Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior

A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanic...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 14; no. 15; pp. 17081 - 17092
Main Authors Man, Kun, Liu, Jiafeng, Phan, Khang Minh, Wang, Kai, Lee, Jung Yeon, Sun, Xiankai, Story, Michael, Saha, Debabrata, Liao, Jun, Sadat, Hamid, Yang, Yong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.04.2022
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.2c01266

Cover

Abstract A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell–cell and cell–substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.
AbstractList A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell–cell and cell–substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.
A variety of cells are subject to mechanical stretch , which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience . We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of tissue/organ models.
A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.
Author Man, Kun
Sun, Xiankai
Saha, Debabrata
Liu, Jiafeng
Phan, Khang Minh
Liao, Jun
Sadat, Hamid
Story, Michael
Wang, Kai
Lee, Jung Yeon
Yang, Yong
AuthorAffiliation Department of Radiation Oncology
University of Texas Southwestern Medical Center
Department of Bioengineering
Department of Mechanical Engineering
Department of Biomedical Engineering
Department of Radiology
University of Texas at Arlington
AuthorAffiliation_xml – name: Department of Bioengineering
– name: Department of Radiology
– name: Department of Mechanical Engineering
– name: Department of Radiation Oncology
– name: University of Texas at Arlington
– name: Department of Biomedical Engineering
– name: University of Texas Southwestern Medical Center
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0000-0002-3764-3312
  surname: Man
  fullname: Man, Kun
  organization: Department of Biomedical Engineering
– sequence: 2
  givenname: Jiafeng
  surname: Liu
  fullname: Liu, Jiafeng
  organization: Department of Biomedical Engineering
– sequence: 3
  givenname: Khang Minh
  surname: Phan
  fullname: Phan, Khang Minh
  organization: Department of Mechanical Engineering
– sequence: 4
  givenname: Kai
  orcidid: 0000-0001-8447-6177
  surname: Wang
  fullname: Wang, Kai
  organization: Department of Biomedical Engineering
– sequence: 5
  givenname: Jung Yeon
  surname: Lee
  fullname: Lee, Jung Yeon
  organization: Department of Biomedical Engineering
– sequence: 6
  givenname: Xiankai
  orcidid: 0000-0002-5140-6110
  surname: Sun
  fullname: Sun, Xiankai
  organization: Department of Radiology
– sequence: 7
  givenname: Michael
  surname: Story
  fullname: Story, Michael
  organization: University of Texas Southwestern Medical Center
– sequence: 8
  givenname: Debabrata
  surname: Saha
  fullname: Saha, Debabrata
  organization: University of Texas Southwestern Medical Center
– sequence: 9
  givenname: Jun
  surname: Liao
  fullname: Liao, Jun
  organization: University of Texas at Arlington
– sequence: 10
  givenname: Hamid
  surname: Sadat
  fullname: Sadat, Hamid
  organization: Department of Mechanical Engineering
– sequence: 11
  givenname: Yong
  orcidid: 0000-0003-4305-8029
  surname: Yang
  fullname: Yang, Yong
  email: yong.yang@unt.edu
  organization: Department of Biomedical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35380801$$D View this record in MEDLINE/PubMed
BookMark eNqNkctLHEEQxpugxEdy9RjmGAKzVj-355is8QGKoMl5qOmtcVvmsenuEfzvbd3VQ0DwVEXV7yuK7ztgO8M4EGNHHGYcBD9GF7H3M-GAC2M-sX1eKVVaocXOW6_UHjuI8R7ASAH6M9uTWlqwwPfZ2YnvaYh-HLDz6bE8oTUNSxpScUVuhYN32BW3KVByq-KG7qYOU4aLsS0W1HXFL1rhgx_DF7bbYhfp67Yesr-nv_8szsvL67OLxc_LEqWRqaykppaW1kCjlLWu0XkCLSyhclWjEGFu8lahxspiwwldMzemlSAt11LIQ_Z9c3cdxn8TxVT3Prr8CQ40TrHOJkBlBQf9AVTNjdZG8Ix-26JT09OyXgffY3isX33KwGwDuDDGGKh9QzjUz0HUmyDqbRBZoP4TOJ9erEsBffe-7MdGluf1_TiFHEt8D34C6Buacw
CitedBy_id crossref_primary_10_1016_j_isci_2024_111015
crossref_primary_10_1063_5_0226910
crossref_primary_10_1098_rsos_240284
crossref_primary_10_1016_j_cobme_2024_100574
crossref_primary_10_1039_D4BM00317A
crossref_primary_10_3389_fbioe_2023_1218957
crossref_primary_10_1016_j_cobme_2023_100516
crossref_primary_10_1021_acsami_3c04091
crossref_primary_10_1016_j_mtbio_2024_101152
crossref_primary_10_1088_1758_5090_ace5e1
crossref_primary_10_1038_s41378_024_00719_z
crossref_primary_10_1002_adma_202409769
crossref_primary_10_1007_s10404_024_02739_7
crossref_primary_10_3390_biomimetics8020170
Cites_doi 10.1152/ajplung.00105.2011
10.1038/nmat3889
10.1021/ac1012893
10.1039/C4LC01252F
10.1096/fj.02-0121fje
10.1164/rccm.201701-0218PP
10.1039/c0lc00736f
10.1016/j.yexcr.2017.03.061
10.1002/bit.20250
10.7554/eLife.31037
10.1016/j.biomaterials.2008.02.019
10.1126/science.aaa4559
10.1006/jmcc.2001.1444
10.1165/ajrcmb.25.5.4486
10.1016/j.rmed.2005.12.008
10.1038/s41586-019-1484-9
10.1038/nmat4725
10.1159/000487347
10.1039/c2ib00171c
10.1016/j.snb.2017.09.192
10.1159/000339151
10.1007/s12551-019-00582-7
10.1172/JCI60519
10.7554/eLife.07370
10.1136/bmj.332.7551.1202
10.1152/ajplung.00336.2002
10.1101/cshperspect.a006528
10.1016/j.oceaneng.2020.107247
10.1021/nn301713d
10.1126/science.1188302
10.1152/physrev.00004.2010
10.1038/nature10137
10.1089/ars.2008.2390
10.1038/nrm3416
10.1126/scitranslmed.3004249
10.1016/j.mvr.2005.10.005
10.1038/nrm1593
10.1186/s13221-015-0033-z
10.1038/nmeth.3697
10.1371/journal.pone.0164438
10.1016/j.devcel.2009.01.004
10.1021/nn4058984
10.1089/ten.tec.2015.0309
10.1016/j.nbd.2018.02.012
10.1161/ATVBAHA.119.312580
10.1091/mbc.e05-01-0043
10.1152/ajpheart.00382.2004
10.1046/j.1365-2443.2003.00681.x
10.1016/j.exer.2021.108445
10.1038/ncomms7943
10.1126/science.1193270
10.1183/20734735.009817
10.1152/ajplung.1998.275.6.L1173
10.3390/cells9010151
10.1016/j.celrep.2021.109347
10.1115/1.3138275
10.1023/B:JMSM.0000046400.18607.72
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.2c01266
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 17092
ExternalDocumentID 35380801
10_1021_acsami_2c01266
c330706335
Genre Journal Article
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
F5P
GGK
GNL
IH9
JG
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-935efed860b4488cb59350f0d09c9b4aa076d864a5a98ab1eacb766f303815323
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 05:34:07 EDT 2025
Thu Jul 10 17:26:45 EDT 2025
Mon Jul 21 05:46:20 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Tue Jul 01 01:14:35 EDT 2025
Fri Apr 22 13:17:14 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords mechanical stretch
dimensionality
mechanotransduction
piezo1
tight junction
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-935efed860b4488cb59350f0d09c9b4aa076d864a5a98ab1eacb766f303815323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4305-8029
0000-0001-8447-6177
0000-0002-5140-6110
0000-0002-3764-3312
PMID 35380801
PQID 2647655621
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2660982105
proquest_miscellaneous_2647655621
pubmed_primary_35380801
crossref_primary_10_1021_acsami_2c01266
crossref_citationtrail_10_1021_acsami_2c01266
acs_journals_10_1021_acsami_2c01266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-20
PublicationDateYYYYMMDD 2022-04-20
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1152/ajplung.00105.2011
– ident: ref41/cit41
  doi: 10.1038/nmat3889
– ident: ref18/cit18
  doi: 10.1021/ac1012893
– ident: ref20/cit20
  doi: 10.1039/C4LC01252F
– ident: ref37/cit37
  doi: 10.1096/fj.02-0121fje
– ident: ref13/cit13
  doi: 10.1164/rccm.201701-0218PP
– ident: ref27/cit27
  doi: 10.1039/c0lc00736f
– ident: ref36/cit36
  doi: 10.1016/j.yexcr.2017.03.061
– ident: ref24/cit24
  doi: 10.1002/bit.20250
– ident: ref50/cit50
  doi: 10.7554/eLife.31037
– ident: ref32/cit32
  doi: 10.1016/j.biomaterials.2008.02.019
– ident: ref47/cit47
  doi: 10.1126/science.aaa4559
– ident: ref3/cit3
  doi: 10.1006/jmcc.2001.1444
– ident: ref17/cit17
  doi: 10.1165/ajrcmb.25.5.4486
– ident: ref40/cit40
  doi: 10.1016/j.rmed.2005.12.008
– ident: ref53/cit53
  doi: 10.1038/s41586-019-1484-9
– ident: ref28/cit28
  doi: 10.1038/nmat4725
– ident: ref16/cit16
  doi: 10.1159/000487347
– ident: ref19/cit19
  doi: 10.1039/c2ib00171c
– ident: ref21/cit21
  doi: 10.1016/j.snb.2017.09.192
– ident: ref56/cit56
  doi: 10.1159/000339151
– ident: ref10/cit10
  doi: 10.1007/s12551-019-00582-7
– ident: ref34/cit34
  doi: 10.1172/JCI60519
– ident: ref52/cit52
  doi: 10.7554/eLife.07370
– ident: ref12/cit12
  doi: 10.1136/bmj.332.7551.1202
– ident: ref55/cit55
  doi: 10.1152/ajplung.00336.2002
– ident: ref9/cit9
  doi: 10.1101/cshperspect.a006528
– ident: ref29/cit29
  doi: 10.1016/j.oceaneng.2020.107247
– ident: ref26/cit26
  doi: 10.1021/nn301713d
– ident: ref15/cit15
  doi: 10.1126/science.1188302
– ident: ref39/cit39
  doi: 10.1152/physrev.00004.2010
– ident: ref44/cit44
  doi: 10.1038/nature10137
– ident: ref6/cit6
  doi: 10.1089/ars.2008.2390
– ident: ref46/cit46
  doi: 10.1038/nrm3416
– ident: ref22/cit22
  doi: 10.1126/scitranslmed.3004249
– ident: ref5/cit5
  doi: 10.1016/j.mvr.2005.10.005
– ident: ref7/cit7
  doi: 10.1038/nrm1593
– ident: ref1/cit1
  doi: 10.1186/s13221-015-0033-z
– ident: ref23/cit23
  doi: 10.1038/nmeth.3697
– ident: ref49/cit49
  doi: 10.1371/journal.pone.0164438
– ident: ref8/cit8
  doi: 10.1016/j.devcel.2009.01.004
– ident: ref45/cit45
  doi: 10.1021/nn4058984
– ident: ref25/cit25
  doi: 10.1089/ten.tec.2015.0309
– ident: ref57/cit57
  doi: 10.1016/j.nbd.2018.02.012
– ident: ref11/cit11
  doi: 10.1161/ATVBAHA.119.312580
– ident: ref38/cit38
  doi: 10.1091/mbc.e05-01-0043
– ident: ref4/cit4
  doi: 10.1152/ajpheart.00382.2004
– ident: ref35/cit35
  doi: 10.1046/j.1365-2443.2003.00681.x
– ident: ref54/cit54
  doi: 10.1016/j.exer.2021.108445
– ident: ref42/cit42
  doi: 10.1038/ncomms7943
– ident: ref51/cit51
  doi: 10.1126/science.1193270
– ident: ref2/cit2
  doi: 10.1183/20734735.009817
– ident: ref30/cit30
  doi: 10.1152/ajplung.1998.275.6.L1173
– ident: ref48/cit48
  doi: 10.3390/cells9010151
– ident: ref43/cit43
  doi: 10.1016/j.celrep.2021.109347
– ident: ref33/cit33
  doi: 10.1115/1.3138275
– ident: ref14/cit14
  doi: 10.1023/B:JMSM.0000046400.18607.72
SSID ssj0063205
Score 2.4445758
Snippet A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs....
A variety of cells are subject to mechanical stretch , which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17081
SubjectTerms Biological and Medical Applications of Materials and Interfaces
Cell Count
cell culture
cell structures
Cells, Cultured
Endothelial Cells - physiology
Endothelium
Epithelial Cells
homeostasis
Humans
Mechanotransduction, Cellular - physiology
Stress, Mechanical
Title Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior
URI http://dx.doi.org/10.1021/acsami.2c01266
https://www.ncbi.nlm.nih.gov/pubmed/35380801
https://www.proquest.com/docview/2647655621
https://www.proquest.com/docview/2660982105
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXODAvpRNQSBxcnFix3WOqKVUSOUAVOot8pYLVYqa9MLXM85SlqrANZkoyYw988Zjv0HoSkvGIppYbCw1mEmtsTLcYisgZYkMQOiiHdDgkfeH7GEUjj7XO35W8AP_RurMtcIJNLhSzlfRWsAhyDgQ1HmufS6nQbFZETJyhgVErJqeceF5F4R09j0ILUGWRYTpbZV0R1lBTOg2lry2Zrlq6fdF2sY_P34bbVYw07stx8UOWrHpLtr4Qj64h-67jti_JOUAKI67VTvc3BtYdxzYWc9zRWuwq_dUtqwHYW-SeB07HnsVs-J0Hw17dy-dPq7aKmBJOc1xREObWCM4UZCbCa1CuEISYkikI8WkJG0Od5kMZSSk8sE1qzbnCXVFxZAG9AA10klqj5AnuGY2MMrxuDNipRQJIAIVEuP7BpBwE12CBuJqWmRxUfEO_LhUS1yppYlwbY1YV8zkrkHGeKn89Vz-reTkWCp5URs3hmnjaiEytZNZFgMObPMQwJ__mwwnkYCcOGyiw3JkzN9HIVAA2PaP__WHJ2g9cMcmCAOvdIoa-XRmzwDM5Oq8GMcfAIHuKQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6l9EA5tOWdloIRlThtsvY-Yh9RKA2PRIiCxM3aly9ECcLOhV_fWT9CAQXR63ps7-7sznyj2f0G4KdRnCcsc8Q6ZglXxhBtpSMuxpAlsQihy3JAw5Ec3PCzW3Hbgm5zFwY7keOX8jKJ_8QuEHaxzVfEiQxaVCk_wEchufS1Go76fxrTK1lUnlnEwJyTGB1Xw9L46n3vi0z-3BctAJilozn5ApfzLpbnS-46s0J3zOML9sb_GMNX-FyDzuCoWiWr0HKTNVj5h4pwHX4fe5r_iqIDgTk5rovjFsHQ-cvBXpeBT2GjloOrqoA9CgfTLOi78TioeRYfNuDm5Nd1f0DqIgtEMckKkjDhMmdjSTVGarHRAltoRi1NTKK5UrQn8SlXQiWx0iEaat2TMmM-xShYxDZhaTKduG0IYmm4i6z2rO6cOqXiDPGBFtSGoUVc3IYDnIG03iR5Wua_ozCtpiWtp6UNpFFKamqecl8uY7xQ_nAuf18xdCyU3G90nOIm8pkRNXHTWZ4iKuxJgVAwfEtG0iTGCFm0YataIPP_MXQbCL3Db-8a4R4sD66HF-nF6ej8O3yK_IUKytFe7cBS8TBzPxDmFHq3XNp_AR2A9os
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-swEB6xSAgO7A_KGgQSJ_Oc2HGTI2opO0IsErfIWy5ULSLphV_POHErFhXB1Zkktsee-UZjfwNwoCXnKcstMZYZwqXWRBlhiU0wZEkNQuiqHND1jTh75BdP8ZO_x-3uwmAnCvxSUSXx3a5-MblnGAj_Y7urihNptKpCTMI0opHQ1Ws4bt0Pza9gUXVuEYNzThJ0XkOmxm_vO3-ki8_-aAzIrJxNZwEeRt2szpg8Hw1KdaTfvjA4_nEcizDvwWdwXK-WJZiwvWWY-0BJuAKnbUf3X1N1IEAnbV8ktwyurbsk7HQauFQ2aju4qwvZo3DQz4OW7XYDz7f4ugqPnZOH1hnxxRaIZIKVJGWxza1JBFUYsSVaxdhCc2poqlPFpaRNgU-5jGWaSBWiwVZNIXLmUo0xi9g_mOr1e3YdgkRobiOjHLs7p1bKJEecoGJqwtAgPm7APs5A5jdLkVV58CjM6mnJ_LQ0gAwVk2nPV-7KZnTHyh-O5F9qpo6xkntDPWe4mVyGRPZsf1BkiA6bIkZIGP4kI2iaYKQcN2CtXiSj_zF0HwjBw41fjXAXZm7bnezq_OZyE2Yjd6-CcjRbWzBVvg7sNqKdUu1Uq_sdFfT5BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality-Dependent+Mechanical+Stretch+Regulation+of+Cell+Behavior&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Man%2C+Kun&rft.au=Liu%2C+Jiafeng&rft.au=Phan%2C+Khang+Minh&rft.au=Wang%2C+Kai&rft.date=2022-04-20&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=14&rft.issue=15&rft.spage=17081&rft.epage=17092&rft_id=info:doi/10.1021%2Facsami.2c01266&rft.externalDocID=c330706335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon