Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties
The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated i...
Saved in:
Published in | ACS applied materials & interfaces Vol. 7; no. 25; pp. 14130 - 14139 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.5b03422 |
Cover
Abstract | The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe1−δS) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe1−δS formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe1−δS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe1−δS nanoregions in an FeS2 matrix), followed by metallicity when Fe1−δS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities. |
---|---|
AbstractList | The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe1−δS) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe1−δS formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe1−δS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe1−δS nanoregions in an FeS2 matrix), followed by metallicity when Fe1−δS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities. The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities. The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities.The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS2 films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe(1-δ)S) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe(1-δ)S formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe(1-δ)S minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe(1-δ)S nanoregions in an FeS2 matrix), followed by metallicity when Fe(1-δ)S dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS2 carrier density. These findings have important implications for FeS2 solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities. The use of pyrite FeS₂ as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and chemical properties. Phase stability, phase purity, stoichiometry, and defects, are central in this respect, as they are frequently implicated in poor solar cell performance. Here, phase-pure polycrystalline pyrite FeS₂ films, synthesized by ex situ sulfidation, are subject to systematic reduction by vacuum annealing (to 550 °C) to assess phase stability, stoichiometry evolution, and their impact on transport. Bulk probes reveal the onset of pyrrhotite (Fe₁₋δS) around 400 °C, rapidly evolving into the majority phase by 425 °C. This is supported by X-ray photoelectron spectroscopy on (001) crystals, revealing surface Fe₁₋δS formation as low as 160 °C, with rapid growth near 400 °C. The impact on transport is dramatic, with Fe₁₋δS minority phases leading to a crossover from diffusive transport to hopping (due to conductive Fe₁₋δS nanoregions in an FeS₂ matrix), followed by metallicity when Fe₁₋δS dominates. Notably, the crossover to hopping leads to an inversion of the sign, and a large decrease in magnitude of the Hall coefficient. By tracking resistivity, magnetotransport, magnetization, and structural/chemical parameters vs annealing, we provide a detailed picture of the evolution in properties with stoichiometry. A strong propensity for S-deficient minority phase formation is found, with no wide window where S vacancies control the FeS₂ carrier density. These findings have important implications for FeS₂ solar cell development, emphasizing the need for (a) nanoscale chemical homogeneity, and (b) caution in interpreting carrier types and densities. |
Author | Zhang, Xin Yan, Yuqi Scott, Tom Aydil, Eray S Leighton, Chris Losovyj, Yaroslav Socha, Tyler Nielsen, David Manno, Michael Johnson, Melissa Dowben, Peter |
AuthorAffiliation | Department of Chemistry University of Minnesota Department of Physics and Astronomy Indiana University Department of Chemical Engineering and Materials Science University of NebraskaLincoln |
AuthorAffiliation_xml | – name: University of NebraskaLincoln – name: Department of Chemistry – name: Indiana University – name: Department of Physics and Astronomy – name: University of Minnesota – name: Department of Chemical Engineering and Materials Science |
Author_xml | – sequence: 1 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 2 givenname: Tom surname: Scott fullname: Scott, Tom – sequence: 3 givenname: Tyler surname: Socha fullname: Socha, Tyler – sequence: 4 givenname: David surname: Nielsen fullname: Nielsen, David – sequence: 5 givenname: Michael surname: Manno fullname: Manno, Michael – sequence: 6 givenname: Melissa surname: Johnson fullname: Johnson, Melissa – sequence: 7 givenname: Yuqi surname: Yan fullname: Yan, Yuqi – sequence: 8 givenname: Yaroslav surname: Losovyj fullname: Losovyj, Yaroslav – sequence: 9 givenname: Peter surname: Dowben fullname: Dowben, Peter – sequence: 10 givenname: Eray S surname: Aydil fullname: Aydil, Eray S email: aydil@umn.edu – sequence: 11 givenname: Chris surname: Leighton fullname: Leighton, Chris email: leighton@umn.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26087015$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctr3DAQxkVJaB7ttceiYynsRg9btnorIY-FQBayPYuxPGYVbMmVtIf976uwmxwKIZd5_r45zHdBTnzwSMg3zpacCX4FNsHklnXHZCXEJ3LOdVUtWlGLk7e6qs7IRUrPjCkpWP2ZnAnF2obx-pzgegsJ6VOGzo0u7yn4vnTB2a0LE-a4p87TzbaEWzdOdBWDp-t9dBl_0dU0g820TG5GtLmsnKWbCD7NIWa6jmHGmB2mL-R0gDHh12O-JH9ubzbX94uHx7vV9e-HBUgl88JWIEWtOkSsgbf9oFpoeAcMLDRaqkEqbQvS9Bp5o7juUWhlOz60gx7qXl6SH4e7cwx_d5iymVyyOI7gMeySEYwxySXn7EOUKy1522j9gn4_ortuwt7M0U0Q9-b1iwWoDoCNIaWIg7EuQ3bB5whuNJyZF7PMwSxzNKvIlv_JXi-_K_h5EJS5eQ676Msz34P_AVFwpjE |
CitedBy_id | crossref_primary_10_1039_C7RA03599C crossref_primary_10_1002_pssr_202000291 crossref_primary_10_1103_PhysRevMaterials_6_064601 crossref_primary_10_1039_D3NA00263B crossref_primary_10_1021_acsami_9b01335 crossref_primary_10_1088_1402_4896_ad3861 crossref_primary_10_1016_j_inoche_2022_109913 crossref_primary_10_1016_j_solmat_2019_109963 crossref_primary_10_1002_chem_201803327 crossref_primary_10_1016_j_mssp_2019_104775 crossref_primary_10_1021_acsami_3c04662 crossref_primary_10_1557_adv_2018_634 crossref_primary_10_1021_acs_chemmater_1c03557 crossref_primary_10_1016_j_tsf_2019_01_020 crossref_primary_10_1021_acs_chemmater_0c01669 crossref_primary_10_1021_acsomega_1c05232 crossref_primary_10_3390_nano11112844 crossref_primary_10_1002_ente_201700638 crossref_primary_10_1016_j_jmst_2021_09_047 crossref_primary_10_1021_acsmaterialslett_0c00207 crossref_primary_10_1007_s10876_019_01708_3 crossref_primary_10_1016_j_actamat_2020_116582 crossref_primary_10_1016_j_matlet_2018_04_020 crossref_primary_10_1021_acsami_9b16144 crossref_primary_10_1126_sciadv_abb7721 crossref_primary_10_1016_j_actamat_2022_118090 crossref_primary_10_1021_acs_chemmater_7b03550 crossref_primary_10_1021_acs_jpcc_3c03105 crossref_primary_10_1103_PhysRevMaterials_1_015402 crossref_primary_10_1016_j_mineng_2022_107742 crossref_primary_10_1002_slct_201800405 crossref_primary_10_1016_j_mtadv_2020_100057 crossref_primary_10_1107_S2052520618010144 crossref_primary_10_1039_C7CP06289C crossref_primary_10_1103_PhysRevMaterials_5_025405 crossref_primary_10_1007_s10853_019_04032_3 crossref_primary_10_1021_acsnano_6b00065 crossref_primary_10_1039_D2NJ01943D crossref_primary_10_1103_PhysRevMaterials_1_065403 crossref_primary_10_1016_j_apsusc_2019_06_214 |
Cites_doi | 10.1080/13642810108205796 10.1021/es8019534 10.1103/PhysRevB.85.085203 10.1016/0169-4332(93)90217-Y 10.1116/1.3569757 10.1039/c3ee43169j 10.1021/nl501942w 10.1103/PhysRevLett.31.44 10.1021/ja1096368 10.1021/nl202902z 10.1080/14786437708232943 10.1063/1.2162678 10.1103/PhysRevB.83.235311 10.1021/ja311974n 10.1016/S0927-0248(02)00205-2 10.1116/1.3517739 10.1021/jz301023c 10.1016/0927-0248(93)90095-K 10.1103/PhysRevB.70.115317 10.1021/nn305833u 10.1021/nl2045364 10.1016/j.electacta.2014.02.048 10.1016/j.elspec.2005.12.002 10.1016/0016-7037(95)00025-U 10.1103/PhysRevB.43.11926 10.1103/PhysRev.137.A1321 10.1002/aenm.201200043 10.1021/ja307412e 10.1116/1.4828818 10.1080/13642819208204926 10.1021/nn4003264 10.1103/PhysRevB.5.4709 10.1080/00018737500101431 10.1002/aenm.201100351 10.1016/0040-6090(92)90293-K 10.1103/PhysRevB.85.085314 10.1063/1.351925 10.1016/0167-5729(87)90007-0 10.1021/ja509142w 10.1016/0009-2541(93)90295-T 10.1007/978-3-662-02403-4 10.1063/1.4751358 10.1557/JMR.1990.1567 10.1016/0378-5963(80)90148-8 10.1016/j.susc.2013.08.014 10.1103/RevModPhys.79.469 10.1103/PhysRevB.84.035212 10.1016/0022-3093(89)90167-1 10.1021/jp5005924 10.1063/1.2210291 10.1021/cm304152b 10.1016/0040-6090(94)90723-4 |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.5b03422 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 14139 |
ExternalDocumentID | 26087015 10_1021_acsami_5b03422 e08352952 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-c4a3256beee5a18df68a71ba0aca7936f369ca327d9e17619de296cb1f8f9f5d3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 10:24:33 EDT 2025 Thu Jul 10 17:47:39 EDT 2025 Mon Jul 21 05:50:11 EDT 2025 Tue Jul 01 04:12:42 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Thu Aug 27 13:43:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | stoichiometry photovoltaic devices doping pyrite charge transport thin films phase stability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-c4a3256beee5a18df68a71ba0aca7936f369ca327d9e17619de296cb1f8f9f5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26087015 |
PQID | 1693187990 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000313110 proquest_miscellaneous_1693187990 pubmed_primary_26087015 crossref_citationtrail_10_1021_acsami_5b03422 crossref_primary_10_1021_acsami_5b03422 acs_journals_10_1021_acsami_5b03422 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Végh J. (ref59/cit59) 2006; 151 Kakalios J. (ref35/cit35) 1989; 114 Wolden C. A. (ref2/cit2) 2011; 29 Abeles B. (ref51/cit51) 1975; 24 Brion D. (ref44/cit44) 1980; 5 Hu J. (ref18/cit18) 2012; 85 Willeke G. (ref29/cit29) 1992; 213 Cabán-Acevedo M. (ref11/cit11) 2012; 12 Liang D. (ref25/cit25) 2014; 14 Sun R. (ref19/cit19) 2011; 83 Puthussery J. (ref9/cit9) 2011; 133 Andersson K. J. (ref22/cit22) 2014; 118 Herbert F. W. (ref21/cit21) 2014; 127 Takayama T. (ref55/cit55) 2006; 88 Galperin Y. M. (ref34/cit34) 1991; 72 Birkholz M. (ref36/cit36) 1991; 43 Yu L. (ref16/cit16) 2011; 1 Limpinsel M. (ref14/cit14) 2014; 7 Cabán-Acevedo M. (ref15/cit15) 2014; 136 Zhang X. (ref32/cit32) 2013; 7 Morrish R. (ref4/cit4) 2012; 134 Mernagh T. P. (ref40/cit40) 1993; 103 De Donato P. (ref43/cit43) 1993; 68 Sun R. (ref17/cit17) 2011; 84 Zhang J. (ref53/cit53) 2004; 70 Herbert F. W. (ref26/cit26) 2013; 618 ref38/cit38 Steinhagen C. (ref23/cit23) 2012; 3 Wadia C. (ref3/cit3) 2009; 43 Sentman C. D. (ref7/cit7) 2014; 32 Bi Y. (ref10/cit10) 2011; 11 Soukup R. J. (ref31/cit31) 2011; 29 Pollak M. (ref52/cit52) 1992; 65 Moulder J. F. (ref45/cit45) 1993 Yamamoto A. (ref28/cit28) 2003; 75 Ennaoui A. (ref1/cit1) 1993; 29 Schieck R. (ref27/cit27) 1990; 5 Büker K. (ref24/cit24) 1992; 72 Wang L. (ref41/cit41) 2006; 88 Zabrodskii A. G. (ref47/cit47) 2001; 81 Seefeld S. (ref6/cit6) 2013; 135 ref39/cit39 Shklovskii B. I. (ref48/cit48) 1984 Lucas J. M. (ref12/cit12) 2013; 25 Berry N. (ref5/cit5) 2012; 2 Vaughan D. J. (ref37/cit37) 1978 Cabán-Acevedo M. (ref13/cit13) 2013; 7 Shirley D. A. (ref58/cit58) 1972; 5 Baruth A. (ref8/cit8) 2012; 112 Egelhoff W. F. (ref57/cit57) 1987; 6 Sheng P. (ref50/cit50) 1973; 31 Le Comber P. G. (ref33/cit33) 1977; 35 Theodossiou A. (ref46/cit46) 1965; 137 Beloborodov I. S. (ref54/cit54) 2007; 79 Lichtenberger D. (ref30/cit30) 1994; 246 Knipe S. W. (ref42/cit42) 1995; 59 Zhang Y. N. (ref20/cit20) 2012; 85 Mott N. (ref49/cit49) 1990 |
References_xml | – volume: 81 start-page: 1131 year: 2001 ident: ref47/cit47 publication-title: Philos. Mag. Part B doi: 10.1080/13642810108205796 – volume: 43 start-page: 2072 year: 2009 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es8019534 – volume: 85 start-page: 085203 year: 2012 ident: ref18/cit18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085203 – volume: 68 start-page: 81 year: 1993 ident: ref43/cit43 publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(93)90217-Y – volume: 29 start-page: 030801 year: 2011 ident: ref2/cit2 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3569757 – volume: 7 start-page: 1974 year: 2014 ident: ref14/cit14 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43169j – volume: 14 start-page: 6754 year: 2014 ident: ref25/cit25 publication-title: Nano Lett. doi: 10.1021/nl501942w – volume: 31 start-page: 44 year: 1973 ident: ref50/cit50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.31.44 – volume: 133 start-page: 716 year: 2011 ident: ref9/cit9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1096368 – volume: 11 start-page: 4953 year: 2011 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl202902z – volume: 35 start-page: 1173 year: 1977 ident: ref33/cit33 publication-title: Philos. Mag. doi: 10.1080/14786437708232943 – volume: 88 start-page: 012512 year: 2006 ident: ref55/cit55 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2162678 – volume: 83 start-page: 235311 year: 2011 ident: ref19/cit19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235311 – volume: 135 start-page: 4412 year: 2013 ident: ref6/cit6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311974n – volume: 75 start-page: 451 year: 2003 ident: ref28/cit28 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(02)00205-2 – volume: 29 start-page: 011001 year: 2011 ident: ref31/cit31 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3517739 – volume: 3 start-page: 2352 year: 2012 ident: ref23/cit23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301023c – volume: 29 start-page: 289 year: 1993 ident: ref1/cit1 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(93)90095-K – volume: 70 start-page: 115317 year: 2004 ident: ref53/cit53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.115317 – volume: 7 start-page: 1731 year: 2013 ident: ref13/cit13 publication-title: ACS Nano doi: 10.1021/nn305833u – volume: 12 start-page: 1977 year: 2012 ident: ref11/cit11 publication-title: Nano Lett. doi: 10.1021/nl2045364 – volume: 127 start-page: 416 year: 2014 ident: ref21/cit21 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.02.048 – volume: 72 start-page: 193 year: 1991 ident: ref34/cit34 publication-title: Sov. Phys. JETP – volume-title: Mineral Chemistry of Metal Sulfides year: 1978 ident: ref37/cit37 – volume: 151 start-page: 159 year: 2006 ident: ref59/cit59 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2005.12.002 – volume: 59 start-page: 1079 year: 1995 ident: ref42/cit42 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00025-U – ident: ref38/cit38 – volume: 43 start-page: 11926 year: 1991 ident: ref36/cit36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.43.11926 – volume: 137 start-page: A1321 year: 1965 ident: ref46/cit46 publication-title: Phys. Rev. doi: 10.1103/PhysRev.137.A1321 – volume-title: Metal-Insulator Transitions year: 1990 ident: ref49/cit49 – volume: 2 start-page: 1124 year: 2012 ident: ref5/cit5 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200043 – volume-title: Handbook of X-Ray Photoelectron Spectroscopy year: 1993 ident: ref45/cit45 – volume: 134 start-page: 17854 year: 2012 ident: ref4/cit4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307412e – volume: 32 start-page: 021201 year: 2014 ident: ref7/cit7 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4828818 – volume: 65 start-page: 855 year: 1992 ident: ref52/cit52 publication-title: Philos. Mag. B doi: 10.1080/13642819208204926 – volume: 7 start-page: 2781 year: 2013 ident: ref32/cit32 publication-title: ACS Nano doi: 10.1021/nn4003264 – volume: 5 start-page: 4709 year: 1972 ident: ref58/cit58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.5.4709 – volume: 24 start-page: 407 year: 1975 ident: ref51/cit51 publication-title: Adv. Phys. doi: 10.1080/00018737500101431 – volume: 1 start-page: 748 year: 2011 ident: ref16/cit16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100351 – volume: 213 start-page: 271 year: 1992 ident: ref29/cit29 publication-title: Thin Solid Films doi: 10.1016/0040-6090(92)90293-K – volume: 85 start-page: 085314 year: 2012 ident: ref20/cit20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085314 – volume: 72 start-page: 5721 year: 1992 ident: ref24/cit24 publication-title: J. Appl. Phys. doi: 10.1063/1.351925 – volume: 6 start-page: 253 year: 1987 ident: ref57/cit57 publication-title: Surf. Sci. Rep. doi: 10.1016/0167-5729(87)90007-0 – volume: 136 start-page: 17163 year: 2014 ident: ref15/cit15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509142w – volume: 103 start-page: 113 year: 1993 ident: ref40/cit40 publication-title: Chem. Geol. doi: 10.1016/0009-2541(93)90295-T – volume-title: Electronic Properties of Doped Semiconductors year: 1984 ident: ref48/cit48 doi: 10.1007/978-3-662-02403-4 – volume: 112 start-page: 054328 year: 2012 ident: ref8/cit8 publication-title: J. Appl. Phys. doi: 10.1063/1.4751358 – volume: 5 start-page: 1567 year: 1990 ident: ref27/cit27 publication-title: J. Mater. Res. doi: 10.1557/JMR.1990.1567 – ident: ref39/cit39 – volume: 5 start-page: 133 year: 1980 ident: ref44/cit44 publication-title: Appl. Surf. Sci. doi: 10.1016/0378-5963(80)90148-8 – volume: 618 start-page: 53 year: 2013 ident: ref26/cit26 publication-title: Surf. Sci. doi: 10.1016/j.susc.2013.08.014 – volume: 79 start-page: 469 year: 2007 ident: ref54/cit54 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.469 – volume: 84 start-page: 035212 year: 2011 ident: ref17/cit17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.035212 – volume: 114 start-page: 372 year: 1989 ident: ref35/cit35 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(89)90167-1 – volume: 118 start-page: 21896 year: 2014 ident: ref22/cit22 publication-title: J. Phys. Chem. C doi: 10.1021/jp5005924 – volume: 88 start-page: 232509 year: 2006 ident: ref41/cit41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2210291 – volume: 25 start-page: 1615 year: 2013 ident: ref12/cit12 publication-title: Chem. Mater. doi: 10.1021/cm304152b – volume: 246 start-page: 6 year: 1994 ident: ref30/cit30 publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)90723-4 |
SSID | ssj0063205 |
Score | 2.3594952 |
Snippet | The use of pyrite FeS2 as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and... The use of pyrite FeS₂ as an earth-abundant, low-cost, nontoxic thin film photovoltaic hinges on improved understanding and control of certain physical and... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14130 |
SubjectTerms | annealing crystals photovoltaic cells physicochemical properties pyrite stoichiometry X-ray photoelectron spectroscopy |
Title | Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties |
URI | http://dx.doi.org/10.1021/acsami.5b03422 https://www.ncbi.nlm.nih.gov/pubmed/26087015 https://www.proquest.com/docview/1693187990 https://www.proquest.com/docview/2000313110 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1944-8252 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063205 issn: 1944-8244 databaseCode: ACS dateStart: 20090128 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iFz34fj-IKHiKbpI2Tb0t4qKCsqALeyt5FRe1K93uYf31Ttru-lgWPbZMaDpJ5pGZ-QahU-2CwEQqIhE3jARKhiRWVhJJqdJpKLQrcWbvH8RNJ7jrht2v-47fEXxGL5QZ-FY4ofZgdSBsF5iQ1LtZzavHscwVnJXJiuCRB0SCxhrDM06N90rIDH4qoRmWZalhWisV3NGgBCb0iSUv58NCn5uPadjGPye_ipZrMxM3q32xhuZcto6WvoEPbiDXfgYNhsHaLPNjR1hlFp76PfPsS_KLfIR7GfZ9PXGr9_qGb_N-htujHGzUS3xbFldieHM96aODJ0DpuO2v-HOP1bqJOq3rp6sbUjddIIoLXhATKM78GjkXKiptKqSKqFYNZRScZZFyERsgiWzsqL8DsY7FwmiayjROQ8u30HzWz9wOwg1rTEMqY410AaMWnDvNI2ejwDDOY7uLToA_SX1oBkkZD2c0qZiW1EzbRWS8Vompcct9-4zXmfRnE_r3CrFjJuXxeOkTOFQ-UqIy1x_CTETMfRv2uDGbxtc4cQ9WBDTb1b6ZfA-cRJCDNNz71x_uo0Uww8IqCfgAzRf50B2CqVPoo3KXfwL9i_nZ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZW9FA4UMr70daISpwM6zhxHG5oxWq3PLRSQeIW-RWxArIomz1sf33HzqNAtVJ7jDVJ_Bh7Ptsz3yD0Xdkw1LGMScx0QEIpIpJII4igVKos4sp6ntnrGz64C3_cR_cddNrEwkAlpvClqb_E_8MuQE-hzGXEiZTjrIM194OnQXFYqPezWXo5C7zPImzMQyLAcDUsjX-972yRnr61RQsApjc0_U9o1FbR-5c8nsxKdaJ_vWNv_I82rKHVGnTi80pLPqOOzdfRyisqwg1kRw9gzzBgT-8tO8cyN_A0GesHF6BfFnM8zrHL8on746dnPCwmOR7NC0CsZ3joQy0xlFy0WXVwS5uOR-7Av3DMrZvorn9x2xuQOgUDkYyzkuhQssCNmLWRpMJkXMiYKtmVWsLM5hnjiQaR2CSWuhMRY4OEa0UzkSVZZNgWWsonud1BuGu07gqpjRY2DKiBrZ5isTVxqAPGErOLjqB_0noKTVN_Ox7QtOq0tO60XUSaIUt1zWLukmk8LZQ_buVfKv6OhZKHjQakMMXcvYnM7WQGNeEJc0nZk-5iGRfxxBx1EchsV-rT_g-2jLAq0mjvn1r4DX0c3F5fpVfDm8t9tAwALarcgw_QUlnM7BcAQaX66hX_N18wAlM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqKlXtgZa-oFDqqpV6Ml3HseNwq4AVWyhaqSBxi_yKWAFZlM0etr-eGScb9aGV6DHWJPFjxjNjz3xDyGcb0tRlJmOZcAlLjZYsN14zzbmxpVQ2RJzZH2fq-CL9fikvuzxuzIWBTszgS7N4iY9SfefLDmGAf4V2rIojLeLWwb77WCL-G9pDBz-X268SSYxbBOc8ZRqU1xKp8Z_3UR-52Z_6aIWRGZXN8Dk577sZY0yu9-aN3XO__kJw_M9xvCDrnfFJv7XcskEeheolefYbJOErEsZXoNco2KAxanZBTeXhaTpxV5io39QLOqkoVvukw8nNLR3V04qOFzVYrvt0FFMuKbQc9dV1aA-fTsd48F8jgutrcjE8Oj84Zl0pBmaEEg1zqREJrlwI0nDtS6VNxq0ZGGdAwlUpVO6AJPN54Hgy4kOSK2d5qcu8lF68IWvVtAqbhA68cwNtnHc6pAn34PJZkQWfpS4RIvdb5BPMT9GJ0qyIt-QJL9pJK7pJ2yJsuWyF69DMsajGzUr6Lz39XYvjsZLy45ILChA1vD8xVZjOoScqF1icPR-spsHMJ4EQRkDztmWh_n_gOsLuyOW7B43wA3kyPhwWp6Ozk23yFOw02UYJ75C1pp6H92ALNXY38v49nWMEzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Stability+and+Stoichiometry+in+Thin+Film+Iron+Pyrite%3A+Impact+on+Electronic+Transport+Properties&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Zhang%2C+Xin&rft.au=Scott%2C+Tom&rft.au=Socha%2C+Tyler&rft.au=Nielsen%2C+David&rft.date=2015-07-01&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.5b03422&rft.externalDocID=e08352952 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |