Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties

The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated i...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 7; no. 25; pp. 14130 - 14139
Main Authors Zhang, Xin, Scott, Tom, Socha, Tyler, Nielsen, David, Manno, Michael, Johnson, Melissa, Yan, Yuqi, Losovyj, Yaroslav, Dowben, Peter, Aydil, Eray S, Leighton, Chris
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.07.2015
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.5b03422

Cover

Abstract The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe1−δS) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe1−δS formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe1−δS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe1−δS nanoregions in an FeS2 matrix), followed by metallicity when Fe1−δS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.
AbstractList The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe1−δS) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe1−δS formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe1−δS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe1−δS nanoregions in an FeS2 matrix), followed by metallicity when Fe1−δS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.
The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.
The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.
The use of pyrite FeS₂ as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS₂ films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe₁₋δS) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe₁₋δS formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe₁₋δS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe₁₋δS nanoregions in an FeS₂ matrix), followed by metallicity when Fe₁₋δS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS₂ carrier density. These findings have important implications for FeS₂ solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.
Author Zhang, Xin
Yan, Yuqi
Scott, Tom
Aydil, Eray S
Leighton, Chris
Losovyj, Yaroslav
Socha, Tyler
Nielsen, David
Manno, Michael
Johnson, Melissa
Dowben, Peter
AuthorAffiliation Department of Chemistry
University of Minnesota
Department of Physics and Astronomy
Indiana University
Department of Chemical Engineering and Materials Science
University of NebraskaLincoln
AuthorAffiliation_xml – name: University of NebraskaLincoln
– name: Department of Chemistry
– name: Indiana University
– name: Department of Physics and Astronomy
– name: University of Minnesota
– name: Department of Chemical Engineering and Materials Science
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 2
  givenname: Tom
  surname: Scott
  fullname: Scott, Tom
– sequence: 3
  givenname: Tyler
  surname: Socha
  fullname: Socha, Tyler
– sequence: 4
  givenname: David
  surname: Nielsen
  fullname: Nielsen, David
– sequence: 5
  givenname: Michael
  surname: Manno
  fullname: Manno, Michael
– sequence: 6
  givenname: Melissa
  surname: Johnson
  fullname: Johnson, Melissa
– sequence: 7
  givenname: Yuqi
  surname: Yan
  fullname: Yan, Yuqi
– sequence: 8
  givenname: Yaroslav
  surname: Losovyj
  fullname: Losovyj, Yaroslav
– sequence: 9
  givenname: Peter
  surname: Dowben
  fullname: Dowben, Peter
– sequence: 10
  givenname: Eray S
  surname: Aydil
  fullname: Aydil, Eray S
  email: aydil@umn.edu
– sequence: 11
  givenname: Chris
  surname: Leighton
  fullname: Leighton, Chris
  email: leighton@umn.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26087015$$D View this record in MEDLINE/PubMed
BookMark eNqFkctr3DAQxkVJaB7ttceiYynsRg9btnorIY-FQBayPYuxPGYVbMmVtIf976uwmxwKIZd5_r45zHdBTnzwSMg3zpacCX4FNsHklnXHZCXEJ3LOdVUtWlGLk7e6qs7IRUrPjCkpWP2ZnAnF2obx-pzgegsJ6VOGzo0u7yn4vnTB2a0LE-a4p87TzbaEWzdOdBWDp-t9dBl_0dU0g820TG5GtLmsnKWbCD7NIWa6jmHGmB2mL-R0gDHh12O-JH9ubzbX94uHx7vV9e-HBUgl88JWIEWtOkSsgbf9oFpoeAcMLDRaqkEqbQvS9Bp5o7juUWhlOz60gx7qXl6SH4e7cwx_d5iymVyyOI7gMeySEYwxySXn7EOUKy1522j9gn4_ortuwt7M0U0Q9-b1iwWoDoCNIaWIg7EuQ3bB5whuNJyZF7PMwSxzNKvIlv_JXi-_K_h5EJS5eQ676Msz34P_AVFwpjE
CitedBy_id crossref_primary_10_1039_C7RA03599C
crossref_primary_10_1002_pssr_202000291
crossref_primary_10_1103_PhysRevMaterials_6_064601
crossref_primary_10_1039_D3NA00263B
crossref_primary_10_1021_acsami_9b01335
crossref_primary_10_1088_1402_4896_ad3861
crossref_primary_10_1016_j_inoche_2022_109913
crossref_primary_10_1016_j_solmat_2019_109963
crossref_primary_10_1002_chem_201803327
crossref_primary_10_1016_j_mssp_2019_104775
crossref_primary_10_1021_acsami_3c04662
crossref_primary_10_1557_adv_2018_634
crossref_primary_10_1021_acs_chemmater_1c03557
crossref_primary_10_1016_j_tsf_2019_01_020
crossref_primary_10_1021_acs_chemmater_0c01669
crossref_primary_10_1021_acsomega_1c05232
crossref_primary_10_3390_nano11112844
crossref_primary_10_1002_ente_201700638
crossref_primary_10_1016_j_jmst_2021_09_047
crossref_primary_10_1021_acsmaterialslett_0c00207
crossref_primary_10_1007_s10876_019_01708_3
crossref_primary_10_1016_j_actamat_2020_116582
crossref_primary_10_1016_j_matlet_2018_04_020
crossref_primary_10_1021_acsami_9b16144
crossref_primary_10_1126_sciadv_abb7721
crossref_primary_10_1016_j_actamat_2022_118090
crossref_primary_10_1021_acs_chemmater_7b03550
crossref_primary_10_1021_acs_jpcc_3c03105
crossref_primary_10_1103_PhysRevMaterials_1_015402
crossref_primary_10_1016_j_mineng_2022_107742
crossref_primary_10_1002_slct_201800405
crossref_primary_10_1016_j_mtadv_2020_100057
crossref_primary_10_1107_S2052520618010144
crossref_primary_10_1039_C7CP06289C
crossref_primary_10_1103_PhysRevMaterials_5_025405
crossref_primary_10_1007_s10853_019_04032_3
crossref_primary_10_1021_acsnano_6b00065
crossref_primary_10_1039_D2NJ01943D
crossref_primary_10_1103_PhysRevMaterials_1_065403
crossref_primary_10_1016_j_apsusc_2019_06_214
Cites_doi 10.1080/13642810108205796
10.1021/es8019534
10.1103/PhysRevB.85.085203
10.1016/0169-4332(93)90217-Y
10.1116/1.3569757
10.1039/c3ee43169j
10.1021/nl501942w
10.1103/PhysRevLett.31.44
10.1021/ja1096368
10.1021/nl202902z
10.1080/14786437708232943
10.1063/1.2162678
10.1103/PhysRevB.83.235311
10.1021/ja311974n
10.1016/S0927-0248(02)00205-2
10.1116/1.3517739
10.1021/jz301023c
10.1016/0927-0248(93)90095-K
10.1103/PhysRevB.70.115317
10.1021/nn305833u
10.1021/nl2045364
10.1016/j.electacta.2014.02.048
10.1016/j.elspec.2005.12.002
10.1016/0016-7037(95)00025-U
10.1103/PhysRevB.43.11926
10.1103/PhysRev.137.A1321
10.1002/aenm.201200043
10.1021/ja307412e
10.1116/1.4828818
10.1080/13642819208204926
10.1021/nn4003264
10.1103/PhysRevB.5.4709
10.1080/00018737500101431
10.1002/aenm.201100351
10.1016/0040-6090(92)90293-K
10.1103/PhysRevB.85.085314
10.1063/1.351925
10.1016/0167-5729(87)90007-0
10.1021/ja509142w
10.1016/0009-2541(93)90295-T
10.1007/978-3-662-02403-4
10.1063/1.4751358
10.1557/JMR.1990.1567
10.1016/0378-5963(80)90148-8
10.1016/j.susc.2013.08.014
10.1103/RevModPhys.79.469
10.1103/PhysRevB.84.035212
10.1016/0022-3093(89)90167-1
10.1021/jp5005924
10.1063/1.2210291
10.1021/cm304152b
10.1016/0040-6090(94)90723-4
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.5b03422
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 14139
ExternalDocumentID 26087015
10_1021_acsami_5b03422
e08352952
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-c4a3256beee5a18df68a71ba0aca7936f369ca327d9e17619de296cb1f8f9f5d3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 10:24:33 EDT 2025
Thu Jul 10 17:47:39 EDT 2025
Mon Jul 21 05:50:11 EDT 2025
Tue Jul 01 04:12:42 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords stoichiometry
photovoltaic devices
doping
pyrite
charge transport
thin films
phase stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-c4a3256beee5a18df68a71ba0aca7936f369ca327d9e17619de296cb1f8f9f5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26087015
PQID 1693187990
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2000313110
proquest_miscellaneous_1693187990
pubmed_primary_26087015
crossref_citationtrail_10_1021_acsami_5b03422
crossref_primary_10_1021_acsami_5b03422
acs_journals_10_1021_acsami_5b03422
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Végh J. (ref59/cit59) 2006; 151
Kakalios J. (ref35/cit35) 1989; 114
Wolden C. A. (ref2/cit2) 2011; 29
Abeles B. (ref51/cit51) 1975; 24
Brion D. (ref44/cit44) 1980; 5
Hu J. (ref18/cit18) 2012; 85
Willeke G. (ref29/cit29) 1992; 213
Cabán-Acevedo M. (ref11/cit11) 2012; 12
Liang D. (ref25/cit25) 2014; 14
Sun R. (ref19/cit19) 2011; 83
Puthussery J. (ref9/cit9) 2011; 133
Andersson K. J. (ref22/cit22) 2014; 118
Herbert F. W. (ref21/cit21) 2014; 127
Takayama T. (ref55/cit55) 2006; 88
Galperin Y. M. (ref34/cit34) 1991; 72
Birkholz M. (ref36/cit36) 1991; 43
Yu L. (ref16/cit16) 2011; 1
Limpinsel M. (ref14/cit14) 2014; 7
Cabán-Acevedo M. (ref15/cit15) 2014; 136
Zhang X. (ref32/cit32) 2013; 7
Morrish R. (ref4/cit4) 2012; 134
Mernagh T. P. (ref40/cit40) 1993; 103
De Donato P. (ref43/cit43) 1993; 68
Sun R. (ref17/cit17) 2011; 84
Zhang J. (ref53/cit53) 2004; 70
Herbert F. W. (ref26/cit26) 2013; 618
ref38/cit38
Steinhagen C. (ref23/cit23) 2012; 3
Wadia C. (ref3/cit3) 2009; 43
Sentman C. D. (ref7/cit7) 2014; 32
Bi Y. (ref10/cit10) 2011; 11
Soukup R. J. (ref31/cit31) 2011; 29
Pollak M. (ref52/cit52) 1992; 65
Moulder J. F. (ref45/cit45) 1993
Yamamoto A. (ref28/cit28) 2003; 75
Ennaoui A. (ref1/cit1) 1993; 29
Schieck R. (ref27/cit27) 1990; 5
Büker K. (ref24/cit24) 1992; 72
Wang L. (ref41/cit41) 2006; 88
Zabrodskii A. G. (ref47/cit47) 2001; 81
Seefeld S. (ref6/cit6) 2013; 135
ref39/cit39
Shklovskii B. I. (ref48/cit48) 1984
Lucas J. M. (ref12/cit12) 2013; 25
Berry N. (ref5/cit5) 2012; 2
Vaughan D. J. (ref37/cit37) 1978
Cabán-Acevedo M. (ref13/cit13) 2013; 7
Shirley D. A. (ref58/cit58) 1972; 5
Baruth A. (ref8/cit8) 2012; 112
Egelhoff W. F. (ref57/cit57) 1987; 6
Sheng P. (ref50/cit50) 1973; 31
Le Comber P. G. (ref33/cit33) 1977; 35
Theodossiou A. (ref46/cit46) 1965; 137
Beloborodov I. S. (ref54/cit54) 2007; 79
Lichtenberger D. (ref30/cit30) 1994; 246
Knipe S. W. (ref42/cit42) 1995; 59
Zhang Y. N. (ref20/cit20) 2012; 85
Mott N. (ref49/cit49) 1990
References_xml – volume: 81
  start-page: 1131
  year: 2001
  ident: ref47/cit47
  publication-title: Philos. Mag. Part B
  doi: 10.1080/13642810108205796
– volume: 43
  start-page: 2072
  year: 2009
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8019534
– volume: 85
  start-page: 085203
  year: 2012
  ident: ref18/cit18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.085203
– volume: 68
  start-page: 81
  year: 1993
  ident: ref43/cit43
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(93)90217-Y
– volume: 29
  start-page: 030801
  year: 2011
  ident: ref2/cit2
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.3569757
– volume: 7
  start-page: 1974
  year: 2014
  ident: ref14/cit14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43169j
– volume: 14
  start-page: 6754
  year: 2014
  ident: ref25/cit25
  publication-title: Nano Lett.
  doi: 10.1021/nl501942w
– volume: 31
  start-page: 44
  year: 1973
  ident: ref50/cit50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.31.44
– volume: 133
  start-page: 716
  year: 2011
  ident: ref9/cit9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1096368
– volume: 11
  start-page: 4953
  year: 2011
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl202902z
– volume: 35
  start-page: 1173
  year: 1977
  ident: ref33/cit33
  publication-title: Philos. Mag.
  doi: 10.1080/14786437708232943
– volume: 88
  start-page: 012512
  year: 2006
  ident: ref55/cit55
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2162678
– volume: 83
  start-page: 235311
  year: 2011
  ident: ref19/cit19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235311
– volume: 135
  start-page: 4412
  year: 2013
  ident: ref6/cit6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311974n
– volume: 75
  start-page: 451
  year: 2003
  ident: ref28/cit28
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(02)00205-2
– volume: 29
  start-page: 011001
  year: 2011
  ident: ref31/cit31
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.3517739
– volume: 3
  start-page: 2352
  year: 2012
  ident: ref23/cit23
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301023c
– volume: 29
  start-page: 289
  year: 1993
  ident: ref1/cit1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/0927-0248(93)90095-K
– volume: 70
  start-page: 115317
  year: 2004
  ident: ref53/cit53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.115317
– volume: 7
  start-page: 1731
  year: 2013
  ident: ref13/cit13
  publication-title: ACS Nano
  doi: 10.1021/nn305833u
– volume: 12
  start-page: 1977
  year: 2012
  ident: ref11/cit11
  publication-title: Nano Lett.
  doi: 10.1021/nl2045364
– volume: 127
  start-page: 416
  year: 2014
  ident: ref21/cit21
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.02.048
– volume: 72
  start-page: 193
  year: 1991
  ident: ref34/cit34
  publication-title: Sov. Phys. JETP
– volume-title: Mineral Chemistry of Metal Sulfides
  year: 1978
  ident: ref37/cit37
– volume: 151
  start-page: 159
  year: 2006
  ident: ref59/cit59
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2005.12.002
– volume: 59
  start-page: 1079
  year: 1995
  ident: ref42/cit42
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00025-U
– ident: ref38/cit38
– volume: 43
  start-page: 11926
  year: 1991
  ident: ref36/cit36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.11926
– volume: 137
  start-page: A1321
  year: 1965
  ident: ref46/cit46
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.137.A1321
– volume-title: Metal-Insulator Transitions
  year: 1990
  ident: ref49/cit49
– volume: 2
  start-page: 1124
  year: 2012
  ident: ref5/cit5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200043
– volume-title: Handbook of X-Ray Photoelectron Spectroscopy
  year: 1993
  ident: ref45/cit45
– volume: 134
  start-page: 17854
  year: 2012
  ident: ref4/cit4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307412e
– volume: 32
  start-page: 021201
  year: 2014
  ident: ref7/cit7
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4828818
– volume: 65
  start-page: 855
  year: 1992
  ident: ref52/cit52
  publication-title: Philos. Mag. B
  doi: 10.1080/13642819208204926
– volume: 7
  start-page: 2781
  year: 2013
  ident: ref32/cit32
  publication-title: ACS Nano
  doi: 10.1021/nn4003264
– volume: 5
  start-page: 4709
  year: 1972
  ident: ref58/cit58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.5.4709
– volume: 24
  start-page: 407
  year: 1975
  ident: ref51/cit51
  publication-title: Adv. Phys.
  doi: 10.1080/00018737500101431
– volume: 1
  start-page: 748
  year: 2011
  ident: ref16/cit16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100351
– volume: 213
  start-page: 271
  year: 1992
  ident: ref29/cit29
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(92)90293-K
– volume: 85
  start-page: 085314
  year: 2012
  ident: ref20/cit20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.085314
– volume: 72
  start-page: 5721
  year: 1992
  ident: ref24/cit24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351925
– volume: 6
  start-page: 253
  year: 1987
  ident: ref57/cit57
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/0167-5729(87)90007-0
– volume: 136
  start-page: 17163
  year: 2014
  ident: ref15/cit15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509142w
– volume: 103
  start-page: 113
  year: 1993
  ident: ref40/cit40
  publication-title: Chem. Geol.
  doi: 10.1016/0009-2541(93)90295-T
– volume-title: Electronic Properties of Doped Semiconductors
  year: 1984
  ident: ref48/cit48
  doi: 10.1007/978-3-662-02403-4
– volume: 112
  start-page: 054328
  year: 2012
  ident: ref8/cit8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4751358
– volume: 5
  start-page: 1567
  year: 1990
  ident: ref27/cit27
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1990.1567
– ident: ref39/cit39
– volume: 5
  start-page: 133
  year: 1980
  ident: ref44/cit44
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0378-5963(80)90148-8
– volume: 618
  start-page: 53
  year: 2013
  ident: ref26/cit26
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.08.014
– volume: 79
  start-page: 469
  year: 2007
  ident: ref54/cit54
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.469
– volume: 84
  start-page: 035212
  year: 2011
  ident: ref17/cit17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.035212
– volume: 114
  start-page: 372
  year: 1989
  ident: ref35/cit35
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(89)90167-1
– volume: 118
  start-page: 21896
  year: 2014
  ident: ref22/cit22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5005924
– volume: 88
  start-page: 232509
  year: 2006
  ident: ref41/cit41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2210291
– volume: 25
  start-page: 1615
  year: 2013
  ident: ref12/cit12
  publication-title: Chem. Mater.
  doi: 10.1021/cm304152b
– volume: 246
  start-page: 6
  year: 1994
  ident: ref30/cit30
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)90723-4
SSID ssj0063205
Score 2.3594952
Snippet The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and...
The use of pyrite FeS₂ as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14130
SubjectTerms annealing
crystals
photovoltaic cells
physicochemical properties
pyrite
stoichiometry
X-ray photoelectron spectroscopy
Title Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties
URI http://dx.doi.org/10.1021/acsami.5b03422
https://www.ncbi.nlm.nih.gov/pubmed/26087015
https://www.proquest.com/docview/1693187990
https://www.proquest.com/docview/2000313110
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8244
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34fj-IKHiKbpI2Tb0t4qKCsqALeyt5FRe1K93uYf31Ttru-lgWPbZMaDpJ5pGZ-QahU-2CwEQqIhE3jARKhiRWVhJJqdJpKLQrcWbvH8RNJ7jrht2v-47fEXxGL5QZ-FY4ofZgdSBsF5iQ1LtZzavHscwVnJXJiuCRB0SCxhrDM06N90rIDH4qoRmWZalhWisV3NGgBCb0iSUv58NCn5uPadjGPye_ipZrMxM3q32xhuZcto6WvoEPbiDXfgYNhsHaLPNjR1hlFp76PfPsS_KLfIR7GfZ9PXGr9_qGb_N-htujHGzUS3xbFldieHM96aODJ0DpuO2v-HOP1bqJOq3rp6sbUjddIIoLXhATKM78GjkXKiptKqSKqFYNZRScZZFyERsgiWzsqL8DsY7FwmiayjROQ8u30HzWz9wOwg1rTEMqY410AaMWnDvNI2ejwDDOY7uLToA_SX1oBkkZD2c0qZiW1EzbRWS8Vompcct9-4zXmfRnE_r3CrFjJuXxeOkTOFQ-UqIy1x_CTETMfRv2uDGbxtc4cQ9WBDTb1b6ZfA-cRJCDNNz71x_uo0Uww8IqCfgAzRf50B2CqVPoo3KXfwL9i_nZ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZW9FA4UMr70daISpwM6zhxHG5oxWq3PLRSQeIW-RWxArIomz1sf33HzqNAtVJ7jDVJ_Bh7Ptsz3yD0Xdkw1LGMScx0QEIpIpJII4igVKos4sp6ntnrGz64C3_cR_cddNrEwkAlpvClqb_E_8MuQE-hzGXEiZTjrIM194OnQXFYqPezWXo5C7zPImzMQyLAcDUsjX-972yRnr61RQsApjc0_U9o1FbR-5c8nsxKdaJ_vWNv_I82rKHVGnTi80pLPqOOzdfRyisqwg1kRw9gzzBgT-8tO8cyN_A0GesHF6BfFnM8zrHL8on746dnPCwmOR7NC0CsZ3joQy0xlFy0WXVwS5uOR-7Av3DMrZvorn9x2xuQOgUDkYyzkuhQssCNmLWRpMJkXMiYKtmVWsLM5hnjiQaR2CSWuhMRY4OEa0UzkSVZZNgWWsonud1BuGu07gqpjRY2DKiBrZ5isTVxqAPGErOLjqB_0noKTVN_Ox7QtOq0tO60XUSaIUt1zWLukmk8LZQ_buVfKv6OhZKHjQakMMXcvYnM7WQGNeEJc0nZk-5iGRfxxBx1EchsV-rT_g-2jLAq0mjvn1r4DX0c3F5fpVfDm8t9tAwALarcgw_QUlnM7BcAQaX66hX_N18wAlM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqKlXtgZa-oFDqqpV6Ml3HseNwq4AVWyhaqSBxi_yKWAFZlM0etr-eGScb9aGV6DHWJPFjxjNjz3xDyGcb0tRlJmOZcAlLjZYsN14zzbmxpVQ2RJzZH2fq-CL9fikvuzxuzIWBTszgS7N4iY9SfefLDmGAf4V2rIojLeLWwb77WCL-G9pDBz-X268SSYxbBOc8ZRqU1xKp8Z_3UR-52Z_6aIWRGZXN8Dk577sZY0yu9-aN3XO__kJw_M9xvCDrnfFJv7XcskEeheolefYbJOErEsZXoNco2KAxanZBTeXhaTpxV5io39QLOqkoVvukw8nNLR3V04qOFzVYrvt0FFMuKbQc9dV1aA-fTsd48F8jgutrcjE8Oj84Zl0pBmaEEg1zqREJrlwI0nDtS6VNxq0ZGGdAwlUpVO6AJPN54Hgy4kOSK2d5qcu8lF68IWvVtAqbhA68cwNtnHc6pAn34PJZkQWfpS4RIvdb5BPMT9GJ0qyIt-QJL9pJK7pJ2yJsuWyF69DMsajGzUr6Lz39XYvjsZLy45ILChA1vD8xVZjOoScqF1icPR-spsHMJ4EQRkDztmWh_n_gOsLuyOW7B43wA3kyPhwWp6Ozk23yFOw02UYJ75C1pp6H92ALNXY38v49nWMEzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Stability+and+Stoichiometry+in+Thin+Film+Iron+Pyrite%3A+Impact+on+Electronic+Transport+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Xin&rft.au=Scott%2C+Tom&rft.au=Socha%2C+Tyler&rft.au=Nielsen%2C+David&rft.date=2015-07-01&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.5b03422&rft.externalDocID=e08352952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon