Design of New n‑Type Porphyrin Acceptors with Subtle Side-Chain Engineering for Efficient Nonfullerene Solar Cells with Low Energy Loss and Optoelectronic Response Covering the Near-Infrared Region

A series of tailor-made highly efficient and near-infrared (NIR) porphyrin-based acceptors is designed and synthesized for fullerene-free bulk-heterojunction (BHJ) organic solar cells. Constructing BHJ active layers using a PTB7-Th donor and porphyrin acceptors (P-x), which have complementary absorp...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 49; pp. 45991 - 45998
Main Authors Tsai, Ming-Chi, Hung, Chieh-Ming, Chen, Zi-Qin, Chiu, Yi-Chieh, Chen, Hsieh-Chih, Lin, Ching-Yao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.12.2019
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.9b15975

Cover

More Information
Summary:A series of tailor-made highly efficient and near-infrared (NIR) porphyrin-based acceptors is designed and synthesized for fullerene-free bulk-heterojunction (BHJ) organic solar cells. Constructing BHJ active layers using a PTB7-Th donor and porphyrin acceptors (P-x), which have complementary absorption, accomplishes panchromatic photon-to-current conversion from 300 to 950 nm. Our study shows that side chains of the porphyrin acceptors fairly influence the molecular ordering and nanomorphology of the BHJ active layers. Significantly, the porphyrin acceptor with four dodecoxyl side chains (P-2) achieves an open-circuit voltage (V OC) of 0.80 V, short-circuit current density (J SC) of 13.94 mA cm–2, fill factor of 64.8%, and overall power conversion efficiency of 7.23%. This great performance is attributable to the ascendant light-harvesting capability in the visible and near-infrared region, a high-lying LUMO energy level, a relatively high and more balanced carrier mobilities, and more ordered face-on molecular packing, which is beneficial for obtaining high V OC and J SC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.9b15975