Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites with Overlapping BN Nanosheets for Thermal Management Applications
Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes,...
Saved in:
| Published in | ACS applied materials & interfaces Vol. 11; no. 34; pp. 31402 - 31410 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
28.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1944-8244 1944-8252 1944-8252 |
| DOI | 10.1021/acsami.9b10810 |
Cover
| Abstract | Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems. |
|---|---|
| AbstractList | Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems. Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems. Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems.Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems. |
| Author | Huang, Xingyi Wei, Han Jiang, Pingkai Chen, Jin Bao, Hua |
| AuthorAffiliation | Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing University of Michigan−Shanghai Jiao Tong University Joint Institute |
| AuthorAffiliation_xml | – name: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing – name: University of Michigan−Shanghai Jiao Tong University Joint Institute |
| Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0002-5063-1180 surname: Chen fullname: Chen, Jin organization: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing – sequence: 2 givenname: Han surname: Wei fullname: Wei, Han organization: University of Michigan−Shanghai Jiao Tong University Joint Institute – sequence: 3 givenname: Hua surname: Bao fullname: Bao, Hua organization: University of Michigan−Shanghai Jiao Tong University Joint Institute – sequence: 4 givenname: Pingkai surname: Jiang fullname: Jiang, Pingkai organization: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing – sequence: 5 givenname: Xingyi orcidid: 0000-0002-8919-6884 surname: Huang fullname: Huang, Xingyi email: xyhuang@sjtu.edu.cn organization: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31381291$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtvGyEUhVGVqEncbrusWFaVxuE1Y2aZWk0bKa9FukaYucREDEyBSeV9f3gmsd1FpSgLdHl85wD3nKCDEAMg9ImSOSWMnmqTde_m7YoSSck7dExbISrJanbwby7EETrJ-YGQhjNSv0dHnHJJWUuP0d8r5z1YGJ9LdRHy4BJ0-G4Nqdfeb_Ayhm40xT0Cvo1-00PC1zpEE_shZlcg4z-urPHNIySvh8GFe_zt-gXJa4CSsY1pb4evdND30EMo-GwYvDO6uBjyB3Rotc_wcVdn6Nf597vlz-ry5sfF8uyy0rzhpWo6YRtDOmtsDQvTGsZaENa2lk0Hsu3azlAQxKwkkZwbWPBGyhpW3YJLMq1m6MvWd0jx9wi5qN5lA97rAHHMivGaCToN9jbKpgsFI9PDZujzDh1XPXRqSK7XaaP2TZ4AsQVMijknsMq48vLzkrTzihL1nKXaZql2WU6y-X-yvfOrgq9bwbSvHuKYwtTM1-Anw6azCg |
| CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_131875 crossref_primary_10_1021_acsami_9b19844 crossref_primary_10_1177_09540083231164342 crossref_primary_10_1021_acsami_3c04126 crossref_primary_10_1016_j_compositesb_2021_108666 crossref_primary_10_1039_D2TA02968E crossref_primary_10_1039_D3MH01359F crossref_primary_10_1016_j_coco_2023_101735 crossref_primary_10_1021_acsanm_2c03638 crossref_primary_10_1002_cphc_202100645 crossref_primary_10_1016_j_mtnano_2024_100540 crossref_primary_10_2139_ssrn_4140214 crossref_primary_10_1177_09540083221106058 crossref_primary_10_3389_fmats_2021_817061 crossref_primary_10_1016_j_compositesb_2023_111164 crossref_primary_10_1021_acs_iecr_2c00216 crossref_primary_10_1016_j_apmt_2022_101672 crossref_primary_10_1021_acsami_1c23944 crossref_primary_10_1021_acsami_4c04222 crossref_primary_10_1016_j_polymer_2024_126918 crossref_primary_10_1002_admt_202201137 crossref_primary_10_34133_2021_8438614 crossref_primary_10_1021_acs_iecr_2c01044 crossref_primary_10_1021_acs_iecr_2c04312 crossref_primary_10_1039_D3TC02761A crossref_primary_10_1016_j_ijheatmasstransfer_2021_121012 crossref_primary_10_1515_polyeng_2023_0103 crossref_primary_10_1016_j_enconman_2021_114957 crossref_primary_10_1016_j_cej_2022_137255 crossref_primary_10_1007_s10854_021_07269_4 crossref_primary_10_1016_j_coco_2025_102251 crossref_primary_10_1002_mame_202100434 crossref_primary_10_1016_j_compositesb_2024_111971 crossref_primary_10_1002_smll_202305104 crossref_primary_10_1021_acsapm_2c01885 crossref_primary_10_1016_j_compscitech_2020_108610 crossref_primary_10_1016_j_cej_2021_134408 crossref_primary_10_1016_j_compositesb_2022_110084 crossref_primary_10_1002_admi_202001329 crossref_primary_10_1016_j_compositesa_2020_106261 crossref_primary_10_1016_j_compscitech_2019_107944 crossref_primary_10_1039_D1TA06597A crossref_primary_10_1016_j_mser_2023_100738 crossref_primary_10_3390_c7020035 crossref_primary_10_1021_acsami_4c17115 crossref_primary_10_1177_00405175231154018 crossref_primary_10_1021_acsenergylett_0c02427 crossref_primary_10_1016_j_cej_2022_135482 crossref_primary_10_3390_polym16152139 crossref_primary_10_1021_acsaelm_0c00227 crossref_primary_10_1002_smtd_202201515 crossref_primary_10_1007_s11431_022_2168_3 crossref_primary_10_3390_nano12244492 crossref_primary_10_1002_pol_20200507 crossref_primary_10_1021_acsaenm_3c00204 crossref_primary_10_1021_acsnano_2c04534 crossref_primary_10_1002_pc_26501 crossref_primary_10_1002_pc_28007 crossref_primary_10_1021_acsapm_3c00352 crossref_primary_10_1002_pc_27947 crossref_primary_10_1021_acsnano_0c09229 crossref_primary_10_1016_j_compositesa_2022_106970 crossref_primary_10_1039_D0NJ04674D crossref_primary_10_1039_D0TA04674D crossref_primary_10_1016_j_compositesa_2020_106093 crossref_primary_10_1016_j_est_2025_115344 crossref_primary_10_1016_j_isci_2022_103825 crossref_primary_10_1016_j_coco_2020_03_007 crossref_primary_10_1016_j_polymer_2021_124098 crossref_primary_10_1016_j_coco_2022_101129 crossref_primary_10_1007_s42114_023_00826_x crossref_primary_10_1016_j_carbon_2020_02_012 crossref_primary_10_1016_j_compositesa_2022_106847 crossref_primary_10_1016_j_compositesb_2021_108609 crossref_primary_10_1016_j_progpolymsci_2022_101505 crossref_primary_10_1021_acsanm_4c03604 crossref_primary_10_1016_j_compositesa_2023_107533 crossref_primary_10_1016_j_pnsc_2022_03_007 crossref_primary_10_1016_j_coco_2023_101654 crossref_primary_10_1016_j_polymer_2021_124300 crossref_primary_10_1016_j_compositesb_2021_109039 crossref_primary_10_1021_acsami_2c02450 crossref_primary_10_3390_nano12193365 crossref_primary_10_1021_acssuschemeng_1c03119 crossref_primary_10_1088_2053_1591_acb7cc crossref_primary_10_1016_j_coco_2021_100963 crossref_primary_10_1016_j_polymer_2024_127531 crossref_primary_10_1021_acsami_1c15670 crossref_primary_10_1039_D4MA01162G crossref_primary_10_1007_s12274_022_4824_2 crossref_primary_10_1016_j_jmst_2024_02_070 crossref_primary_10_1016_j_ceramint_2024_07_425 crossref_primary_10_1002_adfm_202110782 crossref_primary_10_1021_acsami_2c12386 crossref_primary_10_1021_acs_jpcc_1c04919 crossref_primary_10_1109_MNANO_2021_3066390 crossref_primary_10_1016_j_matlet_2022_132588 crossref_primary_10_1016_j_compscitech_2021_108945 crossref_primary_10_1039_C9TC04381K crossref_primary_10_1016_j_coco_2022_101371 crossref_primary_10_1002_tcr_202000079 crossref_primary_10_1039_D4TC04159C crossref_primary_10_1007_s12274_020_3245_3 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_1039_D5MH00070J crossref_primary_10_1007_s42114_021_00208_1 crossref_primary_10_1016_j_matlet_2025_138212 crossref_primary_10_1016_j_compositesb_2021_109207 crossref_primary_10_1177_0954008320959413 crossref_primary_10_1002_mame_202000696 crossref_primary_10_1016_j_compositesa_2021_106336 crossref_primary_10_1016_j_jmst_2020_08_027 crossref_primary_10_1007_s10973_021_10838_8 crossref_primary_10_1016_j_mser_2025_100968 crossref_primary_10_1002_adfm_202308631 crossref_primary_10_1002_adfm_202419891 crossref_primary_10_1002_macp_202000418 crossref_primary_10_1016_j_pmatsci_2022_101054 crossref_primary_10_1016_j_enconman_2022_116603 crossref_primary_10_1016_j_jmst_2022_10_077 crossref_primary_10_1016_j_compscitech_2021_108953 crossref_primary_10_3390_ma14092192 crossref_primary_10_1039_D4TC03588G crossref_primary_10_1016_j_compositesa_2023_107816 crossref_primary_10_1039_D0TA12541E crossref_primary_10_3390_polym13132028 crossref_primary_10_1016_j_matchar_2024_113864 crossref_primary_10_1002_pc_27600 crossref_primary_10_2139_ssrn_4145395 crossref_primary_10_1016_j_compscitech_2021_108794 crossref_primary_10_1016_j_coco_2021_101036 crossref_primary_10_1016_j_compositesb_2021_109454 crossref_primary_10_1016_j_apsusc_2023_157666 crossref_primary_10_1021_acsomega_3c02246 crossref_primary_10_1038_s41528_024_00320_4 crossref_primary_10_1016_j_compositesa_2023_107998 crossref_primary_10_1021_acsanm_3c00563 crossref_primary_10_1039_D2NR06360C crossref_primary_10_1016_j_jallcom_2022_167971 crossref_primary_10_1016_j_pmatsci_2024_101362 crossref_primary_10_1021_acsomega_3c09550 crossref_primary_10_1016_j_compositesa_2022_107195 crossref_primary_10_1016_j_mtcomm_2022_103507 crossref_primary_10_1080_23311916_2021_1991229 crossref_primary_10_1016_j_compositesa_2020_106222 crossref_primary_10_1016_j_compositesa_2021_106585 crossref_primary_10_1016_j_compositesa_2022_106933 crossref_primary_10_1016_j_compscitech_2022_109259 crossref_primary_10_1038_s41428_022_00644_w crossref_primary_10_1016_j_reactfunctpolym_2023_105539 crossref_primary_10_1016_j_nantod_2023_102011 crossref_primary_10_1016_j_coco_2022_101392 crossref_primary_10_1002_adfm_202301549 crossref_primary_10_1002_pc_26544 crossref_primary_10_1021_acs_iecr_0c05509 crossref_primary_10_1021_acsami_3c04799 crossref_primary_10_1016_j_coco_2021_100851 crossref_primary_10_1021_acsami_3c09847 crossref_primary_10_1016_j_compstruct_2024_118530 crossref_primary_10_1016_j_surfin_2022_102465 crossref_primary_10_3390_jcs4040180 crossref_primary_10_1016_j_icheatmasstransfer_2021_105537 crossref_primary_10_1016_j_ceramint_2023_08_182 crossref_primary_10_3390_nano14151259 crossref_primary_10_1021_acsanm_3c05047 crossref_primary_10_1007_s12613_024_2842_7 crossref_primary_10_1016_j_ensm_2021_08_031 crossref_primary_10_1016_j_compscitech_2022_109769 crossref_primary_10_1039_D0TC05493C crossref_primary_10_1155_2022_2513471 crossref_primary_10_1007_s10853_023_08980_9 crossref_primary_10_1016_j_compscitech_2021_108779 crossref_primary_10_1002_adfm_202305734 crossref_primary_10_1002_app_53756 |
| Cites_doi | 10.1016/j.progpolymsci.2016.05.001 10.1002/adfm.201201824 10.1021/acsnano.8b03264 10.1039/C8TA08008A 10.1002/adfm.201805053 10.1016/j.pmatsci.2018.10.002 10.1038/s41467-018-04294-6 10.1039/C8NR05167D 10.1002/aenm.201602380 10.1039/C8TA03642J 10.1088/2053-1583/aa7cd1 10.1038/s41467-018-03978-3 10.1016/S0266-3538(00)00162-7 10.1002/adma.201504594 10.1021/acsnano.7b08708 10.1002/adma.201804810 10.1016/j.mattod.2014.04.003 10.1021/acsnano.5b02917 10.1039/C6NR07357C 10.1021/acsnano.8b05822 10.1002/adfm.201801205 10.1039/C8TA01294F 10.1039/C8TA07435F 10.1016/j.progpolymsci.2016.03.001 10.1038/nature14647 10.1002/app.1986.070320702 10.1021/nn500134m 10.1039/C3EE42573H 10.1021/acsami.6b04636 10.1039/C5NR00228A 10.1063/1.3687173 10.1021/acsami.7b02410 10.1021/acsnano.8b06290 10.1021/acsami.7b05866 10.1016/j.ijheatmasstransfer.2004.12.032 10.1039/C5CS00869G 10.1021/acsami.7b04768 10.1021/acsami.7b08214 10.1021/acsanm.7b00041 10.1002/adfm.201707556 10.1002/adfm.201900412 10.1021/acsami.7b08061 10.1039/C6RA00980H 10.1039/C7EE01095H 10.1021/acsnano.7b02359 10.1038/s41565-017-0008-8 10.1021/acsami.8b14154 10.1002/adfm.201604754 10.1002/cphc.201402814 10.1038/ncomms9849 10.1002/smll.201502173 10.1002/smll.201402569 10.1021/acsami.5b04444 10.1002/adma.201705544 10.1021/am507416y 10.1002/adma.201502803 10.1038/ncomms6802 10.1002/adma.201600642 10.1126/science.aat7439 10.1021/nn502486x |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1021/acsami.9b10810 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1944-8252 |
| EndPage | 31410 |
| ExternalDocumentID | 31381291 10_1021_acsami_9b10810 e03264880 |
| Genre | Journal Article |
| GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-a363t-6d4f6c0dfcf5e7c9c229e4ff9f24f689d9dc1e40cb80833ce736885ebd7380e73 |
| IEDL.DBID | ACS |
| ISSN | 1944-8244 1944-8252 |
| IngestDate | Thu Oct 02 04:14:20 EDT 2025 Thu Jul 10 22:32:42 EDT 2025 Wed Feb 19 02:36:16 EST 2025 Tue Jul 01 04:06:34 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Thu Aug 27 13:44:12 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 34 |
| Keywords | finite element simulation boron nitride thermal conductivity electrospinning polymer nanocomposites |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a363t-6d4f6c0dfcf5e7c9c229e4ff9f24f689d9dc1e40cb80833ce736885ebd7380e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8919-6884 0000-0002-5063-1180 |
| PMID | 31381291 |
| PQID | 2268942036 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2352415242 proquest_miscellaneous_2268942036 pubmed_primary_31381291 crossref_citationtrail_10_1021_acsami_9b10810 crossref_primary_10_1021_acsami_9b10810 acs_journals_10_1021_acsami_9b10810 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-28 |
| PublicationDateYYYYMMDD | 2019-08-28 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS applied materials & interfaces |
| PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
| PublicationYear | 2019 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref16/cit16 doi: 10.1016/j.progpolymsci.2016.05.001 – ident: ref21/cit21 doi: 10.1002/adfm.201201824 – ident: ref27/cit27 doi: 10.1021/acsnano.8b03264 – ident: ref53/cit53 doi: 10.1039/C8TA08008A – ident: ref14/cit14 doi: 10.1002/adfm.201805053 – ident: ref35/cit35 doi: 10.1016/j.pmatsci.2018.10.002 – ident: ref38/cit38 doi: 10.1038/s41467-018-04294-6 – ident: ref49/cit49 doi: 10.1039/C8NR05167D – ident: ref39/cit39 doi: 10.1002/aenm.201602380 – ident: ref58/cit58 doi: 10.1039/C8TA03642J – ident: ref4/cit4 doi: 10.1088/2053-1583/aa7cd1 – ident: ref13/cit13 doi: 10.1038/s41467-018-03978-3 – ident: ref47/cit47 doi: 10.1016/S0266-3538(00)00162-7 – ident: ref34/cit34 doi: 10.1002/adma.201504594 – ident: ref42/cit42 doi: 10.1021/acsnano.7b08708 – ident: ref43/cit43 doi: 10.1002/adma.201804810 – ident: ref1/cit1 doi: 10.1016/j.mattod.2014.04.003 – ident: ref26/cit26 doi: 10.1021/acsnano.5b02917 – ident: ref23/cit23 doi: 10.1039/C6NR07357C – ident: ref28/cit28 doi: 10.1021/acsnano.8b05822 – ident: ref29/cit29 doi: 10.1002/adfm.201801205 – ident: ref52/cit52 doi: 10.1039/C8TA01294F – ident: ref51/cit51 doi: 10.1039/C8TA07435F – ident: ref32/cit32 doi: 10.1016/j.progpolymsci.2016.03.001 – ident: ref36/cit36 doi: 10.1038/nature14647 – ident: ref45/cit45 doi: 10.1002/app.1986.070320702 – ident: ref10/cit10 doi: 10.1021/nn500134m – ident: ref7/cit7 doi: 10.1039/C3EE42573H – ident: ref33/cit33 doi: 10.1021/acsami.6b04636 – ident: ref18/cit18 doi: 10.1039/C5NR00228A – ident: ref5/cit5 doi: 10.1063/1.3687173 – ident: ref55/cit55 doi: 10.1021/acsami.7b02410 – ident: ref44/cit44 doi: 10.1021/acsnano.8b06290 – ident: ref57/cit57 doi: 10.1021/acsami.7b05866 – ident: ref46/cit46 doi: 10.1016/j.ijheatmasstransfer.2004.12.032 – ident: ref15/cit15 doi: 10.1039/C5CS00869G – ident: ref56/cit56 doi: 10.1021/acsami.7b04768 – ident: ref59/cit59 doi: 10.1021/acsami.7b08214 – ident: ref50/cit50 doi: 10.1021/acsanm.7b00041 – ident: ref37/cit37 doi: 10.1002/adfm.201707556 – ident: ref48/cit48 doi: 10.1002/adfm.201900412 – ident: ref17/cit17 doi: 10.1021/acsami.7b08061 – ident: ref24/cit24 doi: 10.1039/C6RA00980H – ident: ref40/cit40 doi: 10.1039/C7EE01095H – ident: ref3/cit3 doi: 10.1021/acsnano.7b02359 – ident: ref41/cit41 doi: 10.1038/s41565-017-0008-8 – ident: ref54/cit54 doi: 10.1021/acsami.8b14154 – ident: ref22/cit22 doi: 10.1002/adfm.201604754 – ident: ref11/cit11 doi: 10.1002/cphc.201402814 – ident: ref12/cit12 doi: 10.1038/ncomms9849 – ident: ref30/cit30 doi: 10.1002/smll.201502173 – ident: ref25/cit25 doi: 10.1002/smll.201402569 – ident: ref6/cit6 doi: 10.1021/acsami.5b04444 – ident: ref2/cit2 doi: 10.1002/adma.201705544 – ident: ref60/cit60 doi: 10.1021/am507416y – ident: ref19/cit19 doi: 10.1002/adma.201502803 – ident: ref31/cit31 doi: 10.1038/ncomms6802 – ident: ref20/cit20 doi: 10.1002/adma.201600642 – ident: ref8/cit8 doi: 10.1126/science.aat7439 – ident: ref9/cit9 doi: 10.1021/nn502486x |
| SSID | ssj0063205 |
| Score | 2.631258 |
| Snippet | Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 31402 |
| SubjectTerms | boron nitride electronic equipment management systems nanofibers nanosheets polymer nanocomposites polyvinyl alcohol spraying spreaders thermal conductivity |
| Title | Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites with Overlapping BN Nanosheets for Thermal Management Applications |
| URI | http://dx.doi.org/10.1021/acsami.9b10810 https://www.ncbi.nlm.nih.gov/pubmed/31381291 https://www.proquest.com/docview/2268942036 https://www.proquest.com/docview/2352415242 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: ACS美国化学学会期刊数据库 customDbUrl: eissn: 1944-8252 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063205 issn: 1944-8244 databaseCode: ACS dateStart: 20090128 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQvdBDKVDo0oJcgdSTIbG9jn3crkALEhSJInGLEtsBiW2CSBYJzvzwzuSxvLTQUxRl8nLGM9888pmQbRlBxBVkiNyMZzLiKdNJXzFhg8BJiz4Lf3A-OlajM3l43j9_zHe8rODzcDexJS6FY9IQvBcE5x-4iiJs3hsMTzubqwSvmxUhIpdMg8fq6BlfnY9OyJbPndAMZFl7mP3Fhu6orIkJsbHkamdSpTv2_jVt47sP_5l8amEmHTR6sUTmfL5MPj4hH1whD_VvgJmf4IYd5Fhy946C3oCtHo_v6LDIkQwWzCE9KcZ3f_0NBVtcYBM6dnr5kmISl_6-xZQg0jxc0F_HtUh56X1VUsDD3eXoY5sNHTypmX8hZ_t7f4Yj1q7JwBKhRMWUk5mygcts1veRNZZz42WWmYzDAW2ccTb0MrCpBnAnrI-E0rrvUxcJHcDeKpnPi9x_JdQ4ZyGuRwY6iEm5SiLHdYIhkdYy5aJHtmD44nZOlXFdLudh3Ixp3I5pj7DuU8a2pTXH1TXGM-V_TuWvG0KPmZI_Os2IYc5hISXJfTEpY4Cs2kgs4b4hA8gWwZHkPbLWqNX0fiIEnMRNuP5fb_iNLABKM5jI5vo7ma9uJn4DkFCVbtaT4B9QsAT8 |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5QAceNMuTyOQOLlNbMexj8uKagvtUolW6i1KbAekLglqskjlzA9nJptsC2gRnKIkk8R2xp5vPOPPAK9Uih5XVBJys4GrVBTc5Inm0kWRV45sFi1wPpzp6Yl6d5qcbsDusBYGC9Hgm5ouiH_JLhDv4jXaEccWMRox9NGvJVrF5G2NJx-HoVdL0eUsomOuuEHDNbA0_vE82SLX_GqL1gDMztDs3YajVRG7_JKznUVb7Ljvv7E3_kcd7sCtHnSy8VJL7sJGqO7BzStUhPfhR7cosAwLOvD9igLwwTPUIhy55_MLNqkroobFwZEd1fOLL-Gc4chcU0o65X2FhtGULvvwjSYIifThE3sz60SazyG0DUN0PLyOXSbdsPGVCPoDONl7ezyZ8n6HBp5LLVuuvSq1i3zpyiSkzjohbFBlaUuBN4z11rs4qMgVBqGedCGV2pgkFD6VJsKzh7BZ1VXYBma9d-jlEx8deqhC56kXJicHyRhVCDmCl9h8Wd_DmqwLnos4W7Zp1rfpCPjwRzPXk5zTXhvztfKvV_Jfl_QeayVfDAqSYQ-ksEpehXrRZAhgjVUU0P2LDOJcgkpKjGBrqV2r78kYUZOw8aN_quFzuD49PjzIDvZn7x_DDcRvlqa4hXkCm-35IjxFjNQWz7p-8RO4WA1e |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFG8MJgYfREXl4gclkPhU3Nquax_x6g0oXEiEhLdl64cmXDfCdk3w2T_cc3a3K2Cukadl29nWdj09v9Nz-ish2zIFjysKiNyMZzLlBdN5opiwUeSkRZuFC5wPx2rvVH46S866ddy4FgYKUcOb6jaIj1p94ULHMBC_g-u4K44pYjBk4KffTxToOeKh4Zd--FWCt3mL4JxLpsF49UyNfz2P9sjWN-3RApDZGpvRCjmZF7PNMTnfmTbFjv15i8HxjvV4TB514JPuznrLE3LPl0_Jw2uUhKvkV7s4MPgpHth-iYF47yj0JhjBJ5MrOqxKpIiFQZIeV5Or7_6SwghdYWo65n_5muLULj36gROFSP7wlb4ftyL1N--bmgJK7l9H_yTf0N1rkfRn5HT08WS4x7qdGlgulGiYcjIoG7lgQ-JTayznxssQTOBwQxtnnI29jGyhAfIJ61OhtE584VKhIzh7TpbKqvRrhBrnLHj7yEsHnipXeeq4ztFR0loWXAzIFjRf1mlanbVBdB5nszbNujYdENb_1cx2ZOe458ZkofzbufzFjOZjoeRm30ky0EQMr-Slr6Z1BkBWG4mB3X_IAN5FyCT5gLyY9bD590QM6ImbeP2_arhBHhx_GGUH--PPL8kywDiDM91cvyJLzeXUvwao1BRvWtX4DVhRD-E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Millefeuille-Inspired+Thermally+Conductive+Polymer+Nanocomposites+with+Overlapping+BN+Nanosheets+for+Thermal+Management+Applications&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Jin&rft.au=Wei%2C+Han&rft.au=Bao%2C+Hua&rft.au=Jiang%2C+Pingkai&rft.date=2019-08-28&rft.eissn=1944-8252&rft.volume=11&rft.issue=34&rft.spage=31402&rft_id=info:doi/10.1021%2Facsami.9b10810&rft_id=info%3Apmid%2F31381291&rft.externalDocID=31381291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |