High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction

A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surfa...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 10; no. 9; pp. 8102 - 8109
Main Authors Yu, Jingjing, Javaid, Kashif, Liang, Lingyan, Wu, Weihua, Liang, Yu, Song, Anran, Zhang, Hongliang, Shi, Wen, Chang, Ting-Chang, Cao, Hongtao
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.03.2018
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.7b16498

Cover

Abstract A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium–gallium–zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p–n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV–visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.
AbstractList A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO /IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 10 , and a specific detectivity up to 3.3 × 10 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.
A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium–gallium–zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnOₓ/IGZO heterojunction structure, through which the formation of a p–n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV–visible rejection ratio up to 3.5 × 10⁷, and a specific detectivity up to 3.3 × 10¹⁴ Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.
A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium–gallium–zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p–n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV–visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.
A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x/IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x/IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.
Author Javaid, Kashif
Liang, Yu
Zhang, Hongliang
Wu, Weihua
Chang, Ting-Chang
Song, Anran
Shi, Wen
Liang, Lingyan
Yu, Jingjing
Cao, Hongtao
AuthorAffiliation Chinese Academy of Sciences
Shanghai University
Key Laboratory of Graphene Technologies and Applications of Zhejiang Province & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering
School of Materials Science and Engineering
National Sun Yat-Sen University
Department of Physics
AuthorAffiliation_xml – name: Shanghai University
– name: National Sun Yat-Sen University
– name: Department of Physics
– name: Chinese Academy of Sciences
– name: School of Materials Science and Engineering
– name: Key Laboratory of Graphene Technologies and Applications of Zhejiang Province & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Yu
  fullname: Yu, Jingjing
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Kashif
  surname: Javaid
  fullname: Javaid, Kashif
  organization: Department of Physics
– sequence: 3
  givenname: Lingyan
  surname: Liang
  fullname: Liang, Lingyan
  email: lly@nimte.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Weihua
  surname: Wu
  fullname: Wu, Weihua
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yu
  surname: Liang
  fullname: Liang, Yu
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Anran
  surname: Song
  fullname: Song, Anran
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Hongliang
  surname: Zhang
  fullname: Zhang, Hongliang
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Wen
  surname: Shi
  fullname: Shi, Wen
  organization: Shanghai University
– sequence: 9
  givenname: Ting-Chang
  orcidid: 0000-0002-5301-6693
  surname: Chang
  fullname: Chang, Ting-Chang
  organization: National Sun Yat-Sen University
– sequence: 10
  givenname: Hongtao
  orcidid: 0000-0002-4458-4621
  surname: Cao
  fullname: Cao, Hongtao
  email: h_cao@nimte.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29441792$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEUhS0URB7QUiKXCGkWv2emJCuSjRQpKTYUNCO_hvXKYy-2B0THf-Af8kviaDcpkCJR3atzv3OLc07BUYjBAvAWowVGBH-UOsvJLVqFBeu7F-AE94w1HeHk6Gln7Bic5rxFSFCC-CtwTOoBtz05AX7lvm2aW5vGmCYZtIVfXHbK2-bcu2DgnS9J_nDR2wJvN7FEY4vVJSZ4LrM1MAZ4dfn1Bq4v1nAZ552v2k9XNnD39_efAFeVTnE7B11cDK_By1H6bN8c5hm4u_i8Xq6a65vLq-Wn60ZSQUuDOSOd4b3k2IxW6VELrOjIOyHUqKxtlSA9VUpyQ9ueY8QM6ijnsuPaINbSM_B-_3eX4vfZ5jJMLmvrvQw2znkgSLSkayn-HxQRglvei4q-O6CzmqwZdslNMv0aHsOswGIP6BRzTnZ8QjAaHtoa9m0Nh7aqgf1j0K7Ih6Rq6M4_b_uwt1V92MY5hRrmc_A9476pDA
CitedBy_id crossref_primary_10_1002_cjoc_202200795
crossref_primary_10_1021_acsaelm_2c01559
crossref_primary_10_1088_1361_6528_ac55d3
crossref_primary_10_1007_s11468_024_02728_0
crossref_primary_10_1364_OE_463926
crossref_primary_10_1088_1361_6463_aad26b
crossref_primary_10_1016_j_nanoen_2019_06_007
crossref_primary_10_1039_D0TC05220E
crossref_primary_10_1002_adom_201901472
crossref_primary_10_3390_mi16020118
crossref_primary_10_1002_adom_202400166
crossref_primary_10_1016_j_orgel_2022_106644
crossref_primary_10_1021_acsami_3c03600
crossref_primary_10_1016_j_nantod_2019_100798
crossref_primary_10_1021_acs_nanolett_0c02892
crossref_primary_10_1002_ange_202500006
crossref_primary_10_1002_aelm_202100487
crossref_primary_10_1109_LED_2023_3273212
crossref_primary_10_1016_j_cej_2025_159844
crossref_primary_10_1021_acsnano_2c01773
crossref_primary_10_1021_acsami_9b22634
crossref_primary_10_1088_2058_8585_ac5b8e
crossref_primary_10_3390_cryst13060915
crossref_primary_10_1007_s11664_022_09599_3
crossref_primary_10_1016_j_apsusc_2024_161568
crossref_primary_10_1021_acsami_4c12979
crossref_primary_10_1016_j_jallcom_2021_160460
crossref_primary_10_3390_nano11041000
crossref_primary_10_1021_acsaelm_3c00370
crossref_primary_10_1016_j_orgel_2020_105778
crossref_primary_10_1021_acsaelm_0c00228
crossref_primary_10_1109_LPT_2020_3031732
crossref_primary_10_1002_aelm_202000747
crossref_primary_10_1016_j_orgel_2024_107033
crossref_primary_10_1002_adfm_202200282
crossref_primary_10_1002_aelm_201800824
crossref_primary_10_1021_acsami_0c05247
crossref_primary_10_1039_D3TC02756B
crossref_primary_10_1002_adma_202103369
crossref_primary_10_1002_admi_202202059
crossref_primary_10_3390_mi13122099
crossref_primary_10_1021_acsami_0c15553
crossref_primary_10_1016_j_mtcomm_2020_101059
crossref_primary_10_1088_1361_6641_ab1721
crossref_primary_10_1016_j_apsusc_2023_156540
crossref_primary_10_1063_5_0007617
crossref_primary_10_1021_acs_jpclett_1c00030
crossref_primary_10_1063_5_0155932
crossref_primary_10_1002_adma_202006091
crossref_primary_10_1109_TED_2019_2928792
crossref_primary_10_35848_1347_4065_ad0cdc
crossref_primary_10_1021_acsaelm_4c00923
crossref_primary_10_1002_aelm_202000058
crossref_primary_10_1021_acsanm_8b00551
crossref_primary_10_1002_anie_202500006
crossref_primary_10_1109_JSEN_2023_3278713
crossref_primary_10_1002_aelm_202300351
crossref_primary_10_1016_j_nanoen_2019_104097
crossref_primary_10_1016_j_cej_2023_146838
crossref_primary_10_1021_acsanm_3c03898
crossref_primary_10_1109_TED_2021_3077344
crossref_primary_10_1364_OE_506539
crossref_primary_10_1002_sdtp_15700
crossref_primary_10_1007_s40820_021_00618_2
crossref_primary_10_1063_5_0009960
crossref_primary_10_1002_aelm_201900588
crossref_primary_10_1021_acsami_5c00152
crossref_primary_10_1016_j_dyepig_2022_110882
crossref_primary_10_1109_JSEN_2024_3426593
crossref_primary_10_1021_acsnano_2c01286
crossref_primary_10_1016_j_sna_2020_112523
crossref_primary_10_35848_1347_4065_aca33c
crossref_primary_10_1002_admt_201900752
crossref_primary_10_1016_j_optmat_2022_113341
crossref_primary_10_1021_acsami_1c15565
crossref_primary_10_1007_s12274_021_3969_8
crossref_primary_10_1109_LPT_2020_3039972
crossref_primary_10_1016_j_orgel_2019_02_024
crossref_primary_10_1016_j_matpr_2023_05_143
crossref_primary_10_1039_C9RA09646A
crossref_primary_10_1021_acsnano_9b00665
crossref_primary_10_1021_acsami_3c18328
crossref_primary_10_1002_pssr_202300456
crossref_primary_10_1016_j_mssp_2022_106858
crossref_primary_10_1021_acs_nanolett_2c04013
crossref_primary_10_1016_j_apsusc_2020_145290
crossref_primary_10_1109_LED_2022_3183217
crossref_primary_10_1021_acsaelm_2c01218
crossref_primary_10_1039_D1TC03930J
crossref_primary_10_1002_admt_201900106
crossref_primary_10_1002_admt_201900348
crossref_primary_10_1021_acssensors_3c00487
crossref_primary_10_3390_nano13081364
crossref_primary_10_1016_j_jallcom_2019_152788
crossref_primary_10_3390_ma12213639
crossref_primary_10_1002_aelm_201900322
crossref_primary_10_1088_2515_7639_ab5f35
crossref_primary_10_1039_D1TC04208D
crossref_primary_10_1002_aelm_202400186
crossref_primary_10_1021_acsaelm_4c01760
crossref_primary_10_1002_aelm_202400732
crossref_primary_10_1021_acsami_9b22165
crossref_primary_10_1088_1674_4926_42_3_031101
crossref_primary_10_1039_D2TC04056E
crossref_primary_10_1021_acsanm_9b00973
crossref_primary_10_1016_j_micrna_2022_207467
crossref_primary_10_1039_C9TC04757C
crossref_primary_10_1021_acsaelm_3c01158
crossref_primary_10_1021_acsami_1c18576
crossref_primary_10_1002_adma_201907791
crossref_primary_10_1002_adom_202300367
crossref_primary_10_1063_5_0107623
crossref_primary_10_1088_1361_6528_ab2e32
crossref_primary_10_1002_aelm_202100902
crossref_primary_10_1021_acsaom_4c00460
crossref_primary_10_1364_OME_448435
crossref_primary_10_1364_OME_9_004023
Cites_doi 10.1063/1.4916664
10.1063/1.4811153
10.1002/adma.201601196
10.1002/adma.201401732
10.1063/1.3299269
10.1002/adma.201200293
10.1063/1.4773307
10.1039/c7tc01084b
10.1016/j.orgel.2010.04.010
10.1016/j.mssp.2015.04.005
10.1049/el.2011.1695
10.1002/adma.201201909
10.1016/j.optmat.2015.11.023
10.1109/jdt.2013.2292580
10.1038/nmat3256
10.1021/acsami.6b06301
10.1002/adma.201501517
10.1063/1.4938129
10.2320/matertrans.m2015366
10.1002/adfm.201102506
10.1063/1.4808164
10.1364/oe.24.008411
10.1063/1.4737648
10.1021/acsami.5b11709
10.1063/1.2837645
10.1063/1.3517506
10.1039/c4tc02390k
10.1109/led.2016.2525761
10.1063/1.4922642
10.1021/am508879b
10.1002/adma.201003156
10.1016/j.orgel.2010.06.007
10.1038/am.2015.137
10.1109/tnano.2015.2393877
10.1002/adma.201304621
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.7b16498
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 8109
ExternalDocumentID 29441792
10_1021_acsami_7b16498
c353793899
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a363t-15428d59a51dfebcfc61b3f5866bfbee7b6293bba5d3795104d08355a85cd0473
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 01:17:00 EDT 2025
Thu Jul 10 17:59:08 EDT 2025
Mon Jul 21 06:00:21 EDT 2025
Tue Jul 01 04:05:48 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Thu Aug 27 13:50:42 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords visible blind
IGZO
UV photodetector
transistors
p−n heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a363t-15428d59a51dfebcfc61b3f5866bfbee7b6293bba5d3795104d08355a85cd0473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5301-6693
0000-0002-4458-4621
PMID 29441792
PQID 2002217596
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2067287317
proquest_miscellaneous_2002217596
pubmed_primary_29441792
crossref_primary_10_1021_acsami_7b16498
crossref_citationtrail_10_1021_acsami_7b16498
acs_journals_10_1021_acsami_7b16498
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-07
PublicationDateYYYYMMDD 2018-03-07
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1063/1.4916664
– ident: ref8/cit8
  doi: 10.1063/1.4811153
– ident: ref28/cit28
  doi: 10.1002/adma.201601196
– ident: ref19/cit19
  doi: 10.1002/adma.201401732
– ident: ref5/cit5
  doi: 10.1063/1.3299269
– ident: ref33/cit33
  doi: 10.1002/adma.201200293
– ident: ref16/cit16
  doi: 10.1063/1.4773307
– ident: ref26/cit26
  doi: 10.1039/c7tc01084b
– ident: ref31/cit31
  doi: 10.1016/j.orgel.2010.04.010
– ident: ref30/cit30
  doi: 10.1016/j.mssp.2015.04.005
– ident: ref2/cit2
  doi: 10.1049/el.2011.1695
– ident: ref27/cit27
  doi: 10.1002/adma.201201909
– ident: ref7/cit7
  doi: 10.1016/j.optmat.2015.11.023
– ident: ref13/cit13
  doi: 10.1109/jdt.2013.2292580
– ident: ref15/cit15
  doi: 10.1038/nmat3256
– ident: ref22/cit22
  doi: 10.1021/acsami.6b06301
– ident: ref4/cit4
  doi: 10.1002/adma.201501517
– ident: ref1/cit1
  doi: 10.1063/1.4938129
– ident: ref3/cit3
  doi: 10.2320/matertrans.m2015366
– ident: ref35/cit35
  doi: 10.1002/adfm.201102506
– ident: ref17/cit17
  doi: 10.1063/1.4808164
– ident: ref18/cit18
  doi: 10.1364/oe.24.008411
– ident: ref11/cit11
  doi: 10.1063/1.4737648
– ident: ref32/cit32
  doi: 10.1021/acsami.5b11709
– ident: ref6/cit6
  doi: 10.1063/1.2837645
– ident: ref20/cit20
  doi: 10.1063/1.3517506
– ident: ref29/cit29
  doi: 10.1039/c4tc02390k
– ident: ref25/cit25
  doi: 10.1109/led.2016.2525761
– ident: ref21/cit21
  doi: 10.1063/1.4922642
– ident: ref23/cit23
  doi: 10.1021/am508879b
– ident: ref10/cit10
  doi: 10.1002/adma.201003156
– ident: ref24/cit24
  doi: 10.1016/j.orgel.2010.06.007
– ident: ref12/cit12
  doi: 10.1038/am.2015.137
– ident: ref9/cit9
  doi: 10.1109/tnano.2015.2393877
– ident: ref14/cit14
  doi: 10.1002/adma.201304621
SSID ssj0063205
Score 2.562333
Snippet A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8102
SubjectTerms electric power
lighting
materials science
transistors
wavelengths
Title High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction
URI http://dx.doi.org/10.1021/acsami.7b16498
https://www.ncbi.nlm.nih.gov/pubmed/29441792
https://www.proquest.com/docview/2002217596
https://www.proquest.com/docview/2067287317
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVaeoFDaUuhSwsyKhInQ2InTnIsqy4LEi0Suwj1EvlT0EbJimQvPfU_8A_5JR07WT61tNdooiT2OO_ZM_MGoe3IBNykjJFQBYxEWiiSasuIoi5KwwKhuCsUPv7Gh-Po6Dw-vzvveBzBp-GeULVrhZNIIPZZ-hK9ohxAxpGg_unsn8sZ9cmKsCOPSAqINZNnfHK_AyFVPwShOczSI8xguZU7qr0woUss-bU7beSu-v1UtvGfL_8Gve5oJv7S-sVb9MKU79DSPfHBFVS4FA9yclc4gM8uYX0UhuwD9dR4XDRXwsftG3xyUTWVNo0_4sf7gHwaVyU-PPjxHY8GI9yvppMCrrlTXTy5-XNd4qHLs6l-Amy6qX-PxoOvo_6QdL0XiGCcNQSYFU11nIk41NZIZRUPJbNxyrm00phEciAKUopYs8SxtEg7MheLNFY6iBK2ihbKqjQfEGaBVUkaZIGWMrI2FFZpV1AbhjbKgG700GcYprxbO3Xuw-I0zNuxy7ux6yEym7JcdfLlrotGMdd-59Z-0gp3zLXcmnlADmvLBUxEaapp7Vp0UtiyxRl_zoYnsOsEGtZDa6373D6PZr7BG13_ry_8iBaBjfmCxyD5hBaaq6nZAMbTyE3v7H8BRJ38Ug
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAH3tDlaQQSJ7dJ_EhybFcsW2jLSuyiqpfITwGNklWTvXDiP_Qf9pcw9iZbHloEV2uS2OOZzGfPC6FXzEbCZpSSWEeUMCM1yYyjRCfeS0MjqYVPFD48EuMZe3fMjzfQTp8LA5No4E1NcOJfVheId2DMd8RJFeD7PLuCrnLBhO_VsDv82P96BU1CzCIczBnJwHD1VRr_eN7bIt38aovWAMxgaEa30GQ1xRBfcrq9aNW2_vZb9cb_WMNtdLMDnXh3KSV30Iat7qIbP5UivIdKH_BBJpdpBPjTF9CW0pI9AKIGz8r2TAYvfosnn-u2NrYNF_54D-ygwXWF99-efMDT0RQP68W8hDF_x4vnF9_PKzz2UTf1VzCiXhDuo9nozXQ4Jl0nBiKpoC0BnJVkhueSx8ZZpZ0WsaKOZ0Iop6xNlQDYoJTkhqYeszHjoR2XGdcmYil9gDarurJbCNPI6TSL8sgoxZyLpdPGp9fGsWM5gI8BeglsKjpNaorgJE_iYsm7ouPdAJF-5wrdFTP3PTXKtfSvV_TzZRmPtZQvekEoQNO8-0RWtl40vmFnAgc4nou_0YgUzqAAygbo4VKKVt9L8tDuLXn0Tyt8jq6Np4cHxcH-0fvH6DrgtJAKGaVP0GZ7trBPAQu16lmQ_x_MiwTD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BIiE47PKmLA8jkDh5iePESY67hdLlsVSiRau9RH4K2CipNumFE_-Bf8gvYeym5aUiuFqTxB7PZD57XgCPExsJm3NOmY44TYzUNDeOUx17Lw2PpBY-UfjNkRjPkpfH6XGfx-1zYXASLb6pDU58r9Vz4_oKA-wpjvuuOJlCjF_k5-ECohHm-zXsD9-tfr-CxyFuEQ_nCc3ReK0qNf7xvLdHuv3VHm0AmcHYjHZgup5miDE53Vt0ak9__q2C43-u4wps9-CT7C-l5Sqcs_U1uPxTScLrUPnADzr5kU5A3n9EraksPUBAasis6s5k8OZ3ZPKh6Rpju3DxTw7QHhrS1OTwxclbMh1NybBZzCsc83e9ZP7ty9eajH30TfMJjakXiBswGz2fDse078hAJRe8o4i34tykhUyZcVZppwVT3KW5EMopazMlED4oJVPDM4_dEuMhXirzVJsoyfhN2Kqb2t4GwiOnszwqIqNU4hyTThufZsuYSwoEIQN4hGwqe41qy-Asj1m55F3Z824AdLV7pe6LmvveGtVG-idr-vmynMdGyocrYShR47wbRda2WbS-cWeMB7m0EH-jERmeRRGcDeDWUpLW34uL0PYtvvNPK3wAFyfPRuXrw6NXu3AJ4VrIiIyyu7DVnS3sPYREnbofVOA7GrwHPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Visible-Blind+Ultraviolet+Photodetector+Based+on+IGZO+TFT+Coupled+with+p-n+Heterojunction&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yu%2C+Jingjing&rft.au=Javaid%2C+Kashif&rft.au=Liang%2C+Lingyan&rft.au=Wu%2C+Weihua&rft.date=2018-03-07&rft.eissn=1944-8252&rft.volume=10&rft.issue=9&rft.spage=8102&rft_id=info:doi/10.1021%2Facsami.7b16498&rft_id=info%3Apmid%2F29441792&rft.externalDocID=29441792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon