3D Frameworks with Variable Magnetic and Electrical Features from Sintered Cobalt-Modified Carbon Nanotubes
3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (T S) and Co content on the morphology, structure, and electrical and magnet...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 24; pp. 20983 - 20994 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.8b04367 |
Cover
Abstract | 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (T S) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4–10 nm Co particles was observed at T S > 600 °C. At higher T S, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at T S = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500–12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200–300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding. |
---|---|
AbstractList | 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4–10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500–12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200–300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding. 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (T S) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4–10 nm Co particles was observed at T S > 600 °C. At higher T S, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at T S = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500–12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200–300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding. 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( T ) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at T > 600 °C. At higher T , the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at T = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding. 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding. |
Author | Lunin, Valery V Egorova, Tolganay B Chernavskii, Petr A Savilov, Serguei V Maslakov, Konstantin I Ivanov, Anton S Paslova, Maria S Chernyak, Sergei A Lu, Li |
AuthorAffiliation | Department of Chemistry National University of Singapore A. V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Lomonosov Moscow State University |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Lomonosov Moscow State University – name: Russian Academy of Sciences – name: National University of Singapore – name: A. V. Topchiev Institute of Petrochemical Synthesis |
Author_xml | – sequence: 1 givenname: Serguei V orcidid: 0000-0002-5827-3912 surname: Savilov fullname: Savilov, Serguei V email: savilov@chem.msu.ru organization: Russian Academy of Sciences – sequence: 2 givenname: Sergei A orcidid: 0000-0001-8311-2590 surname: Chernyak fullname: Chernyak, Sergei A organization: Lomonosov Moscow State University – sequence: 3 givenname: Maria S orcidid: 0000-0001-8496-3661 surname: Paslova fullname: Paslova, Maria S organization: Lomonosov Moscow State University – sequence: 4 givenname: Anton S orcidid: 0000-0003-1719-0106 surname: Ivanov fullname: Ivanov, Anton S organization: Lomonosov Moscow State University – sequence: 5 givenname: Tolganay B orcidid: 0000-0002-2020-3716 surname: Egorova fullname: Egorova, Tolganay B organization: Lomonosov Moscow State University – sequence: 6 givenname: Konstantin I orcidid: 0000-0002-0672-2683 surname: Maslakov fullname: Maslakov, Konstantin I organization: Russian Academy of Sciences – sequence: 7 givenname: Petr A orcidid: 0000-0001-8443-8541 surname: Chernavskii fullname: Chernavskii, Petr A organization: Lomonosov Moscow State University – sequence: 8 givenname: Li orcidid: 0000-0002-3794-2793 surname: Lu fullname: Lu, Li organization: National University of Singapore – sequence: 9 givenname: Valery V orcidid: 0000-0002-0467-2803 surname: Lunin fullname: Lunin, Valery V organization: Russian Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29847909$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQRi1URB-wZYm8REi5-BXHXqLbXkBqYcFjG42dCbhN7GI7qvj3pLqXLpAqVh6PzpnF952So5giEvKSsw1ngr8FX2AOG-OYkrp7Qk64VaoxohVHD7NSx-S0lGvGtBSsfUaOhTWqs8yekBt5TncZZrxL-abQu1B_0u-QA7gJ6RX8iFiDpxAHejGhrzl4mOgOoS4ZCx1zmumXECtmHOg2OZhqc5WGMIb7P2SXIv0EMdXFYXlOno4wFXxxeM_It93F1-2H5vLz-4_bd5cNSC1rY42RnfYOlBUMJQrlO6W15KhMp5RT4AFgbDurecvbceQowQ3eaC6VHb08I6_3d29z-rVgqf0cisdpgohpKb3gjEvbSiP-j7I1Jyk1Nyv66oAubsahv81hhvy7_5vlCmz2gM-plIzjA8JZf19Wvy-rP5S1CuofwYcKNaRYM4Tpce3NXlv3_XVaclzDfAz-AxhCp10 |
CitedBy_id | crossref_primary_10_1016_j_carbon_2020_06_067 crossref_primary_10_1016_j_ijhydene_2025_02_470 crossref_primary_10_1038_s41598_020_73161_6 crossref_primary_10_1039_C8DT03282C crossref_primary_10_1142_S1793604720500216 crossref_primary_10_1007_s11172_023_3804_4 crossref_primary_10_1134_S0036024419100042 crossref_primary_10_1016_j_solidstatesciences_2022_106996 crossref_primary_10_1016_j_cej_2024_158333 crossref_primary_10_1134_S0965544119040030 crossref_primary_10_1016_j_jcat_2020_06_011 crossref_primary_10_1142_S1793604722510407 crossref_primary_10_1016_j_carbon_2020_07_026 crossref_primary_10_1134_S0036024421070256 crossref_primary_10_1016_j_apsusc_2019_05_243 crossref_primary_10_3390_nano12244491 crossref_primary_10_1016_j_cattod_2021_08_018 crossref_primary_10_1016_j_msea_2025_148039 crossref_primary_10_1021_acsnano_3c07375 |
Cites_doi | 10.1002/celc.201600241 10.1002/btpr.294 10.1016/s0926-860x(00)00842-5 10.1016/j.materresbull.2013.04.021 10.1016/0008-6223(84)90216-1 10.1016/j.carbon.2004.04.028 10.1002/chem.201500944 10.1016/j.carbon.2011.12.025 10.1007/bf00611349 10.1515/zpch-2016-0783 10.1557/jmr.2006.0186 10.1039/b9nr00058e 10.1016/j.apsusc.2010.10.051 10.1016/j.carbon.2015.03.054 10.1021/jp074477+ 10.1039/c6cp04657f 10.1016/j.fuel.2014.04.056 10.1021/cm0483590 10.1016/s0009-2614(99)01280-4 10.1016/j.apcata.2016.06.012 10.1016/j.msea.2006.01.055 10.1186/s11671-016-1645-9 10.1039/c1nr10165j 10.1016/j.matlet.2017.04.139 10.1016/j.matlet.2012.02.007 10.1021/jp4025552 10.1021/cm9019099 10.1039/c2cc31461d 10.1063/1.1927286 10.1016/j.msea.2009.01.073 10.1007/s13391-016-6243-6 10.1021/cm300293b 10.1016/s1872-5805(14)60134-7 10.1126/science.1222453 10.1016/j.carbon.2008.08.020 10.1063/1.4942216 10.1070/rc2011v080n06abeh004187 10.1016/j.msea.2013.03.001 10.1371/journal.pone.0044977 10.1039/c7nr04992g 10.1016/j.carbon.2012.12.015 10.1155/2012/983470 10.1063/1.1317242 10.1016/j.carbon.2005.04.035 10.1021/jp900123f 10.1016/j.apcata.2006.03.033 10.1088/0957-4484/24/30/305202 10.1021/jp106612b 10.1088/0957-4484/19/43/435102 10.1016/j.carbon.2014.03.034 10.1016/j.apsusc.2016.03.052 10.1016/j.msea.2016.03.098 10.1016/j.carbon.2016.11.070 10.1021/nn401059h 10.1016/j.matchemphys.2005.07.048 10.1039/c6fd00200e 10.1039/c6cc05244d 10.1021/acssuschemeng.5b01269 10.1007/bf02645959 10.1016/j.catcom.2017.03.022 10.1021/acs.jpcc.6b05178 10.1103/physrevb.48.1907 10.1038/nnano.2013.46 10.1016/j.physleta.2004.05.070 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.8b04367 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 20994 |
ExternalDocumentID | 29847909 10_1021_acsami_8b04367 h41665056 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-988376cba4920e3e24c746631e48744b4acaaaf57961515ff1e3abdc861349fc3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 11:12:30 EDT 2025 Fri Jul 11 07:11:23 EDT 2025 Thu Apr 03 06:49:07 EDT 2025 Tue Jul 01 04:05:55 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Thu Aug 27 13:42:07 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | magnetic separation carbon nanotubes 3D frameworks magnetic materials compaction spark plasma sintering cobalt-encapsulated particles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-988376cba4920e3e24c746631e48744b4acaaaf57961515ff1e3abdc861349fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8496-3661 0000-0002-5827-3912 0000-0002-2020-3716 0000-0002-0467-2803 0000-0001-8311-2590 0000-0002-3794-2793 0000-0003-1719-0106 0000-0002-0672-2683 0000-0001-8443-8541 |
PMID | 29847909 |
PQID | 2047933618 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2101395382 proquest_miscellaneous_2047933618 pubmed_primary_29847909 crossref_primary_10_1021_acsami_8b04367 crossref_citationtrail_10_1021_acsami_8b04367 acs_journals_10_1021_acsami_8b04367 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-20 |
PublicationDateYYYYMMDD | 2018-06-20 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Keyser M. M. (ref42/cit42) 2007 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1002/celc.201600241 – ident: ref63/cit63 doi: 10.1002/btpr.294 – ident: ref44/cit44 doi: 10.1016/s0926-860x(00)00842-5 – ident: ref2/cit2 doi: 10.1016/j.materresbull.2013.04.021 – ident: ref48/cit48 doi: 10.1016/0008-6223(84)90216-1 – ident: ref51/cit51 doi: 10.1016/j.carbon.2004.04.028 – ident: ref62/cit62 doi: 10.1002/chem.201500944 – ident: ref24/cit24 doi: 10.1016/j.carbon.2011.12.025 – ident: ref55/cit55 doi: 10.1007/bf00611349 – start-page: 45 volume-title: Studies in Surface Science and Catalysis year: 2007 ident: ref42/cit42 – ident: ref11/cit11 doi: 10.1515/zpch-2016-0783 – ident: ref13/cit13 doi: 10.1557/jmr.2006.0186 – ident: ref25/cit25 doi: 10.1039/b9nr00058e – ident: ref54/cit54 doi: 10.1016/j.apsusc.2010.10.051 – ident: ref49/cit49 doi: 10.1016/j.carbon.2015.03.054 – ident: ref65/cit65 doi: 10.1021/jp074477+ – ident: ref43/cit43 doi: 10.1039/c6cp04657f – ident: ref4/cit4 doi: 10.1016/j.fuel.2014.04.056 – ident: ref19/cit19 doi: 10.1021/cm0483590 – ident: ref53/cit53 doi: 10.1016/s0009-2614(99)01280-4 – ident: ref61/cit61 doi: 10.1016/j.apcata.2016.06.012 – ident: ref6/cit6 doi: 10.1016/j.msea.2006.01.055 – ident: ref22/cit22 doi: 10.1186/s11671-016-1645-9 – ident: ref29/cit29 doi: 10.1039/c1nr10165j – ident: ref59/cit59 doi: 10.1016/j.matlet.2017.04.139 – ident: ref34/cit34 doi: 10.1016/j.matlet.2012.02.007 – ident: ref26/cit26 doi: 10.1021/jp4025552 – ident: ref64/cit64 doi: 10.1021/cm9019099 – ident: ref5/cit5 doi: 10.1039/c2cc31461d – ident: ref7/cit7 doi: 10.1063/1.1927286 – ident: ref15/cit15 doi: 10.1016/j.msea.2009.01.073 – ident: ref50/cit50 doi: 10.1007/s13391-016-6243-6 – ident: ref18/cit18 doi: 10.1021/cm300293b – ident: ref3/cit3 doi: 10.1016/s1872-5805(14)60134-7 – ident: ref1/cit1 doi: 10.1126/science.1222453 – ident: ref14/cit14 doi: 10.1016/j.carbon.2008.08.020 – ident: ref60/cit60 doi: 10.1063/1.4942216 – ident: ref40/cit40 doi: 10.1070/rc2011v080n06abeh004187 – ident: ref10/cit10 doi: 10.1016/j.msea.2013.03.001 – ident: ref58/cit58 doi: 10.1371/journal.pone.0044977 – ident: ref21/cit21 doi: 10.1039/c7nr04992g – ident: ref23/cit23 doi: 10.1016/j.carbon.2012.12.015 – ident: ref9/cit9 doi: 10.1155/2012/983470 – ident: ref16/cit16 doi: 10.1063/1.1317242 – ident: ref12/cit12 doi: 10.1016/j.carbon.2005.04.035 – ident: ref27/cit27 doi: 10.1021/jp900123f – ident: ref39/cit39 doi: 10.1016/j.apcata.2006.03.033 – ident: ref57/cit57 doi: 10.1088/0957-4484/24/30/305202 – ident: ref30/cit30 doi: 10.1021/jp106612b – ident: ref28/cit28 doi: 10.1088/0957-4484/19/43/435102 – ident: ref31/cit31 doi: 10.1016/j.carbon.2014.03.034 – ident: ref33/cit33 doi: 10.1016/j.apsusc.2016.03.052 – ident: ref8/cit8 doi: 10.1016/j.msea.2016.03.098 – ident: ref17/cit17 doi: 10.1016/j.carbon.2016.11.070 – ident: ref20/cit20 doi: 10.1021/nn401059h – ident: ref52/cit52 doi: 10.1016/j.matchemphys.2005.07.048 – ident: ref45/cit45 doi: 10.1039/c6fd00200e – ident: ref37/cit37 doi: 10.1039/c6cc05244d – ident: ref35/cit35 doi: 10.1021/acssuschemeng.5b01269 – ident: ref41/cit41 doi: 10.1007/bf02645959 – ident: ref32/cit32 doi: 10.1016/j.catcom.2017.03.022 – ident: ref38/cit38 doi: 10.1021/acs.jpcc.6b05178 – ident: ref46/cit46 doi: 10.1103/physrevb.48.1907 – ident: ref47/cit47 doi: 10.1038/nnano.2013.46 – ident: ref56/cit56 doi: 10.1016/j.physleta.2004.05.070 |
SSID | ssj0063205 |
Score | 2.35767 |
Snippet | 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20983 |
SubjectTerms | carbon nanotubes catalytic activity cobalt cobalt oxide electrical conductivity electron microscopy fuel cells graphene magnetic properties magnetic separation magnetism nanoparticles particle size Raman spectroscopy temperature X-ray diffraction X-ray photoelectron spectroscopy |
Title | 3D Frameworks with Variable Magnetic and Electrical Features from Sintered Cobalt-Modified Carbon Nanotubes |
URI | http://dx.doi.org/10.1021/acsami.8b04367 https://www.ncbi.nlm.nih.gov/pubmed/29847909 https://www.proquest.com/docview/2047933618 https://www.proquest.com/docview/2101395382 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1944-8252 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063205 issn: 1944-8244 databaseCode: ACS dateStart: 20090128 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKvcABaEthoVSuqMTJ2_VjvckRLbtClbYXHuIWjR0bIVCCNsmFX48njwW62pZLpEgTJRmPPd_YM98Q8pOPTGyt10yF6IGpoRUMDNdMDlPlpZBSCixwnv3R51fq983w5mW_4-8TfMF_gS2wFU5kkCx9tEY-Ch1xDLNOxxfdmqulqJMVQ0SuWBQ8VkfPuPQ8OiFbvHVCK5Bl7WGm2w3dUVETE2JiyX2_Kk3fPi3TNv7343fIVgsz6WljF5_IB5d9JpuvyAe_kHt5RqddalZBcUOWXofIGWup6AxuMyxvpJCldFK3ysHRpIgYqxChUyxLoRdINjF3KR0jq0jJZnl65-_wHuYmz2hYuvOyMq7YJVfTyeX4nLWtFxhILUsWRyFw1daAisXASSeUHakATrhTyJdvFFgA8FjIiojIe-4kmNRGGukOvZVfyXqWZ26f0FRrAzbMRR8b5fUwXIUxHKwCcF7aHjkOWkraqVMk9am44EmjuqRVXY-wbsQS27KXYxONh5XyJwv5x4a3Y6Xkj84AkjC18LwEMpdXRSKQfl9KzaN_yHDE0MFriB7Za6xn8T4RB9cfD-KDd_3hIdkIYCzCNDQx-EbWy3nljgLgKc332tafAVx--v4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcaHkUltJiBBInt-vHepMjWrpaoFshtUW9RbZjo6ooQZvkwq9nJpssL21FL5ESTRI_xplv4plvAN6IsUu9j4Zr9B64HnnJrROGq1Guo5JKKUkJzvNTM7vQHy9Hlxtw1OfCYCMqfFLVbuL_YhcQR3iNKuIkjjjTx3dgq6VBISw0Oes_vUbJNmYRHXPNEzRcPUvjP_eTLfLVn7ZoDcBsDc10Gz6vmtjGl1wfNrU79D_-Ym-8RR924EEHOtm7pZY8hI1QPIL7v1ERPoZr9Z5N-0CtitHvWfYF_WjKrGJz-7WgZEdmi5wdt4VzaG4Z4ccG_XVGSSrsjKgnFiFnE-IYqfm8zK_iFZ3bhSsLhh_ysm5cqJ7AxfT4fDLjXSEGbpVRNU8TdGONd1anchhUkNqPNUIVETSx5zttvbU2Ulor4aMYRVDW5T4xRH4YvdqFzaIswjNguTHOelyZMXU6mhEepXPCem1tiMoP4DWOUtYtpCpr98ilyJZDl3VDNwDeT1zmOy5zKqnxba3825X89yWLx1rJV70eZLjQaPfEFqFsqkwSGb9SRiQ3yAhC1GhD5ACeLpVo9T6ZIhBIh-nz_-rhS7g7O5-fZCcfTj_twT2EaQkFqMnhC9isF03YRyhUu4NW_X8C5MQDeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKyF6gPIqWygYgcTJ7foRb3JE267KYyuktqi3yHZsVBUl1Sa58Os7k01WPLSoXCIlmiR-TeabeOYbgHdi4jLvo-EavQeuEy-5dcJwlRQ6KqmUkpTgPD8xx-f600Vy0edxUy4MNqLGJ9XdJj5p9XURe4YBcYDXqSpO6og3fXIXNhPifyM8ND0dPr9GyS5uEZ1zzVM0XgNT41_3kz3y9e_2aA3I7IzN7CGcrZrZxZhc7beN2_c__2Bw_M9-bMODHnyyD8vV8gjuhPIxbP1CSfgErtQhmw0BWzWj37TsG_rTlGHF5vZ7SUmPzJYFO-oK6NAcM8KRLfrtjJJV2ClRUCxCwabENdLweVVcxks6twtXlQw_6FXTulA_hfPZ0dn0mPcFGbhVRjU8S9GdNd5ZnclxUEFqP9EIWUTQxKLvtPXW2kjprYSTYhRBWVf41BAJYvTqGWyUVRmeAyuMcdajhsbM6WgSPErnhPXa2hCVH8FbHKW8V6g67_bKpciXQ5f3QzcCPkxe7ntOcyqt8WOt_PuV_PWSzWOt5JthLeSocLSLYstQtXUuiZRfKSPSf8gIQtZoS-QIdpYLafU-mSEgyMbZ7q16-BrufT2c5V8-nnx-AfcRraUUpybHL2GjWbRhDxFR4151GnADLmAF8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Frameworks+with+Variable+Magnetic+and+Electrical+Features+from+Sintered+Cobalt-Modified+Carbon+Nanotubes&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Savilov%2C+Serguei+V&rft.au=Chernyak%2C+Sergei+A&rft.au=Paslova%2C+Maria+S&rft.au=Ivanov%2C+Anton+S&rft.date=2018-06-20&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=10&rft.issue=24&rft.spage=20983&rft_id=info:doi/10.1021%2Facsami.8b04367&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |