Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior
A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanic...
Saved in:
Published in | ACS applied materials & interfaces Vol. 14; no. 15; pp. 17081 - 17092 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
20.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.2c01266 |
Cover
Abstract | A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell–cell and cell–substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models. |
---|---|
AbstractList | A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell–cell and cell–substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models. A variety of cells are subject to mechanical stretch , which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience . We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of tissue/organ models. A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models. |
Author | Man, Kun Sun, Xiankai Saha, Debabrata Liu, Jiafeng Phan, Khang Minh Liao, Jun Sadat, Hamid Story, Michael Wang, Kai Lee, Jung Yeon Yang, Yong |
AuthorAffiliation | Department of Radiation Oncology University of Texas Southwestern Medical Center Department of Bioengineering Department of Mechanical Engineering Department of Biomedical Engineering Department of Radiology University of Texas at Arlington |
AuthorAffiliation_xml | – name: Department of Bioengineering – name: Department of Radiology – name: Department of Mechanical Engineering – name: Department of Radiation Oncology – name: University of Texas at Arlington – name: Department of Biomedical Engineering – name: University of Texas Southwestern Medical Center |
Author_xml | – sequence: 1 givenname: Kun orcidid: 0000-0002-3764-3312 surname: Man fullname: Man, Kun organization: Department of Biomedical Engineering – sequence: 2 givenname: Jiafeng surname: Liu fullname: Liu, Jiafeng organization: Department of Biomedical Engineering – sequence: 3 givenname: Khang Minh surname: Phan fullname: Phan, Khang Minh organization: Department of Mechanical Engineering – sequence: 4 givenname: Kai orcidid: 0000-0001-8447-6177 surname: Wang fullname: Wang, Kai organization: Department of Biomedical Engineering – sequence: 5 givenname: Jung Yeon surname: Lee fullname: Lee, Jung Yeon organization: Department of Biomedical Engineering – sequence: 6 givenname: Xiankai orcidid: 0000-0002-5140-6110 surname: Sun fullname: Sun, Xiankai organization: Department of Radiology – sequence: 7 givenname: Michael surname: Story fullname: Story, Michael organization: University of Texas Southwestern Medical Center – sequence: 8 givenname: Debabrata surname: Saha fullname: Saha, Debabrata organization: University of Texas Southwestern Medical Center – sequence: 9 givenname: Jun surname: Liao fullname: Liao, Jun organization: University of Texas at Arlington – sequence: 10 givenname: Hamid surname: Sadat fullname: Sadat, Hamid organization: Department of Mechanical Engineering – sequence: 11 givenname: Yong orcidid: 0000-0003-4305-8029 surname: Yang fullname: Yang, Yong email: yong.yang@unt.edu organization: Department of Biomedical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35380801$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctLHEEQxpugxEdy9RjmGAKzVj-355is8QGKoMl5qOmtcVvmsenuEfzvbd3VQ0DwVEXV7yuK7ztgO8M4EGNHHGYcBD9GF7H3M-GAC2M-sX1eKVVaocXOW6_UHjuI8R7ASAH6M9uTWlqwwPfZ2YnvaYh-HLDz6bE8oTUNSxpScUVuhYN32BW3KVByq-KG7qYOU4aLsS0W1HXFL1rhgx_DF7bbYhfp67Yesr-nv_8szsvL67OLxc_LEqWRqaykppaW1kCjlLWu0XkCLSyhclWjEGFu8lahxspiwwldMzemlSAt11LIQ_Z9c3cdxn8TxVT3Prr8CQ40TrHOJkBlBQf9AVTNjdZG8Ix-26JT09OyXgffY3isX33KwGwDuDDGGKh9QzjUz0HUmyDqbRBZoP4TOJ9erEsBffe-7MdGluf1_TiFHEt8D34C6Buacw |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111015 crossref_primary_10_1063_5_0226910 crossref_primary_10_1098_rsos_240284 crossref_primary_10_1016_j_cobme_2024_100574 crossref_primary_10_1039_D4BM00317A crossref_primary_10_3389_fbioe_2023_1218957 crossref_primary_10_1016_j_cobme_2023_100516 crossref_primary_10_1021_acsami_3c04091 crossref_primary_10_1016_j_mtbio_2024_101152 crossref_primary_10_1088_1758_5090_ace5e1 crossref_primary_10_1038_s41378_024_00719_z crossref_primary_10_1002_adma_202409769 crossref_primary_10_1007_s10404_024_02739_7 crossref_primary_10_3390_biomimetics8020170 |
Cites_doi | 10.1152/ajplung.00105.2011 10.1038/nmat3889 10.1021/ac1012893 10.1039/C4LC01252F 10.1096/fj.02-0121fje 10.1164/rccm.201701-0218PP 10.1039/c0lc00736f 10.1016/j.yexcr.2017.03.061 10.1002/bit.20250 10.7554/eLife.31037 10.1016/j.biomaterials.2008.02.019 10.1126/science.aaa4559 10.1006/jmcc.2001.1444 10.1165/ajrcmb.25.5.4486 10.1016/j.rmed.2005.12.008 10.1038/s41586-019-1484-9 10.1038/nmat4725 10.1159/000487347 10.1039/c2ib00171c 10.1016/j.snb.2017.09.192 10.1159/000339151 10.1007/s12551-019-00582-7 10.1172/JCI60519 10.7554/eLife.07370 10.1136/bmj.332.7551.1202 10.1152/ajplung.00336.2002 10.1101/cshperspect.a006528 10.1016/j.oceaneng.2020.107247 10.1021/nn301713d 10.1126/science.1188302 10.1152/physrev.00004.2010 10.1038/nature10137 10.1089/ars.2008.2390 10.1038/nrm3416 10.1126/scitranslmed.3004249 10.1016/j.mvr.2005.10.005 10.1038/nrm1593 10.1186/s13221-015-0033-z 10.1038/nmeth.3697 10.1371/journal.pone.0164438 10.1016/j.devcel.2009.01.004 10.1021/nn4058984 10.1089/ten.tec.2015.0309 10.1016/j.nbd.2018.02.012 10.1161/ATVBAHA.119.312580 10.1091/mbc.e05-01-0043 10.1152/ajpheart.00382.2004 10.1046/j.1365-2443.2003.00681.x 10.1016/j.exer.2021.108445 10.1038/ncomms7943 10.1126/science.1193270 10.1183/20734735.009817 10.1152/ajplung.1998.275.6.L1173 10.3390/cells9010151 10.1016/j.celrep.2021.109347 10.1115/1.3138275 10.1023/B:JMSM.0000046400.18607.72 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.2c01266 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 17092 |
ExternalDocumentID | 35380801 10_1021_acsami_2c01266 c330706335 |
Genre | Journal Article |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED F5P GGK GNL IH9 JG K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ ED~ JG~ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-935efed860b4488cb59350f0d09c9b4aa076d864a5a98ab1eacb766f303815323 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 05:34:07 EDT 2025 Thu Jul 10 17:26:45 EDT 2025 Mon Jul 21 05:46:20 EDT 2025 Thu Apr 24 23:09:38 EDT 2025 Tue Jul 01 01:14:35 EDT 2025 Fri Apr 22 13:17:14 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | mechanical stretch dimensionality mechanotransduction piezo1 tight junction |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-935efed860b4488cb59350f0d09c9b4aa076d864a5a98ab1eacb766f303815323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4305-8029 0000-0001-8447-6177 0000-0002-5140-6110 0000-0002-3764-3312 |
PMID | 35380801 |
PQID | 2647655621 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2660982105 proquest_miscellaneous_2647655621 pubmed_primary_35380801 crossref_primary_10_1021_acsami_2c01266 crossref_citationtrail_10_1021_acsami_2c01266 acs_journals_10_1021_acsami_2c01266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-20 |
PublicationDateYYYYMMDD | 2022-04-20 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref31/cit31 doi: 10.1152/ajplung.00105.2011 – ident: ref41/cit41 doi: 10.1038/nmat3889 – ident: ref18/cit18 doi: 10.1021/ac1012893 – ident: ref20/cit20 doi: 10.1039/C4LC01252F – ident: ref37/cit37 doi: 10.1096/fj.02-0121fje – ident: ref13/cit13 doi: 10.1164/rccm.201701-0218PP – ident: ref27/cit27 doi: 10.1039/c0lc00736f – ident: ref36/cit36 doi: 10.1016/j.yexcr.2017.03.061 – ident: ref24/cit24 doi: 10.1002/bit.20250 – ident: ref50/cit50 doi: 10.7554/eLife.31037 – ident: ref32/cit32 doi: 10.1016/j.biomaterials.2008.02.019 – ident: ref47/cit47 doi: 10.1126/science.aaa4559 – ident: ref3/cit3 doi: 10.1006/jmcc.2001.1444 – ident: ref17/cit17 doi: 10.1165/ajrcmb.25.5.4486 – ident: ref40/cit40 doi: 10.1016/j.rmed.2005.12.008 – ident: ref53/cit53 doi: 10.1038/s41586-019-1484-9 – ident: ref28/cit28 doi: 10.1038/nmat4725 – ident: ref16/cit16 doi: 10.1159/000487347 – ident: ref19/cit19 doi: 10.1039/c2ib00171c – ident: ref21/cit21 doi: 10.1016/j.snb.2017.09.192 – ident: ref56/cit56 doi: 10.1159/000339151 – ident: ref10/cit10 doi: 10.1007/s12551-019-00582-7 – ident: ref34/cit34 doi: 10.1172/JCI60519 – ident: ref52/cit52 doi: 10.7554/eLife.07370 – ident: ref12/cit12 doi: 10.1136/bmj.332.7551.1202 – ident: ref55/cit55 doi: 10.1152/ajplung.00336.2002 – ident: ref9/cit9 doi: 10.1101/cshperspect.a006528 – ident: ref29/cit29 doi: 10.1016/j.oceaneng.2020.107247 – ident: ref26/cit26 doi: 10.1021/nn301713d – ident: ref15/cit15 doi: 10.1126/science.1188302 – ident: ref39/cit39 doi: 10.1152/physrev.00004.2010 – ident: ref44/cit44 doi: 10.1038/nature10137 – ident: ref6/cit6 doi: 10.1089/ars.2008.2390 – ident: ref46/cit46 doi: 10.1038/nrm3416 – ident: ref22/cit22 doi: 10.1126/scitranslmed.3004249 – ident: ref5/cit5 doi: 10.1016/j.mvr.2005.10.005 – ident: ref7/cit7 doi: 10.1038/nrm1593 – ident: ref1/cit1 doi: 10.1186/s13221-015-0033-z – ident: ref23/cit23 doi: 10.1038/nmeth.3697 – ident: ref49/cit49 doi: 10.1371/journal.pone.0164438 – ident: ref8/cit8 doi: 10.1016/j.devcel.2009.01.004 – ident: ref45/cit45 doi: 10.1021/nn4058984 – ident: ref25/cit25 doi: 10.1089/ten.tec.2015.0309 – ident: ref57/cit57 doi: 10.1016/j.nbd.2018.02.012 – ident: ref11/cit11 doi: 10.1161/ATVBAHA.119.312580 – ident: ref38/cit38 doi: 10.1091/mbc.e05-01-0043 – ident: ref4/cit4 doi: 10.1152/ajpheart.00382.2004 – ident: ref35/cit35 doi: 10.1046/j.1365-2443.2003.00681.x – ident: ref54/cit54 doi: 10.1016/j.exer.2021.108445 – ident: ref42/cit42 doi: 10.1038/ncomms7943 – ident: ref51/cit51 doi: 10.1126/science.1193270 – ident: ref2/cit2 doi: 10.1183/20734735.009817 – ident: ref30/cit30 doi: 10.1152/ajplung.1998.275.6.L1173 – ident: ref48/cit48 doi: 10.3390/cells9010151 – ident: ref43/cit43 doi: 10.1016/j.celrep.2021.109347 – ident: ref33/cit33 doi: 10.1115/1.3138275 – ident: ref14/cit14 doi: 10.1023/B:JMSM.0000046400.18607.72 |
SSID | ssj0063205 |
Score | 2.4445758 |
Snippet | A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs.... A variety of cells are subject to mechanical stretch , which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17081 |
SubjectTerms | Biological and Medical Applications of Materials and Interfaces Cell Count cell culture cell structures Cells, Cultured Endothelial Cells - physiology Endothelium Epithelial Cells homeostasis Humans Mechanotransduction, Cellular - physiology Stress, Mechanical |
Title | Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior |
URI | http://dx.doi.org/10.1021/acsami.2c01266 https://www.ncbi.nlm.nih.gov/pubmed/35380801 https://www.proquest.com/docview/2647655621 https://www.proquest.com/docview/2660982105 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNQSBxcnFix3WOqKVUSOUAVOot8pYLVYqa9MLXM85SlqrANZkoyYw988Zjv0HoSkvGIppYbCw1mEmtsTLcYisgZYkMQOiiHdDgkfeH7GEUjj7XO35W8AP_RurMtcIJNLhSzlfRWsAhyDgQ1HmufS6nQbFZETJyhgVErJqeceF5F4R09j0ILUGWRYTpbZV0R1lBTOg2lry2Zrlq6fdF2sY_P34bbVYw07stx8UOWrHpLtr4Qj64h-67jti_JOUAKI67VTvc3BtYdxzYWc9zRWuwq_dUtqwHYW-SeB07HnsVs-J0Hw17dy-dPq7aKmBJOc1xREObWCM4UZCbCa1CuEISYkikI8WkJG0Od5kMZSSk8sE1qzbnCXVFxZAG9AA10klqj5AnuGY2MMrxuDNipRQJIAIVEuP7BpBwE12CBuJqWmRxUfEO_LhUS1yppYlwbY1YV8zkrkHGeKn89Vz-reTkWCp5URs3hmnjaiEytZNZFgMObPMQwJ__mwwnkYCcOGyiw3JkzN9HIVAA2PaP__WHJ2g9cMcmCAOvdIoa-XRmzwDM5Oq8GMcfAIHuKQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6l9EA5tOWdloIRlThtsvY-Yh9RKA2PRIiCxM3aly9ECcLOhV_fWT9CAQXR63ps7-7sznyj2f0G4KdRnCcsc8Q6ZglXxhBtpSMuxpAlsQihy3JAw5Ec3PCzW3Hbgm5zFwY7keOX8jKJ_8QuEHaxzVfEiQxaVCk_wEchufS1Go76fxrTK1lUnlnEwJyTGB1Xw9L46n3vi0z-3BctAJilozn5ApfzLpbnS-46s0J3zOML9sb_GMNX-FyDzuCoWiWr0HKTNVj5h4pwHX4fe5r_iqIDgTk5rovjFsHQ-cvBXpeBT2GjloOrqoA9CgfTLOi78TioeRYfNuDm5Nd1f0DqIgtEMckKkjDhMmdjSTVGarHRAltoRi1NTKK5UrQn8SlXQiWx0iEaat2TMmM-xShYxDZhaTKduG0IYmm4i6z2rO6cOqXiDPGBFtSGoUVc3IYDnIG03iR5Wua_ozCtpiWtp6UNpFFKamqecl8uY7xQ_nAuf18xdCyU3G90nOIm8pkRNXHTWZ4iKuxJgVAwfEtG0iTGCFm0YataIPP_MXQbCL3Db-8a4R4sD66HF-nF6ej8O3yK_IUKytFe7cBS8TBzPxDmFHq3XNp_AR2A9os |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB6xSAgO7A_KGgQSJ_Oc2HGTI2opO0IsErfIWy5ULSLphV_POHErFhXB1Zkktsee-UZjfwNwoCXnKcstMZYZwqXWRBlhiU0wZEkNQuiqHND1jTh75BdP8ZO_x-3uwmAnCvxSUSXx3a5-MblnGAj_Y7urihNptKpCTMI0opHQ1Ws4bt0Pza9gUXVuEYNzThJ0XkOmxm_vO3-ki8_-aAzIrJxNZwEeRt2szpg8Hw1KdaTfvjA4_nEcizDvwWdwXK-WJZiwvWWY-0BJuAKnbUf3X1N1IEAnbV8ktwyurbsk7HQauFQ2aju4qwvZo3DQz4OW7XYDz7f4ugqPnZOH1hnxxRaIZIKVJGWxza1JBFUYsSVaxdhCc2poqlPFpaRNgU-5jGWaSBWiwVZNIXLmUo0xi9g_mOr1e3YdgkRobiOjHLs7p1bKJEecoGJqwtAgPm7APs5A5jdLkVV58CjM6mnJ_LQ0gAwVk2nPV-7KZnTHyh-O5F9qpo6xkntDPWe4mVyGRPZsf1BkiA6bIkZIGP4kI2iaYKQcN2CtXiSj_zF0HwjBw41fjXAXZm7bnezq_OZyE2Yjd6-CcjRbWzBVvg7sNqKdUu1Uq_sdFfT5BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality-Dependent+Mechanical+Stretch+Regulation+of+Cell+Behavior&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Man%2C+Kun&rft.au=Liu%2C+Jiafeng&rft.au=Phan%2C+Khang+Minh&rft.au=Wang%2C+Kai&rft.date=2022-04-20&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=15&rft.spage=17081&rft.epage=17092&rft_id=info:doi/10.1021%2Facsami.2c01266&rft.externalDocID=c330706335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |