3D Frameworks with Variable Magnetic and Electrical Features from Sintered Cobalt-Modified Carbon Nanotubes

3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (T S) and Co content on the morphology, structure, and electrical and magnet...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 24; pp. 20983 - 20994
Main Authors Savilov, Serguei V, Chernyak, Sergei A, Paslova, Maria S, Ivanov, Anton S, Egorova, Tolganay B, Maslakov, Konstantin I, Chernavskii, Petr A, Lu, Li, Lunin, Valery V
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.06.2018
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.8b04367

Cover

Abstract 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (T S) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4–10 nm Co particles was observed at T S > 600 °C. At higher T S, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at T S = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500–12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200–300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.
AbstractList 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4–10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500–12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200–300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.
3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature (T S) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4–10 nm Co particles was observed at T S > 600 °C. At higher T S, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at T S = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500–12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200–300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.
3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( T ) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at T > 600 °C. At higher T , the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at T = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.
3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.
Author Lunin, Valery V
Egorova, Tolganay B
Chernavskii, Petr A
Savilov, Serguei V
Maslakov, Konstantin I
Ivanov, Anton S
Paslova, Maria S
Chernyak, Sergei A
Lu, Li
AuthorAffiliation Department of Chemistry
National University of Singapore
A. V. Topchiev Institute of Petrochemical Synthesis
Russian Academy of Sciences
Lomonosov Moscow State University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Lomonosov Moscow State University
– name: Russian Academy of Sciences
– name: National University of Singapore
– name: A. V. Topchiev Institute of Petrochemical Synthesis
Author_xml – sequence: 1
  givenname: Serguei V
  orcidid: 0000-0002-5827-3912
  surname: Savilov
  fullname: Savilov, Serguei V
  email: savilov@chem.msu.ru
  organization: Russian Academy of Sciences
– sequence: 2
  givenname: Sergei A
  orcidid: 0000-0001-8311-2590
  surname: Chernyak
  fullname: Chernyak, Sergei A
  organization: Lomonosov Moscow State University
– sequence: 3
  givenname: Maria S
  orcidid: 0000-0001-8496-3661
  surname: Paslova
  fullname: Paslova, Maria S
  organization: Lomonosov Moscow State University
– sequence: 4
  givenname: Anton S
  orcidid: 0000-0003-1719-0106
  surname: Ivanov
  fullname: Ivanov, Anton S
  organization: Lomonosov Moscow State University
– sequence: 5
  givenname: Tolganay B
  orcidid: 0000-0002-2020-3716
  surname: Egorova
  fullname: Egorova, Tolganay B
  organization: Lomonosov Moscow State University
– sequence: 6
  givenname: Konstantin I
  orcidid: 0000-0002-0672-2683
  surname: Maslakov
  fullname: Maslakov, Konstantin I
  organization: Russian Academy of Sciences
– sequence: 7
  givenname: Petr A
  orcidid: 0000-0001-8443-8541
  surname: Chernavskii
  fullname: Chernavskii, Petr A
  organization: Lomonosov Moscow State University
– sequence: 8
  givenname: Li
  orcidid: 0000-0002-3794-2793
  surname: Lu
  fullname: Lu, Li
  organization: National University of Singapore
– sequence: 9
  givenname: Valery V
  orcidid: 0000-0002-0467-2803
  surname: Lunin
  fullname: Lunin, Valery V
  organization: Russian Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29847909$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQRi1URB-wZYm8REi5-BXHXqLbXkBqYcFjG42dCbhN7GI7qvj3pLqXLpAqVh6PzpnF952So5giEvKSsw1ngr8FX2AOG-OYkrp7Qk64VaoxohVHD7NSx-S0lGvGtBSsfUaOhTWqs8yekBt5TncZZrxL-abQu1B_0u-QA7gJ6RX8iFiDpxAHejGhrzl4mOgOoS4ZCx1zmumXECtmHOg2OZhqc5WGMIb7P2SXIv0EMdXFYXlOno4wFXxxeM_It93F1-2H5vLz-4_bd5cNSC1rY42RnfYOlBUMJQrlO6W15KhMp5RT4AFgbDurecvbceQowQ3eaC6VHb08I6_3d29z-rVgqf0cisdpgohpKb3gjEvbSiP-j7I1Jyk1Nyv66oAubsahv81hhvy7_5vlCmz2gM-plIzjA8JZf19Wvy-rP5S1CuofwYcKNaRYM4Tpce3NXlv3_XVaclzDfAz-AxhCp10
CitedBy_id crossref_primary_10_1016_j_carbon_2020_06_067
crossref_primary_10_1016_j_ijhydene_2025_02_470
crossref_primary_10_1038_s41598_020_73161_6
crossref_primary_10_1039_C8DT03282C
crossref_primary_10_1142_S1793604720500216
crossref_primary_10_1007_s11172_023_3804_4
crossref_primary_10_1134_S0036024419100042
crossref_primary_10_1016_j_solidstatesciences_2022_106996
crossref_primary_10_1016_j_cej_2024_158333
crossref_primary_10_1134_S0965544119040030
crossref_primary_10_1016_j_jcat_2020_06_011
crossref_primary_10_1142_S1793604722510407
crossref_primary_10_1016_j_carbon_2020_07_026
crossref_primary_10_1134_S0036024421070256
crossref_primary_10_1016_j_apsusc_2019_05_243
crossref_primary_10_3390_nano12244491
crossref_primary_10_1016_j_cattod_2021_08_018
crossref_primary_10_1016_j_msea_2025_148039
crossref_primary_10_1021_acsnano_3c07375
Cites_doi 10.1002/celc.201600241
10.1002/btpr.294
10.1016/s0926-860x(00)00842-5
10.1016/j.materresbull.2013.04.021
10.1016/0008-6223(84)90216-1
10.1016/j.carbon.2004.04.028
10.1002/chem.201500944
10.1016/j.carbon.2011.12.025
10.1007/bf00611349
10.1515/zpch-2016-0783
10.1557/jmr.2006.0186
10.1039/b9nr00058e
10.1016/j.apsusc.2010.10.051
10.1016/j.carbon.2015.03.054
10.1021/jp074477+
10.1039/c6cp04657f
10.1016/j.fuel.2014.04.056
10.1021/cm0483590
10.1016/s0009-2614(99)01280-4
10.1016/j.apcata.2016.06.012
10.1016/j.msea.2006.01.055
10.1186/s11671-016-1645-9
10.1039/c1nr10165j
10.1016/j.matlet.2017.04.139
10.1016/j.matlet.2012.02.007
10.1021/jp4025552
10.1021/cm9019099
10.1039/c2cc31461d
10.1063/1.1927286
10.1016/j.msea.2009.01.073
10.1007/s13391-016-6243-6
10.1021/cm300293b
10.1016/s1872-5805(14)60134-7
10.1126/science.1222453
10.1016/j.carbon.2008.08.020
10.1063/1.4942216
10.1070/rc2011v080n06abeh004187
10.1016/j.msea.2013.03.001
10.1371/journal.pone.0044977
10.1039/c7nr04992g
10.1016/j.carbon.2012.12.015
10.1155/2012/983470
10.1063/1.1317242
10.1016/j.carbon.2005.04.035
10.1021/jp900123f
10.1016/j.apcata.2006.03.033
10.1088/0957-4484/24/30/305202
10.1021/jp106612b
10.1088/0957-4484/19/43/435102
10.1016/j.carbon.2014.03.034
10.1016/j.apsusc.2016.03.052
10.1016/j.msea.2016.03.098
10.1016/j.carbon.2016.11.070
10.1021/nn401059h
10.1016/j.matchemphys.2005.07.048
10.1039/c6fd00200e
10.1039/c6cc05244d
10.1021/acssuschemeng.5b01269
10.1007/bf02645959
10.1016/j.catcom.2017.03.022
10.1021/acs.jpcc.6b05178
10.1103/physrevb.48.1907
10.1038/nnano.2013.46
10.1016/j.physleta.2004.05.070
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.8b04367
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 20994
ExternalDocumentID 29847909
10_1021_acsami_8b04367
h41665056
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-988376cba4920e3e24c746631e48744b4acaaaf57961515ff1e3abdc861349fc3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 11:12:30 EDT 2025
Fri Jul 11 07:11:23 EDT 2025
Thu Apr 03 06:49:07 EDT 2025
Tue Jul 01 04:05:55 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Thu Aug 27 13:42:07 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords magnetic separation
carbon nanotubes
3D frameworks
magnetic materials
compaction
spark plasma sintering
cobalt-encapsulated particles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-988376cba4920e3e24c746631e48744b4acaaaf57961515ff1e3abdc861349fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8496-3661
0000-0002-5827-3912
0000-0002-2020-3716
0000-0002-0467-2803
0000-0001-8311-2590
0000-0002-3794-2793
0000-0003-1719-0106
0000-0002-0672-2683
0000-0001-8443-8541
PMID 29847909
PQID 2047933618
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2101395382
proquest_miscellaneous_2047933618
pubmed_primary_29847909
crossref_primary_10_1021_acsami_8b04367
crossref_citationtrail_10_1021_acsami_8b04367
acs_journals_10_1021_acsami_8b04367
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-20
PublicationDateYYYYMMDD 2018-06-20
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Keyser M. M. (ref42/cit42) 2007
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1002/celc.201600241
– ident: ref63/cit63
  doi: 10.1002/btpr.294
– ident: ref44/cit44
  doi: 10.1016/s0926-860x(00)00842-5
– ident: ref2/cit2
  doi: 10.1016/j.materresbull.2013.04.021
– ident: ref48/cit48
  doi: 10.1016/0008-6223(84)90216-1
– ident: ref51/cit51
  doi: 10.1016/j.carbon.2004.04.028
– ident: ref62/cit62
  doi: 10.1002/chem.201500944
– ident: ref24/cit24
  doi: 10.1016/j.carbon.2011.12.025
– ident: ref55/cit55
  doi: 10.1007/bf00611349
– start-page: 45
  volume-title: Studies in Surface Science and Catalysis
  year: 2007
  ident: ref42/cit42
– ident: ref11/cit11
  doi: 10.1515/zpch-2016-0783
– ident: ref13/cit13
  doi: 10.1557/jmr.2006.0186
– ident: ref25/cit25
  doi: 10.1039/b9nr00058e
– ident: ref54/cit54
  doi: 10.1016/j.apsusc.2010.10.051
– ident: ref49/cit49
  doi: 10.1016/j.carbon.2015.03.054
– ident: ref65/cit65
  doi: 10.1021/jp074477+
– ident: ref43/cit43
  doi: 10.1039/c6cp04657f
– ident: ref4/cit4
  doi: 10.1016/j.fuel.2014.04.056
– ident: ref19/cit19
  doi: 10.1021/cm0483590
– ident: ref53/cit53
  doi: 10.1016/s0009-2614(99)01280-4
– ident: ref61/cit61
  doi: 10.1016/j.apcata.2016.06.012
– ident: ref6/cit6
  doi: 10.1016/j.msea.2006.01.055
– ident: ref22/cit22
  doi: 10.1186/s11671-016-1645-9
– ident: ref29/cit29
  doi: 10.1039/c1nr10165j
– ident: ref59/cit59
  doi: 10.1016/j.matlet.2017.04.139
– ident: ref34/cit34
  doi: 10.1016/j.matlet.2012.02.007
– ident: ref26/cit26
  doi: 10.1021/jp4025552
– ident: ref64/cit64
  doi: 10.1021/cm9019099
– ident: ref5/cit5
  doi: 10.1039/c2cc31461d
– ident: ref7/cit7
  doi: 10.1063/1.1927286
– ident: ref15/cit15
  doi: 10.1016/j.msea.2009.01.073
– ident: ref50/cit50
  doi: 10.1007/s13391-016-6243-6
– ident: ref18/cit18
  doi: 10.1021/cm300293b
– ident: ref3/cit3
  doi: 10.1016/s1872-5805(14)60134-7
– ident: ref1/cit1
  doi: 10.1126/science.1222453
– ident: ref14/cit14
  doi: 10.1016/j.carbon.2008.08.020
– ident: ref60/cit60
  doi: 10.1063/1.4942216
– ident: ref40/cit40
  doi: 10.1070/rc2011v080n06abeh004187
– ident: ref10/cit10
  doi: 10.1016/j.msea.2013.03.001
– ident: ref58/cit58
  doi: 10.1371/journal.pone.0044977
– ident: ref21/cit21
  doi: 10.1039/c7nr04992g
– ident: ref23/cit23
  doi: 10.1016/j.carbon.2012.12.015
– ident: ref9/cit9
  doi: 10.1155/2012/983470
– ident: ref16/cit16
  doi: 10.1063/1.1317242
– ident: ref12/cit12
  doi: 10.1016/j.carbon.2005.04.035
– ident: ref27/cit27
  doi: 10.1021/jp900123f
– ident: ref39/cit39
  doi: 10.1016/j.apcata.2006.03.033
– ident: ref57/cit57
  doi: 10.1088/0957-4484/24/30/305202
– ident: ref30/cit30
  doi: 10.1021/jp106612b
– ident: ref28/cit28
  doi: 10.1088/0957-4484/19/43/435102
– ident: ref31/cit31
  doi: 10.1016/j.carbon.2014.03.034
– ident: ref33/cit33
  doi: 10.1016/j.apsusc.2016.03.052
– ident: ref8/cit8
  doi: 10.1016/j.msea.2016.03.098
– ident: ref17/cit17
  doi: 10.1016/j.carbon.2016.11.070
– ident: ref20/cit20
  doi: 10.1021/nn401059h
– ident: ref52/cit52
  doi: 10.1016/j.matchemphys.2005.07.048
– ident: ref45/cit45
  doi: 10.1039/c6fd00200e
– ident: ref37/cit37
  doi: 10.1039/c6cc05244d
– ident: ref35/cit35
  doi: 10.1021/acssuschemeng.5b01269
– ident: ref41/cit41
  doi: 10.1007/bf02645959
– ident: ref32/cit32
  doi: 10.1016/j.catcom.2017.03.022
– ident: ref38/cit38
  doi: 10.1021/acs.jpcc.6b05178
– ident: ref46/cit46
  doi: 10.1103/physrevb.48.1907
– ident: ref47/cit47
  doi: 10.1038/nnano.2013.46
– ident: ref56/cit56
  doi: 10.1016/j.physleta.2004.05.070
SSID ssj0063205
Score 2.35767
Snippet 3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20983
SubjectTerms carbon nanotubes
catalytic activity
cobalt
cobalt oxide
electrical conductivity
electron microscopy
fuel cells
graphene
magnetic properties
magnetic separation
magnetism
nanoparticles
particle size
Raman spectroscopy
temperature
X-ray diffraction
X-ray photoelectron spectroscopy
Title 3D Frameworks with Variable Magnetic and Electrical Features from Sintered Cobalt-Modified Carbon Nanotubes
URI http://dx.doi.org/10.1021/acsami.8b04367
https://www.ncbi.nlm.nih.gov/pubmed/29847909
https://www.proquest.com/docview/2047933618
https://www.proquest.com/docview/2101395382
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8244
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKvcABaEthoVSuqMTJ2_VjvckRLbtClbYXHuIWjR0bIVCCNsmFX48njwW62pZLpEgTJRmPPd_YM98Q8pOPTGyt10yF6IGpoRUMDNdMDlPlpZBSCixwnv3R51fq983w5mW_4-8TfMF_gS2wFU5kkCx9tEY-Ch1xDLNOxxfdmqulqJMVQ0SuWBQ8VkfPuPQ8OiFbvHVCK5Bl7WGm2w3dUVETE2JiyX2_Kk3fPi3TNv7343fIVgsz6WljF5_IB5d9JpuvyAe_kHt5RqddalZBcUOWXofIGWup6AxuMyxvpJCldFK3ysHRpIgYqxChUyxLoRdINjF3KR0jq0jJZnl65-_wHuYmz2hYuvOyMq7YJVfTyeX4nLWtFxhILUsWRyFw1daAisXASSeUHakATrhTyJdvFFgA8FjIiojIe-4kmNRGGukOvZVfyXqWZ26f0FRrAzbMRR8b5fUwXIUxHKwCcF7aHjkOWkraqVMk9am44EmjuqRVXY-wbsQS27KXYxONh5XyJwv5x4a3Y6Xkj84AkjC18LwEMpdXRSKQfl9KzaN_yHDE0MFriB7Za6xn8T4RB9cfD-KDd_3hIdkIYCzCNDQx-EbWy3nljgLgKc332tafAVx--v4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcaHkUltJiBBInt-vHepMjWrpaoFshtUW9RbZjo6ooQZvkwq9nJpssL21FL5ESTRI_xplv4plvAN6IsUu9j4Zr9B64HnnJrROGq1Guo5JKKUkJzvNTM7vQHy9Hlxtw1OfCYCMqfFLVbuL_YhcQR3iNKuIkjjjTx3dgq6VBISw0Oes_vUbJNmYRHXPNEzRcPUvjP_eTLfLVn7ZoDcBsDc10Gz6vmtjGl1wfNrU79D_-Ym-8RR924EEHOtm7pZY8hI1QPIL7v1ERPoZr9Z5N-0CtitHvWfYF_WjKrGJz-7WgZEdmi5wdt4VzaG4Z4ccG_XVGSSrsjKgnFiFnE-IYqfm8zK_iFZ3bhSsLhh_ysm5cqJ7AxfT4fDLjXSEGbpVRNU8TdGONd1anchhUkNqPNUIVETSx5zttvbU2Ulor4aMYRVDW5T4xRH4YvdqFzaIswjNguTHOelyZMXU6mhEepXPCem1tiMoP4DWOUtYtpCpr98ilyJZDl3VDNwDeT1zmOy5zKqnxba3825X89yWLx1rJV70eZLjQaPfEFqFsqkwSGb9SRiQ3yAhC1GhD5ACeLpVo9T6ZIhBIh-nz_-rhS7g7O5-fZCcfTj_twT2EaQkFqMnhC9isF03YRyhUu4NW_X8C5MQDeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BKyF6gPIqWygYgcTJ7foRb3JE267KYyuktqi3yHZsVBUl1Sa58Os7k01WPLSoXCIlmiR-TeabeOYbgHdi4jLvo-EavQeuEy-5dcJwlRQ6KqmUkpTgPD8xx-f600Vy0edxUy4MNqLGJ9XdJj5p9XURe4YBcYDXqSpO6og3fXIXNhPifyM8ND0dPr9GyS5uEZ1zzVM0XgNT41_3kz3y9e_2aA3I7IzN7CGcrZrZxZhc7beN2_c__2Bw_M9-bMODHnyyD8vV8gjuhPIxbP1CSfgErtQhmw0BWzWj37TsG_rTlGHF5vZ7SUmPzJYFO-oK6NAcM8KRLfrtjJJV2ClRUCxCwabENdLweVVcxks6twtXlQw_6FXTulA_hfPZ0dn0mPcFGbhVRjU8S9GdNd5ZnclxUEFqP9EIWUTQxKLvtPXW2kjprYSTYhRBWVf41BAJYvTqGWyUVRmeAyuMcdajhsbM6WgSPErnhPXa2hCVH8FbHKW8V6g67_bKpciXQ5f3QzcCPkxe7ntOcyqt8WOt_PuV_PWSzWOt5JthLeSocLSLYstQtXUuiZRfKSPSf8gIQtZoS-QIdpYLafU-mSEgyMbZ7q16-BrufT2c5V8-nnx-AfcRraUUpybHL2GjWbRhDxFR4151GnADLmAF8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Frameworks+with+Variable+Magnetic+and+Electrical+Features+from+Sintered+Cobalt-Modified+Carbon+Nanotubes&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Savilov%2C+Serguei+V&rft.au=Chernyak%2C+Sergei+A&rft.au=Paslova%2C+Maria+S&rft.au=Ivanov%2C+Anton+S&rft.date=2018-06-20&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=10&rft.issue=24&rft.spage=20983&rft_id=info:doi/10.1021%2Facsami.8b04367&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon