – name: University of Chinese Academy of Sciences – name: College of Chemistry and Materials Science – name: Xiamen University – name: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter – name: Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry |
| Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0000-0002-2732-086X surname: Xu fullname: Xu, Jiawei organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Jian surname: Hao fullname: Hao, Jian organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Caijie surname: Bu fullname: Bu, Caijie organization: Fujian Normal University – sequence: 4 givenname: Yajie orcidid: 0000-0003-4648-0057 surname: Meng fullname: Meng, Yajie organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Han surname: Xiao fullname: Xiao, Han organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter – sequence: 6 givenname: Minyi surname: Zhang fullname: Zhang, Minyi email: myzhang@fjirsm.ac.cn organization: State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter – sequence: 7 givenname: Chunsen orcidid: 0000-0002-9142-0187 surname: Li fullname: Li, Chunsen email: chunsen.li@fjirsm.ac.cn organization: Xiamen University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38651739$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLw0AUhQdR1Fb3riTgxoWp88okcVdCfUBFsQruwmRyo1PyqJkJWH-9k7Z2IejqXrjfuRzOGaDduqkBoROCRwRTcimVGc2VVSOuMMaM7aBDEvDYjwUVu9udRAdoYMy8Jzhl--iARSIgIYsP0ePr_SR5vPKeQKp3Xb95Myst-E3h23fwx631-rv3sLC60l_S6qb2dO3dd6XVRskSvKSpFiV8erOlsVCZI7RXyNLA8WYO0cv15Dm59acPN3fJeOpLJrj1heBFRkXBBBAa4yxQeQwgZUiLHChVDHiY8YiGTEYAgmW5jGmeU6kYpc4-G6Lz9d9F23x0YGxaOUNQlrKGpjMpwzwgJIjDwKFnv9B507W1c-cowWkQBVHsqNMN1WUV5Omi1ZVsl-lPVg7Aa0C1jTEtFFuE4LSvI3V1pH0d6aYOJxG_JErbVYi2lbr8T3ixFq4uP27_xL8BXE2eGg |
| CitedBy_id | crossref_primary_10_1063_5_0253902 crossref_primary_10_1039_D4CY00760C crossref_primary_10_1039_D4TC00805G |
| Cites_doi | 10.1080/00268970500417762 10.1007/s002140050309 10.1016/B978-0-12-821978-2.00012-X 10.1002/wcms.1340 10.1063/1.476732 10.1126/science.aaw4675 10.1016/j.sbi.2021.06.006 10.1021/acs.chemrev.0c01212 10.26434/chemrxiv-2022-gj75d 10.1016/j.cpletx.2019.100007 10.1063/5.0004835 10.1002/chem.202301570 10.1021/acs.jpcb.0c05761 10.1039/D3CP04900K 10.1021/jp9028968 10.1021/acs.jpcb.2c00969 10.1021/acs.jpclett.9b02120 10.1039/b201230h 10.1063/1.1545679 10.1039/c1cp22592h 10.1038/s41467-021-26673-2 10.1021/acs.jpca.0c11270 10.1021/jp0761618 10.1021/jacs.2c10165 10.3389/fchem.2014.00097 10.1146/annurev.biochem.78.080207.092132 10.1016/j.biotechadv.2021.107712 10.1103/PhysRevLett.52.997 10.1016/j.cplett.2004.06.011 10.1038/s41467-021-21200-9 10.1021/jacs.9b05323 10.1002/jcc.26072 10.1080/08927020290018769 10.1074/jbc.273.42.27035 10.1146/annurev.physchem.55.091602.094449 10.1021/jp908032x 10.1021/acs.jctc.3c00389 10.1002/wcms.83 10.1021/acs.jpca.3c03214 10.1063/1.445869 10.1038/s41557-022-00892-6 10.1002/jcc.22885 10.1038/nchem.2651 10.1021/jacs.1c12360 10.1021/bi030011f 10.1039/DF9633500077 10.1002/wcms.1163 10.1021/acs.jpca.1c07017 10.1021/acs.jctc.3c00577 10.1039/b515623h 10.1021/acs.jctc.8b00854 10.1021/acs.jctc.5b00255 10.1016/j.cplett.2013.10.065 10.1063/1.4952956 10.1080/00268976.2014.952696 10.1063/5.0180424 10.1016/j.jcat.2020.04.016 10.1016/0263-7855(96)00018-5 10.1002/wcms.1438 10.1021/ct1000268 10.1021/acs.jctc.9b01145 10.1021/acs.jpca.0c05216 10.1021/cr100023g 10.1021/jz301573j 10.1038/nature16989 10.1021/acs.jpca.9b03157 10.3390/catal9030221 10.1039/C8CS00354H 10.1038/s41929-023-01024-0 10.1016/j.bbagen.2013.07.015 10.1038/s43588-023-00422-5 10.1021/acs.jctc.6b00186 10.1039/C9CP00794F 10.1002/anie.202205735 10.1146/annurev-biochem-061516-044724 10.1021/acs.jpclett.6b02501 10.1021/ct200909j 10.1021/bi0330139 10.1021/acs.chemrev.5b00723 10.1002/agt2.91 10.1021/cr200177j 10.1126/science.abl4922 10.1063/5.0005188 10.1021/ct400314y 10.1021/acs.jctc.0c01075 10.1002/adma.201906064 10.1146/annurev-physchem-061020-053433 10.1021/cr0404646 10.1039/b508541a 10.1002/wcms.1606 10.1021/ct9004905 10.1021/acs.chemrev.7b00707 10.1039/D3DT01404E 10.1002/chem.200305415 10.1021/ja069176c 10.1021/acs.jpclett.0c02012 10.1063/1.5089637 10.1074/jbc.R115.648691 10.1016/j.cpc.2012.09.022 10.1021/acs.chemrev.5b00533 10.1021/acscatal.0c02795 |
| ContentType | Journal Article |
| Copyright | 2024 American Chemical Society Copyright American Chemical Society May 14, 2024 |
| Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society May 14, 2024 |
| DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1021/acs.jctc.4c00033 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| EndPage | 3600 |
| ExternalDocumentID | 38651739 10_1021_acs_jctc_4c00033 c33321973 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-a364t-664fb26f36e1290b5cd9eeaa72fde22c3e47b48273a8ee63bda92dd2ac3223863 |
| IEDL.DBID | ACS |
| ISSN | 1549-9618 1549-9626 |
| IngestDate | Fri Jul 11 10:50:44 EDT 2025 Mon Jun 30 04:42:33 EDT 2025 Tue Apr 29 09:22:42 EDT 2025 Wed Oct 01 06:51:23 EDT 2025 Thu Apr 24 22:52:09 EDT 2025 Thu Feb 27 03:23:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a364t-664fb26f36e1290b5cd9eeaa72fde22c3e47b48273a8ee63bda92dd2ac3223863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2732-086X 0000-0003-4648-0057 0000-0002-9142-0187 |
| PMID | 38651739 |
| PQID | 3064258589 |
| PQPubID | 2048741 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_3045115975 proquest_journals_3064258589 pubmed_primary_38651739 crossref_primary_10_1021_acs_jctc_4c00033 crossref_citationtrail_10_1021_acs_jctc_4c00033 acs_journals_10_1021_acs_jctc_4c00033 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-14 |
| PublicationDateYYYYMMDD | 2024-05-14 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J. Chem. Theory Comput |
| PublicationYear | 2024 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref13/cit13 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref106/cit106 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 Li J. (ref2/cit2) 2024 ref34/cit34 ref37/cit37 Case D. A. (ref58/cit58) 2020 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 Frisch M. J. (ref36/cit36) 2016 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref95/cit95 ref108/cit108 ref104/cit104 (ref78/cit78) 2021 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
| References_xml | – ident: ref30/cit30 doi: 10.1080/00268970500417762 – ident: ref32/cit32 doi: 10.1007/s002140050309 – start-page: 658 volume-title: Comprehensive Computational Chemistry year: 2024 ident: ref2/cit2 doi: 10.1016/B978-0-12-821978-2.00012-X – ident: ref41/cit41 doi: 10.1002/wcms.1340 – ident: ref75/cit75 doi: 10.1063/1.476732 – ident: ref9/cit9 doi: 10.1126/science.aaw4675 – ident: ref105/cit105 doi: 10.1016/j.sbi.2021.06.006 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.0c01212 – ident: ref27/cit27 doi: 10.26434/chemrxiv-2022-gj75d – ident: ref26/cit26 doi: 10.1016/j.cpletx.2019.100007 – ident: ref40/cit40 doi: 10.1063/5.0004835 – ident: ref22/cit22 doi: 10.1002/chem.202301570 – ident: ref56/cit56 doi: 10.1021/acs.jpcb.0c05761 – ident: ref13/cit13 doi: 10.1039/D3CP04900K – ident: ref44/cit44 doi: 10.1021/jp9028968 – ident: ref99/cit99 doi: 10.1021/acs.jpcb.2c00969 – ident: ref72/cit72 doi: 10.1021/acs.jpclett.9b02120 – ident: ref79/cit79 doi: 10.1039/b201230h – ident: ref28/cit28 doi: 10.1063/1.1545679 – ident: ref91/cit91 doi: 10.1039/c1cp22592h – ident: ref83/cit83 doi: 10.1038/s41467-021-26673-2 – ident: ref55/cit55 doi: 10.1021/acs.jpca.0c11270 – ident: ref34/cit34 doi: 10.1021/jp0761618 – ident: ref43/cit43 – ident: ref71/cit71 – volume-title: Amber 2020 year: 2020 ident: ref58/cit58 – ident: ref10/cit10 doi: 10.1021/jacs.2c10165 – ident: ref16/cit16 doi: 10.3389/fchem.2014.00097 – ident: ref81/cit81 doi: 10.1146/annurev.biochem.78.080207.092132 – ident: ref94/cit94 doi: 10.1016/j.biotechadv.2021.107712 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.52.997 – ident: ref51/cit51 doi: 10.1016/j.cplett.2004.06.011 – ident: ref96/cit96 doi: 10.1038/s41467-021-21200-9 – ident: ref107/cit107 doi: 10.1021/jacs.9b05323 – ident: ref108/cit108 doi: 10.1002/jcc.26072 – ident: ref66/cit66 doi: 10.1080/08927020290018769 – ident: ref106/cit106 doi: 10.1074/jbc.273.42.27035 – ident: ref24/cit24 doi: 10.1146/annurev.physchem.55.091602.094449 – ident: ref29/cit29 doi: 10.1021/jp908032x – ident: ref48/cit48 doi: 10.1021/acs.jctc.3c00389 – ident: ref3/cit3 doi: 10.1002/wcms.83 – ident: ref47/cit47 doi: 10.1021/acs.jpca.3c03214 – ident: ref64/cit64 doi: 10.1063/1.445869 – ident: ref18/cit18 doi: 10.1038/s41557-022-00892-6 – ident: ref69/cit69 doi: 10.1002/jcc.22885 – ident: ref102/cit102 doi: 10.1038/nchem.2651 – ident: ref12/cit12 doi: 10.1021/jacs.1c12360 – ident: ref86/cit86 doi: 10.1021/bi030011f – ident: ref4/cit4 doi: 10.1039/DF9633500077 – ident: ref50/cit50 – ident: ref65/cit65 doi: 10.1002/wcms.1163 – ident: ref14/cit14 doi: 10.1021/acs.jpca.1c07017 – ident: ref46/cit46 doi: 10.1021/acs.jctc.3c00577 – ident: ref53/cit53 doi: 10.1039/b515623h – ident: ref67/cit67 doi: 10.1021/acs.jctc.8b00854 – ident: ref62/cit62 doi: 10.1021/acs.jctc.5b00255 – ident: ref19/cit19 doi: 10.1016/j.cplett.2013.10.065 – ident: ref45/cit45 doi: 10.1063/1.4952956 – ident: ref38/cit38 doi: 10.1080/00268976.2014.952696 – ident: ref68/cit68 doi: 10.1063/5.0180424 – ident: ref20/cit20 doi: 10.1016/j.jcat.2020.04.016 – ident: ref70/cit70 doi: 10.1016/0263-7855(96)00018-5 – ident: ref103/cit103 doi: 10.1002/wcms.1438 – ident: ref35/cit35 doi: 10.1021/ct1000268 – ident: ref92/cit92 doi: 10.1021/acs.jctc.9b01145 – ident: ref49/cit49 doi: 10.1021/acs.jpca.0c05216 – ident: ref76/cit76 doi: 10.1021/cr100023g – ident: ref73/cit73 doi: 10.1021/jz301573j – ident: ref100/cit100 doi: 10.1038/nature16989 – volume-title: DNA Photodamage: From Light Absorption to Cellular Responses and Skin Cancer. year: 2021 ident: ref78/cit78 – ident: ref90/cit90 doi: 10.1021/acs.jpca.9b03157 – ident: ref84/cit84 doi: 10.3390/catal9030221 – ident: ref101/cit101 doi: 10.1039/C8CS00354H – ident: ref42/cit42 – ident: ref95/cit95 doi: 10.1038/s41929-023-01024-0 – ident: ref98/cit98 doi: 10.1016/j.bbagen.2013.07.015 – ident: ref11/cit11 doi: 10.1038/s43588-023-00422-5 – ident: ref63/cit63 doi: 10.1021/acs.jctc.6b00186 – ident: ref88/cit88 doi: 10.1039/C9CP00794F – ident: ref89/cit89 doi: 10.1002/anie.202205735 – ident: ref82/cit82 doi: 10.1146/annurev-biochem-061516-044724 – ident: ref31/cit31 doi: 10.1021/acs.jpclett.6b02501 – ident: ref59/cit59 doi: 10.1021/ct200909j – ident: ref87/cit87 doi: 10.1021/bi0330139 – ident: ref5/cit5 doi: 10.1021/acs.chemrev.5b00723 – ident: ref15/cit15 doi: 10.1002/agt2.91 – ident: ref8/cit8 doi: 10.1021/cr200177j – ident: ref21/cit21 doi: 10.1126/science.abl4922 – ident: ref39/cit39 doi: 10.1063/5.0005188 – ident: ref61/cit61 doi: 10.1021/ct400314y – ident: ref93/cit93 doi: 10.1021/acs.jctc.0c01075 – ident: ref7/cit7 doi: 10.1002/adma.201906064 – ident: ref1/cit1 doi: 10.1146/annurev-physchem-061020-053433 – ident: ref77/cit77 doi: 10.1021/cr0404646 – ident: ref54/cit54 doi: 10.1039/b508541a – ident: ref37/cit37 doi: 10.1002/wcms.1606 – ident: ref74/cit74 doi: 10.1021/ct9004905 – ident: ref97/cit97 doi: 10.1021/acs.chemrev.7b00707 – ident: ref23/cit23 doi: 10.1039/D3DT01404E – ident: ref33/cit33 doi: 10.1002/chem.200305415 – ident: ref80/cit80 doi: 10.1021/ja069176c – ident: ref17/cit17 doi: 10.1021/acs.jpclett.0c02012 – ident: ref57/cit57 doi: 10.1063/1.5089637 – ident: ref85/cit85 doi: 10.1074/jbc.R115.648691 – ident: ref60/cit60 doi: 10.1016/j.cpc.2012.09.022 – volume-title: Gaussian 16 year: 2016 ident: ref36/cit36 – ident: ref52/cit52 doi: 10.1021/acs.chemrev.5b00533 – ident: ref104/cit104 doi: 10.1021/acscatal.0c02795 |
| SSID | ssj0033423 |
| Score | 2.4534507 |
| Snippet | The Python-based program, XMECP, is developed for realizing robust, efficient, and state-of-the-art minimum energy crossing point (MECP) optimization in... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3590 |
| SubjectTerms | Algorithms Atomic energy levels Complex systems Electric fields Electron transfer Hydrogen bonds Iron Optimization Oxygen Quantum Electronic Structure Residues Spin-orbit interactions |
| Title | XMECP: Reaching State-of-the-Art MECP Optimization in Multiscale Complex Systems |
| URI | http://dx.doi.org/10.1021/acs.jctc.4c00033 https://www.ncbi.nlm.nih.gov/pubmed/38651739 https://www.proquest.com/docview/3064258589 https://www.proquest.com/docview/3045115975 |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8ImI8GBg9vaTp2EG6paVUgFxCL1FtmOI7GliKQS4uvxuG4RW8U1tpPY48y8yYzfIHTEGmBGFSS1C0VAS5LEOnAEzJmMuLWJFA4n9y5E9y487zf7nzQ53yP4jNalLmsPutK1UAOA57NonokogvS9s9bNWOtyYLJz3KghME7S2Ickf7sDGCJdfjVEf6BLZ2U6y6NyRaUjJ4TkksfasFI1_f6TuvEfE1hBSx5s4rPR7lhFM6ZYQwutcY23dXTV77VbV6f42udUYoc9ySAnFhcSOw5DO760euXZH9jE9wV2p3ZLK12DQZ88mTfsmc830F2nfdvqEl9jgUguwooIEeaKiZwLA3-kVFNniTFSRizPDGOamzBSQBXKZWyM4CqTCcsyJrXVBDwWfBPNFYPCbEOSlNKskWc0jqwwmJJK6IQ3DZU8ZpmiATq2S5H6b6RMXfib0dRdtOuT-vUJUH0smFR7onKol_E0ZcTJZMTLiKRjSt-9saw_X8W5YdZxipMAHU6arSwgeiILMxhCH6Bys_5XM0Bboz0yeRgUTqURT3b-OcVdtMgsOIIsBBruobnqdWj2Lbip1IHb1R8wX_EV |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9lAu5V0WChgJDhy8re3ESbhVq1YLdEtVWmlvke04UkubRSQrVf31zHidrUBQlWv8iO1x5pGZ-QbgndwhMWopqF1bTlySF2jAcRJnJlMoEwUlJ08O9fg0-TxNpysg-lwYXESLM7XBiX-DLiC26dm569wwcaTHq3uwlupEkL21O_rWM19FgHYBIjUh4EmRR8_k32YgeeTa3-XRP5TMIGz2H8DxcpkhxuT7cN7Zobv-A8Hxv_bxEDai6sl2F3flEaz45jGsj_qKb0_gaDrZGx19ZMcxwpIFTZTPao5aIsdxjNrZV-QylzF9k501LOTwtkhrz4i7XPgrFnHQn8Lp_t7JaMxjxQVulE46rnVSW6lrpT39n7KpqwrvjclkXXkpnfJJZgk4VJnce61sZQpZVdI45Asq1-oZrDazxj-nkCnr5E5diTxDmkhrrHaFSr0wKpeVFQN4j0dRxi-mLYMzXIoyPMTzKeP5DGC7p0_pImw5Vc-4uGXEh-WIHwvIjlv6bvUkv1lKMMrQjMqLAbxdNiMtyJdiGj-bUx8CdkNrLB3A5uKqLF9GZVRFpooXd9ziG1gfn0wOyoNPh19ewn2JahPFJ4hkC1a7n3P_CtWezr4OF_0XqvX5dw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgIuUB6lCy0YCQ4cvK3txEm4oW1X5dGyAor2FtmOI0FLtiJZqeqvZ8brLAK1FVz9iu2x55GZ-QzwQu6SGLUU1K4tJy7JCzTgOIkzkymUiYKSkw-P9MFx8m6aTlcg7XNhcBItjtQGJz7d6rOqjggDYofKv7vODRNHury6AWupxptOGtHoc8-AFYHaBZjUhMAnRR69k5eNQDLJtX_KpCsUzSBwxnfh63KqIc7kZDjv7NBd_IXi-N9rWYc7UQVlbxZn5h6s-OY-3Br1L789gMn0cH80ec0-xUhLFjRSPqs5aosc-zGqZx-R2_yIaZzsW8NCLm-LNPeMuMypP2cRD_0hHI_3v4wOeHx5gRulk45rndRW6lppT_-pbOqqwntjMllXXkqnfJJZAhBVJvdeK1uZQlaVNA75g8q12oDVZtb4TQqdsk7u1pXIM6SLtMZqV6jUC6NyWVkxgJe4FWW8OW0ZnOJSlKEQ96eM-zOAnZ5GpYvw5fSKxuk1PV4te5wtoDuuabvVk_33VIJxhuZUXgzg-bIaaUE-FdP42ZzaEMAbWmXpAB4tjsvyY_ScqshU8fgfl_gMbk72xuWHt0fvn8BtidoThSmIZAtWu59zv43aT2efhrP-C9iq-_o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XMECP%3A+Reaching+State-of-the-Art+MECP+Optimization+in+Multiscale+Complex+Systems&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Xu%2C+Jiawei&rft.au=Hao%2C+Jian&rft.au=Bu%2C+Caijie&rft.au=Meng%2C+Yajie&rft.date=2024-05-14&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=9&rft.spage=3590&rft_id=info:doi/10.1021%2Facs.jctc.4c00033&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |