Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites with Overlapping BN Nanosheets for Thermal Management Applications

Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes,...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 11; no. 34; pp. 31402 - 31410
Main Authors Chen, Jin, Wei, Han, Bao, Hua, Jiang, Pingkai, Huang, Xingyi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.08.2019
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.9b10810

Cover

Abstract Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly­(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems.
AbstractList Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems.
Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly­(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems.
Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems.Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric materials because of their poor thermal conductivity. In the present work, inspired by the structure and production process of millefeuille cakes, we show that electrostatic spraying of boron nitride nanosheets (BNNSs) onto electrospun poly(vinyl alcohol) (PVA) nanofibers can produce highly thermally conductive, electrically insulating, flexible, and lightweight nanocomposites via a scalable method of building a multilayer PVA/BNNS nanonetwork structure. The PVA/BNNS nanocomposites exhibit an ultrahigh in-plane thermal conductivity of 21.4 W/(m·K) at 22.2 vol % BNNS addition, realized by an orientated BNNS network structure with overlapping interconnections. The BNNS networks exhibit low thermal resistance and interfacial heat scattering between BNNSs. Moreover, for heat dissipation applications, the nanocomposites with an overlapping BNNS network show higher efficiency in dissipating hot spots than randomly dispersed BNNS or directly hot-pressed BNNS composites. These PVA/BNNS nanocomposites can be used as high-performance lateral heat spreaders in next-generation thermal management systems.
Author Huang, Xingyi
Wei, Han
Jiang, Pingkai
Chen, Jin
Bao, Hua
AuthorAffiliation Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
University of Michigan−Shanghai Jiao Tong University Joint Institute
AuthorAffiliation_xml – name: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
– name: University of Michigan−Shanghai Jiao Tong University Joint Institute
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0002-5063-1180
  surname: Chen
  fullname: Chen, Jin
  organization: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
– sequence: 2
  givenname: Han
  surname: Wei
  fullname: Wei, Han
  organization: University of Michigan−Shanghai Jiao Tong University Joint Institute
– sequence: 3
  givenname: Hua
  surname: Bao
  fullname: Bao, Hua
  organization: University of Michigan−Shanghai Jiao Tong University Joint Institute
– sequence: 4
  givenname: Pingkai
  surname: Jiang
  fullname: Jiang, Pingkai
  organization: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
– sequence: 5
  givenname: Xingyi
  orcidid: 0000-0002-8919-6884
  surname: Huang
  fullname: Huang, Xingyi
  email: xyhuang@sjtu.edu.cn
  organization: Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31381291$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvGyEUhVGVqEncbrusWFaVxuE1Y2aZWk0bKa9FukaYucREDEyBSeV9f3gmsd1FpSgLdHl85wD3nKCDEAMg9ImSOSWMnmqTde_m7YoSSck7dExbISrJanbwby7EETrJ-YGQhjNSv0dHnHJJWUuP0d8r5z1YGJ9LdRHy4BJ0-G4Nqdfeb_Ayhm40xT0Cvo1-00PC1zpEE_shZlcg4z-urPHNIySvh8GFe_zt-gXJa4CSsY1pb4evdND30EMo-GwYvDO6uBjyB3Rotc_wcVdn6Nf597vlz-ry5sfF8uyy0rzhpWo6YRtDOmtsDQvTGsZaENa2lk0Hsu3azlAQxKwkkZwbWPBGyhpW3YJLMq1m6MvWd0jx9wi5qN5lA97rAHHMivGaCToN9jbKpgsFI9PDZujzDh1XPXRqSK7XaaP2TZ4AsQVMijknsMq48vLzkrTzihL1nKXaZql2WU6y-X-yvfOrgq9bwbSvHuKYwtTM1-Anw6azCg
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_131875
crossref_primary_10_1021_acsami_9b19844
crossref_primary_10_1177_09540083231164342
crossref_primary_10_1021_acsami_3c04126
crossref_primary_10_1016_j_compositesb_2021_108666
crossref_primary_10_1039_D2TA02968E
crossref_primary_10_1039_D3MH01359F
crossref_primary_10_1016_j_coco_2023_101735
crossref_primary_10_1021_acsanm_2c03638
crossref_primary_10_1002_cphc_202100645
crossref_primary_10_1016_j_mtnano_2024_100540
crossref_primary_10_2139_ssrn_4140214
crossref_primary_10_1177_09540083221106058
crossref_primary_10_3389_fmats_2021_817061
crossref_primary_10_1016_j_compositesb_2023_111164
crossref_primary_10_1021_acs_iecr_2c00216
crossref_primary_10_1016_j_apmt_2022_101672
crossref_primary_10_1021_acsami_1c23944
crossref_primary_10_1021_acsami_4c04222
crossref_primary_10_1016_j_polymer_2024_126918
crossref_primary_10_1002_admt_202201137
crossref_primary_10_34133_2021_8438614
crossref_primary_10_1021_acs_iecr_2c01044
crossref_primary_10_1021_acs_iecr_2c04312
crossref_primary_10_1039_D3TC02761A
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121012
crossref_primary_10_1515_polyeng_2023_0103
crossref_primary_10_1016_j_enconman_2021_114957
crossref_primary_10_1016_j_cej_2022_137255
crossref_primary_10_1007_s10854_021_07269_4
crossref_primary_10_1016_j_coco_2025_102251
crossref_primary_10_1002_mame_202100434
crossref_primary_10_1016_j_compositesb_2024_111971
crossref_primary_10_1002_smll_202305104
crossref_primary_10_1021_acsapm_2c01885
crossref_primary_10_1016_j_compscitech_2020_108610
crossref_primary_10_1016_j_cej_2021_134408
crossref_primary_10_1016_j_compositesb_2022_110084
crossref_primary_10_1002_admi_202001329
crossref_primary_10_1016_j_compositesa_2020_106261
crossref_primary_10_1016_j_compscitech_2019_107944
crossref_primary_10_1039_D1TA06597A
crossref_primary_10_1016_j_mser_2023_100738
crossref_primary_10_3390_c7020035
crossref_primary_10_1021_acsami_4c17115
crossref_primary_10_1177_00405175231154018
crossref_primary_10_1021_acsenergylett_0c02427
crossref_primary_10_1016_j_cej_2022_135482
crossref_primary_10_3390_polym16152139
crossref_primary_10_1021_acsaelm_0c00227
crossref_primary_10_1002_smtd_202201515
crossref_primary_10_1007_s11431_022_2168_3
crossref_primary_10_3390_nano12244492
crossref_primary_10_1002_pol_20200507
crossref_primary_10_1021_acsaenm_3c00204
crossref_primary_10_1021_acsnano_2c04534
crossref_primary_10_1002_pc_26501
crossref_primary_10_1002_pc_28007
crossref_primary_10_1021_acsapm_3c00352
crossref_primary_10_1002_pc_27947
crossref_primary_10_1021_acsnano_0c09229
crossref_primary_10_1016_j_compositesa_2022_106970
crossref_primary_10_1039_D0NJ04674D
crossref_primary_10_1039_D0TA04674D
crossref_primary_10_1016_j_compositesa_2020_106093
crossref_primary_10_1016_j_est_2025_115344
crossref_primary_10_1016_j_isci_2022_103825
crossref_primary_10_1016_j_coco_2020_03_007
crossref_primary_10_1016_j_polymer_2021_124098
crossref_primary_10_1016_j_coco_2022_101129
crossref_primary_10_1007_s42114_023_00826_x
crossref_primary_10_1016_j_carbon_2020_02_012
crossref_primary_10_1016_j_compositesa_2022_106847
crossref_primary_10_1016_j_compositesb_2021_108609
crossref_primary_10_1016_j_progpolymsci_2022_101505
crossref_primary_10_1021_acsanm_4c03604
crossref_primary_10_1016_j_compositesa_2023_107533
crossref_primary_10_1016_j_pnsc_2022_03_007
crossref_primary_10_1016_j_coco_2023_101654
crossref_primary_10_1016_j_polymer_2021_124300
crossref_primary_10_1016_j_compositesb_2021_109039
crossref_primary_10_1021_acsami_2c02450
crossref_primary_10_3390_nano12193365
crossref_primary_10_1021_acssuschemeng_1c03119
crossref_primary_10_1088_2053_1591_acb7cc
crossref_primary_10_1016_j_coco_2021_100963
crossref_primary_10_1016_j_polymer_2024_127531
crossref_primary_10_1021_acsami_1c15670
crossref_primary_10_1039_D4MA01162G
crossref_primary_10_1007_s12274_022_4824_2
crossref_primary_10_1016_j_jmst_2024_02_070
crossref_primary_10_1016_j_ceramint_2024_07_425
crossref_primary_10_1002_adfm_202110782
crossref_primary_10_1021_acsami_2c12386
crossref_primary_10_1021_acs_jpcc_1c04919
crossref_primary_10_1109_MNANO_2021_3066390
crossref_primary_10_1016_j_matlet_2022_132588
crossref_primary_10_1016_j_compscitech_2021_108945
crossref_primary_10_1039_C9TC04381K
crossref_primary_10_1016_j_coco_2022_101371
crossref_primary_10_1002_tcr_202000079
crossref_primary_10_1039_D4TC04159C
crossref_primary_10_1007_s12274_020_3245_3
crossref_primary_10_1016_j_talanta_2024_127085
crossref_primary_10_1039_D5MH00070J
crossref_primary_10_1007_s42114_021_00208_1
crossref_primary_10_1016_j_matlet_2025_138212
crossref_primary_10_1016_j_compositesb_2021_109207
crossref_primary_10_1177_0954008320959413
crossref_primary_10_1002_mame_202000696
crossref_primary_10_1016_j_compositesa_2021_106336
crossref_primary_10_1016_j_jmst_2020_08_027
crossref_primary_10_1007_s10973_021_10838_8
crossref_primary_10_1016_j_mser_2025_100968
crossref_primary_10_1002_adfm_202308631
crossref_primary_10_1002_adfm_202419891
crossref_primary_10_1002_macp_202000418
crossref_primary_10_1016_j_pmatsci_2022_101054
crossref_primary_10_1016_j_enconman_2022_116603
crossref_primary_10_1016_j_jmst_2022_10_077
crossref_primary_10_1016_j_compscitech_2021_108953
crossref_primary_10_3390_ma14092192
crossref_primary_10_1039_D4TC03588G
crossref_primary_10_1016_j_compositesa_2023_107816
crossref_primary_10_1039_D0TA12541E
crossref_primary_10_3390_polym13132028
crossref_primary_10_1016_j_matchar_2024_113864
crossref_primary_10_1002_pc_27600
crossref_primary_10_2139_ssrn_4145395
crossref_primary_10_1016_j_compscitech_2021_108794
crossref_primary_10_1016_j_coco_2021_101036
crossref_primary_10_1016_j_compositesb_2021_109454
crossref_primary_10_1016_j_apsusc_2023_157666
crossref_primary_10_1021_acsomega_3c02246
crossref_primary_10_1038_s41528_024_00320_4
crossref_primary_10_1016_j_compositesa_2023_107998
crossref_primary_10_1021_acsanm_3c00563
crossref_primary_10_1039_D2NR06360C
crossref_primary_10_1016_j_jallcom_2022_167971
crossref_primary_10_1016_j_pmatsci_2024_101362
crossref_primary_10_1021_acsomega_3c09550
crossref_primary_10_1016_j_compositesa_2022_107195
crossref_primary_10_1016_j_mtcomm_2022_103507
crossref_primary_10_1080_23311916_2021_1991229
crossref_primary_10_1016_j_compositesa_2020_106222
crossref_primary_10_1016_j_compositesa_2021_106585
crossref_primary_10_1016_j_compositesa_2022_106933
crossref_primary_10_1016_j_compscitech_2022_109259
crossref_primary_10_1038_s41428_022_00644_w
crossref_primary_10_1016_j_reactfunctpolym_2023_105539
crossref_primary_10_1016_j_nantod_2023_102011
crossref_primary_10_1016_j_coco_2022_101392
crossref_primary_10_1002_adfm_202301549
crossref_primary_10_1002_pc_26544
crossref_primary_10_1021_acs_iecr_0c05509
crossref_primary_10_1021_acsami_3c04799
crossref_primary_10_1016_j_coco_2021_100851
crossref_primary_10_1021_acsami_3c09847
crossref_primary_10_1016_j_compstruct_2024_118530
crossref_primary_10_1016_j_surfin_2022_102465
crossref_primary_10_3390_jcs4040180
crossref_primary_10_1016_j_icheatmasstransfer_2021_105537
crossref_primary_10_1016_j_ceramint_2023_08_182
crossref_primary_10_3390_nano14151259
crossref_primary_10_1021_acsanm_3c05047
crossref_primary_10_1007_s12613_024_2842_7
crossref_primary_10_1016_j_ensm_2021_08_031
crossref_primary_10_1016_j_compscitech_2022_109769
crossref_primary_10_1039_D0TC05493C
crossref_primary_10_1155_2022_2513471
crossref_primary_10_1007_s10853_023_08980_9
crossref_primary_10_1016_j_compscitech_2021_108779
crossref_primary_10_1002_adfm_202305734
crossref_primary_10_1002_app_53756
Cites_doi 10.1016/j.progpolymsci.2016.05.001
10.1002/adfm.201201824
10.1021/acsnano.8b03264
10.1039/C8TA08008A
10.1002/adfm.201805053
10.1016/j.pmatsci.2018.10.002
10.1038/s41467-018-04294-6
10.1039/C8NR05167D
10.1002/aenm.201602380
10.1039/C8TA03642J
10.1088/2053-1583/aa7cd1
10.1038/s41467-018-03978-3
10.1016/S0266-3538(00)00162-7
10.1002/adma.201504594
10.1021/acsnano.7b08708
10.1002/adma.201804810
10.1016/j.mattod.2014.04.003
10.1021/acsnano.5b02917
10.1039/C6NR07357C
10.1021/acsnano.8b05822
10.1002/adfm.201801205
10.1039/C8TA01294F
10.1039/C8TA07435F
10.1016/j.progpolymsci.2016.03.001
10.1038/nature14647
10.1002/app.1986.070320702
10.1021/nn500134m
10.1039/C3EE42573H
10.1021/acsami.6b04636
10.1039/C5NR00228A
10.1063/1.3687173
10.1021/acsami.7b02410
10.1021/acsnano.8b06290
10.1021/acsami.7b05866
10.1016/j.ijheatmasstransfer.2004.12.032
10.1039/C5CS00869G
10.1021/acsami.7b04768
10.1021/acsami.7b08214
10.1021/acsanm.7b00041
10.1002/adfm.201707556
10.1002/adfm.201900412
10.1021/acsami.7b08061
10.1039/C6RA00980H
10.1039/C7EE01095H
10.1021/acsnano.7b02359
10.1038/s41565-017-0008-8
10.1021/acsami.8b14154
10.1002/adfm.201604754
10.1002/cphc.201402814
10.1038/ncomms9849
10.1002/smll.201502173
10.1002/smll.201402569
10.1021/acsami.5b04444
10.1002/adma.201705544
10.1021/am507416y
10.1002/adma.201502803
10.1038/ncomms6802
10.1002/adma.201600642
10.1126/science.aat7439
10.1021/nn502486x
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.9b10810
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 31410
ExternalDocumentID 31381291
10_1021_acsami_9b10810
e03264880
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-6d4f6c0dfcf5e7c9c229e4ff9f24f689d9dc1e40cb80833ce736885ebd7380e73
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Oct 02 04:14:20 EDT 2025
Thu Jul 10 22:32:42 EDT 2025
Wed Feb 19 02:36:16 EST 2025
Tue Jul 01 04:06:34 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Thu Aug 27 13:44:12 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 34
Keywords finite element simulation
boron nitride
thermal conductivity
electrospinning
polymer nanocomposites
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-6d4f6c0dfcf5e7c9c229e4ff9f24f689d9dc1e40cb80833ce736885ebd7380e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8919-6884
0000-0002-5063-1180
PMID 31381291
PQID 2268942036
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2352415242
proquest_miscellaneous_2268942036
pubmed_primary_31381291
crossref_citationtrail_10_1021_acsami_9b10810
crossref_primary_10_1021_acsami_9b10810
acs_journals_10_1021_acsami_9b10810
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-28
PublicationDateYYYYMMDD 2019-08-28
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1016/j.progpolymsci.2016.05.001
– ident: ref21/cit21
  doi: 10.1002/adfm.201201824
– ident: ref27/cit27
  doi: 10.1021/acsnano.8b03264
– ident: ref53/cit53
  doi: 10.1039/C8TA08008A
– ident: ref14/cit14
  doi: 10.1002/adfm.201805053
– ident: ref35/cit35
  doi: 10.1016/j.pmatsci.2018.10.002
– ident: ref38/cit38
  doi: 10.1038/s41467-018-04294-6
– ident: ref49/cit49
  doi: 10.1039/C8NR05167D
– ident: ref39/cit39
  doi: 10.1002/aenm.201602380
– ident: ref58/cit58
  doi: 10.1039/C8TA03642J
– ident: ref4/cit4
  doi: 10.1088/2053-1583/aa7cd1
– ident: ref13/cit13
  doi: 10.1038/s41467-018-03978-3
– ident: ref47/cit47
  doi: 10.1016/S0266-3538(00)00162-7
– ident: ref34/cit34
  doi: 10.1002/adma.201504594
– ident: ref42/cit42
  doi: 10.1021/acsnano.7b08708
– ident: ref43/cit43
  doi: 10.1002/adma.201804810
– ident: ref1/cit1
  doi: 10.1016/j.mattod.2014.04.003
– ident: ref26/cit26
  doi: 10.1021/acsnano.5b02917
– ident: ref23/cit23
  doi: 10.1039/C6NR07357C
– ident: ref28/cit28
  doi: 10.1021/acsnano.8b05822
– ident: ref29/cit29
  doi: 10.1002/adfm.201801205
– ident: ref52/cit52
  doi: 10.1039/C8TA01294F
– ident: ref51/cit51
  doi: 10.1039/C8TA07435F
– ident: ref32/cit32
  doi: 10.1016/j.progpolymsci.2016.03.001
– ident: ref36/cit36
  doi: 10.1038/nature14647
– ident: ref45/cit45
  doi: 10.1002/app.1986.070320702
– ident: ref10/cit10
  doi: 10.1021/nn500134m
– ident: ref7/cit7
  doi: 10.1039/C3EE42573H
– ident: ref33/cit33
  doi: 10.1021/acsami.6b04636
– ident: ref18/cit18
  doi: 10.1039/C5NR00228A
– ident: ref5/cit5
  doi: 10.1063/1.3687173
– ident: ref55/cit55
  doi: 10.1021/acsami.7b02410
– ident: ref44/cit44
  doi: 10.1021/acsnano.8b06290
– ident: ref57/cit57
  doi: 10.1021/acsami.7b05866
– ident: ref46/cit46
  doi: 10.1016/j.ijheatmasstransfer.2004.12.032
– ident: ref15/cit15
  doi: 10.1039/C5CS00869G
– ident: ref56/cit56
  doi: 10.1021/acsami.7b04768
– ident: ref59/cit59
  doi: 10.1021/acsami.7b08214
– ident: ref50/cit50
  doi: 10.1021/acsanm.7b00041
– ident: ref37/cit37
  doi: 10.1002/adfm.201707556
– ident: ref48/cit48
  doi: 10.1002/adfm.201900412
– ident: ref17/cit17
  doi: 10.1021/acsami.7b08061
– ident: ref24/cit24
  doi: 10.1039/C6RA00980H
– ident: ref40/cit40
  doi: 10.1039/C7EE01095H
– ident: ref3/cit3
  doi: 10.1021/acsnano.7b02359
– ident: ref41/cit41
  doi: 10.1038/s41565-017-0008-8
– ident: ref54/cit54
  doi: 10.1021/acsami.8b14154
– ident: ref22/cit22
  doi: 10.1002/adfm.201604754
– ident: ref11/cit11
  doi: 10.1002/cphc.201402814
– ident: ref12/cit12
  doi: 10.1038/ncomms9849
– ident: ref30/cit30
  doi: 10.1002/smll.201502173
– ident: ref25/cit25
  doi: 10.1002/smll.201402569
– ident: ref6/cit6
  doi: 10.1021/acsami.5b04444
– ident: ref2/cit2
  doi: 10.1002/adma.201705544
– ident: ref60/cit60
  doi: 10.1021/am507416y
– ident: ref19/cit19
  doi: 10.1002/adma.201502803
– ident: ref31/cit31
  doi: 10.1038/ncomms6802
– ident: ref20/cit20
  doi: 10.1002/adma.201600642
– ident: ref8/cit8
  doi: 10.1126/science.aat7439
– ident: ref9/cit9
  doi: 10.1021/nn502486x
SSID ssj0063205
Score 2.631258
Snippet Increasing power density makes modern electronic devices and power equipment generate excess heat, which greatly restricts the applications of polymeric...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31402
SubjectTerms boron nitride
electronic equipment
management systems
nanofibers
nanosheets
polymer nanocomposites
polyvinyl alcohol
spraying
spreaders
thermal conductivity
Title Millefeuille-Inspired Thermally Conductive Polymer Nanocomposites with Overlapping BN Nanosheets for Thermal Management Applications
URI http://dx.doi.org/10.1021/acsami.9b10810
https://www.ncbi.nlm.nih.gov/pubmed/31381291
https://www.proquest.com/docview/2268942036
https://www.proquest.com/docview/2352415242
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS美国化学学会期刊数据库
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8244
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYQvdBDKVDo0oJcgdSTIbG9jn3crkALEhSJInGLEtsBiW2CSBYJzvzwzuSxvLTQUxRl8nLGM9888pmQbRlBxBVkiNyMZzLiKdNJXzFhg8BJiz4Lf3A-OlajM3l43j9_zHe8rODzcDexJS6FY9IQvBcE5x-4iiJs3hsMTzubqwSvmxUhIpdMg8fq6BlfnY9OyJbPndAMZFl7mP3Fhu6orIkJsbHkamdSpTv2_jVt47sP_5l8amEmHTR6sUTmfL5MPj4hH1whD_VvgJmf4IYd5Fhy946C3oCtHo_v6LDIkQwWzCE9KcZ3f_0NBVtcYBM6dnr5kmISl_6-xZQg0jxc0F_HtUh56X1VUsDD3eXoY5sNHTypmX8hZ_t7f4Yj1q7JwBKhRMWUk5mygcts1veRNZZz42WWmYzDAW2ccTb0MrCpBnAnrI-E0rrvUxcJHcDeKpnPi9x_JdQ4ZyGuRwY6iEm5SiLHdYIhkdYy5aJHtmD44nZOlXFdLudh3Ixp3I5pj7DuU8a2pTXH1TXGM-V_TuWvG0KPmZI_Os2IYc5hISXJfTEpY4Cs2kgs4b4hA8gWwZHkPbLWqNX0fiIEnMRNuP5fb_iNLABKM5jI5vo7ma9uJn4DkFCVbtaT4B9QsAT8
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5QAceNMuTyOQOLlNbMexj8uKagvtUolW6i1KbAekLglqskjlzA9nJptsC2gRnKIkk8R2xp5vPOPPAK9Uih5XVBJys4GrVBTc5Inm0kWRV45sFi1wPpzp6Yl6d5qcbsDusBYGC9Hgm5ouiH_JLhDv4jXaEccWMRox9NGvJVrF5G2NJx-HoVdL0eUsomOuuEHDNbA0_vE82SLX_GqL1gDMztDs3YajVRG7_JKznUVb7Ljvv7E3_kcd7sCtHnSy8VJL7sJGqO7BzStUhPfhR7cosAwLOvD9igLwwTPUIhy55_MLNqkroobFwZEd1fOLL-Gc4chcU0o65X2FhtGULvvwjSYIifThE3sz60SazyG0DUN0PLyOXSbdsPGVCPoDONl7ezyZ8n6HBp5LLVuuvSq1i3zpyiSkzjohbFBlaUuBN4z11rs4qMgVBqGedCGV2pgkFD6VJsKzh7BZ1VXYBma9d-jlEx8deqhC56kXJicHyRhVCDmCl9h8Wd_DmqwLnos4W7Zp1rfpCPjwRzPXk5zTXhvztfKvV_Jfl_QeayVfDAqSYQ-ksEpehXrRZAhgjVUU0P2LDOJcgkpKjGBrqV2r78kYUZOw8aN_quFzuD49PjzIDvZn7x_DDcRvlqa4hXkCm-35IjxFjNQWz7p-8RO4WA1e
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFG8MJgYfREXl4gclkPhU3Nquax_x6g0oXEiEhLdl64cmXDfCdk3w2T_cc3a3K2Cukadl29nWdj09v9Nz-ish2zIFjysKiNyMZzLlBdN5opiwUeSkRZuFC5wPx2rvVH46S866ddy4FgYKUcOb6jaIj1p94ULHMBC_g-u4K44pYjBk4KffTxToOeKh4Zd--FWCt3mL4JxLpsF49UyNfz2P9sjWN-3RApDZGpvRCjmZF7PNMTnfmTbFjv15i8HxjvV4TB514JPuznrLE3LPl0_Jw2uUhKvkV7s4MPgpHth-iYF47yj0JhjBJ5MrOqxKpIiFQZIeV5Or7_6SwghdYWo65n_5muLULj36gROFSP7wlb4ftyL1N--bmgJK7l9H_yTf0N1rkfRn5HT08WS4x7qdGlgulGiYcjIoG7lgQ-JTayznxssQTOBwQxtnnI29jGyhAfIJ61OhtE584VKhIzh7TpbKqvRrhBrnLHj7yEsHnipXeeq4ztFR0loWXAzIFjRf1mlanbVBdB5nszbNujYdENb_1cx2ZOe458ZkofzbufzFjOZjoeRm30ky0EQMr-Slr6Z1BkBWG4mB3X_IAN5FyCT5gLyY9bD590QM6ImbeP2_arhBHhx_GGUH--PPL8kywDiDM91cvyJLzeXUvwao1BRvWtX4DVhRD-E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Millefeuille-Inspired+Thermally+Conductive+Polymer+Nanocomposites+with+Overlapping+BN+Nanosheets+for+Thermal+Management+Applications&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Chen%2C+Jin&rft.au=Wei%2C+Han&rft.au=Bao%2C+Hua&rft.au=Jiang%2C+Pingkai&rft.date=2019-08-28&rft.eissn=1944-8252&rft.volume=11&rft.issue=34&rft.spage=31402&rft_id=info:doi/10.1021%2Facsami.9b10810&rft_id=info%3Apmid%2F31381291&rft.externalDocID=31381291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon