High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction
A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surfa...
Saved in:
Published in | ACS applied materials & interfaces Vol. 10; no. 9; pp. 8102 - 8109 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.7b16498 |
Cover
Abstract | A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium–gallium–zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p–n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV–visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays. |
---|---|
AbstractList | A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO
/IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 10
, and a specific detectivity up to 3.3 × 10
Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays. A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium–gallium–zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnOₓ/IGZO heterojunction structure, through which the formation of a p–n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV–visible rejection ratio up to 3.5 × 10⁷, and a specific detectivity up to 3.3 × 10¹⁴ Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays. A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p–n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium–gallium–zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p–n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV–visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays. A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x/IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x/IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 107, and a specific detectivity up to 3.3 × 1014 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays. |
Author | Javaid, Kashif Liang, Yu Zhang, Hongliang Wu, Weihua Chang, Ting-Chang Song, Anran Shi, Wen Liang, Lingyan Yu, Jingjing Cao, Hongtao |
AuthorAffiliation | Chinese Academy of Sciences Shanghai University Key Laboratory of Graphene Technologies and Applications of Zhejiang Province & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering School of Materials Science and Engineering National Sun Yat-Sen University Department of Physics |
AuthorAffiliation_xml | – name: Shanghai University – name: National Sun Yat-Sen University – name: Department of Physics – name: Chinese Academy of Sciences – name: School of Materials Science and Engineering – name: Key Laboratory of Graphene Technologies and Applications of Zhejiang Province & Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering |
Author_xml | – sequence: 1 givenname: Jingjing surname: Yu fullname: Yu, Jingjing organization: Chinese Academy of Sciences – sequence: 2 givenname: Kashif surname: Javaid fullname: Javaid, Kashif organization: Department of Physics – sequence: 3 givenname: Lingyan surname: Liang fullname: Liang, Lingyan email: lly@nimte.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Weihua surname: Wu fullname: Wu, Weihua organization: Chinese Academy of Sciences – sequence: 5 givenname: Yu surname: Liang fullname: Liang, Yu organization: Chinese Academy of Sciences – sequence: 6 givenname: Anran surname: Song fullname: Song, Anran organization: Chinese Academy of Sciences – sequence: 7 givenname: Hongliang surname: Zhang fullname: Zhang, Hongliang organization: Chinese Academy of Sciences – sequence: 8 givenname: Wen surname: Shi fullname: Shi, Wen organization: Shanghai University – sequence: 9 givenname: Ting-Chang orcidid: 0000-0002-5301-6693 surname: Chang fullname: Chang, Ting-Chang organization: National Sun Yat-Sen University – sequence: 10 givenname: Hongtao orcidid: 0000-0002-4458-4621 surname: Cao fullname: Cao, Hongtao email: h_cao@nimte.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29441792$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtvFDEUhS0URB7QUiKXCGkWv2emJCuSjRQpKTYUNCO_hvXKYy-2B0THf-Af8kviaDcpkCJR3atzv3OLc07BUYjBAvAWowVGBH-UOsvJLVqFBeu7F-AE94w1HeHk6Gln7Bic5rxFSFCC-CtwTOoBtz05AX7lvm2aW5vGmCYZtIVfXHbK2-bcu2DgnS9J_nDR2wJvN7FEY4vVJSZ4LrM1MAZ4dfn1Bq4v1nAZ552v2k9XNnD39_efAFeVTnE7B11cDK_By1H6bN8c5hm4u_i8Xq6a65vLq-Wn60ZSQUuDOSOd4b3k2IxW6VELrOjIOyHUqKxtlSA9VUpyQ9ueY8QM6ijnsuPaINbSM_B-_3eX4vfZ5jJMLmvrvQw2znkgSLSkayn-HxQRglvei4q-O6CzmqwZdslNMv0aHsOswGIP6BRzTnZ8QjAaHtoa9m0Nh7aqgf1j0K7Ih6Rq6M4_b_uwt1V92MY5hRrmc_A9476pDA |
CitedBy_id | crossref_primary_10_1002_cjoc_202200795 crossref_primary_10_1021_acsaelm_2c01559 crossref_primary_10_1088_1361_6528_ac55d3 crossref_primary_10_1007_s11468_024_02728_0 crossref_primary_10_1364_OE_463926 crossref_primary_10_1088_1361_6463_aad26b crossref_primary_10_1016_j_nanoen_2019_06_007 crossref_primary_10_1039_D0TC05220E crossref_primary_10_1002_adom_201901472 crossref_primary_10_3390_mi16020118 crossref_primary_10_1002_adom_202400166 crossref_primary_10_1016_j_orgel_2022_106644 crossref_primary_10_1021_acsami_3c03600 crossref_primary_10_1016_j_nantod_2019_100798 crossref_primary_10_1021_acs_nanolett_0c02892 crossref_primary_10_1002_ange_202500006 crossref_primary_10_1002_aelm_202100487 crossref_primary_10_1109_LED_2023_3273212 crossref_primary_10_1016_j_cej_2025_159844 crossref_primary_10_1021_acsnano_2c01773 crossref_primary_10_1021_acsami_9b22634 crossref_primary_10_1088_2058_8585_ac5b8e crossref_primary_10_3390_cryst13060915 crossref_primary_10_1007_s11664_022_09599_3 crossref_primary_10_1016_j_apsusc_2024_161568 crossref_primary_10_1021_acsami_4c12979 crossref_primary_10_1016_j_jallcom_2021_160460 crossref_primary_10_3390_nano11041000 crossref_primary_10_1021_acsaelm_3c00370 crossref_primary_10_1016_j_orgel_2020_105778 crossref_primary_10_1021_acsaelm_0c00228 crossref_primary_10_1109_LPT_2020_3031732 crossref_primary_10_1002_aelm_202000747 crossref_primary_10_1016_j_orgel_2024_107033 crossref_primary_10_1002_adfm_202200282 crossref_primary_10_1002_aelm_201800824 crossref_primary_10_1021_acsami_0c05247 crossref_primary_10_1039_D3TC02756B crossref_primary_10_1002_adma_202103369 crossref_primary_10_1002_admi_202202059 crossref_primary_10_3390_mi13122099 crossref_primary_10_1021_acsami_0c15553 crossref_primary_10_1016_j_mtcomm_2020_101059 crossref_primary_10_1088_1361_6641_ab1721 crossref_primary_10_1016_j_apsusc_2023_156540 crossref_primary_10_1063_5_0007617 crossref_primary_10_1021_acs_jpclett_1c00030 crossref_primary_10_1063_5_0155932 crossref_primary_10_1002_adma_202006091 crossref_primary_10_1109_TED_2019_2928792 crossref_primary_10_35848_1347_4065_ad0cdc crossref_primary_10_1021_acsaelm_4c00923 crossref_primary_10_1002_aelm_202000058 crossref_primary_10_1021_acsanm_8b00551 crossref_primary_10_1002_anie_202500006 crossref_primary_10_1109_JSEN_2023_3278713 crossref_primary_10_1002_aelm_202300351 crossref_primary_10_1016_j_nanoen_2019_104097 crossref_primary_10_1016_j_cej_2023_146838 crossref_primary_10_1021_acsanm_3c03898 crossref_primary_10_1109_TED_2021_3077344 crossref_primary_10_1364_OE_506539 crossref_primary_10_1002_sdtp_15700 crossref_primary_10_1007_s40820_021_00618_2 crossref_primary_10_1063_5_0009960 crossref_primary_10_1002_aelm_201900588 crossref_primary_10_1021_acsami_5c00152 crossref_primary_10_1016_j_dyepig_2022_110882 crossref_primary_10_1109_JSEN_2024_3426593 crossref_primary_10_1021_acsnano_2c01286 crossref_primary_10_1016_j_sna_2020_112523 crossref_primary_10_35848_1347_4065_aca33c crossref_primary_10_1002_admt_201900752 crossref_primary_10_1016_j_optmat_2022_113341 crossref_primary_10_1021_acsami_1c15565 crossref_primary_10_1007_s12274_021_3969_8 crossref_primary_10_1109_LPT_2020_3039972 crossref_primary_10_1016_j_orgel_2019_02_024 crossref_primary_10_1016_j_matpr_2023_05_143 crossref_primary_10_1039_C9RA09646A crossref_primary_10_1021_acsnano_9b00665 crossref_primary_10_1021_acsami_3c18328 crossref_primary_10_1002_pssr_202300456 crossref_primary_10_1016_j_mssp_2022_106858 crossref_primary_10_1021_acs_nanolett_2c04013 crossref_primary_10_1016_j_apsusc_2020_145290 crossref_primary_10_1109_LED_2022_3183217 crossref_primary_10_1021_acsaelm_2c01218 crossref_primary_10_1039_D1TC03930J crossref_primary_10_1002_admt_201900106 crossref_primary_10_1002_admt_201900348 crossref_primary_10_1021_acssensors_3c00487 crossref_primary_10_3390_nano13081364 crossref_primary_10_1016_j_jallcom_2019_152788 crossref_primary_10_3390_ma12213639 crossref_primary_10_1002_aelm_201900322 crossref_primary_10_1088_2515_7639_ab5f35 crossref_primary_10_1039_D1TC04208D crossref_primary_10_1002_aelm_202400186 crossref_primary_10_1021_acsaelm_4c01760 crossref_primary_10_1002_aelm_202400732 crossref_primary_10_1021_acsami_9b22165 crossref_primary_10_1088_1674_4926_42_3_031101 crossref_primary_10_1039_D2TC04056E crossref_primary_10_1021_acsanm_9b00973 crossref_primary_10_1016_j_micrna_2022_207467 crossref_primary_10_1039_C9TC04757C crossref_primary_10_1021_acsaelm_3c01158 crossref_primary_10_1021_acsami_1c18576 crossref_primary_10_1002_adma_201907791 crossref_primary_10_1002_adom_202300367 crossref_primary_10_1063_5_0107623 crossref_primary_10_1088_1361_6528_ab2e32 crossref_primary_10_1002_aelm_202100902 crossref_primary_10_1021_acsaom_4c00460 crossref_primary_10_1364_OME_448435 crossref_primary_10_1364_OME_9_004023 |
Cites_doi | 10.1063/1.4916664 10.1063/1.4811153 10.1002/adma.201601196 10.1002/adma.201401732 10.1063/1.3299269 10.1002/adma.201200293 10.1063/1.4773307 10.1039/c7tc01084b 10.1016/j.orgel.2010.04.010 10.1016/j.mssp.2015.04.005 10.1049/el.2011.1695 10.1002/adma.201201909 10.1016/j.optmat.2015.11.023 10.1109/jdt.2013.2292580 10.1038/nmat3256 10.1021/acsami.6b06301 10.1002/adma.201501517 10.1063/1.4938129 10.2320/matertrans.m2015366 10.1002/adfm.201102506 10.1063/1.4808164 10.1364/oe.24.008411 10.1063/1.4737648 10.1021/acsami.5b11709 10.1063/1.2837645 10.1063/1.3517506 10.1039/c4tc02390k 10.1109/led.2016.2525761 10.1063/1.4922642 10.1021/am508879b 10.1002/adma.201003156 10.1016/j.orgel.2010.06.007 10.1038/am.2015.137 10.1109/tnano.2015.2393877 10.1002/adma.201304621 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.7b16498 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 8109 |
ExternalDocumentID | 29441792 10_1021_acsami_7b16498 c353793899 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a363t-15428d59a51dfebcfc61b3f5866bfbee7b6293bba5d3795104d08355a85cd0473 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 01:17:00 EDT 2025 Thu Jul 10 17:59:08 EDT 2025 Mon Jul 21 06:00:21 EDT 2025 Tue Jul 01 04:05:48 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Thu Aug 27 13:50:42 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | visible blind IGZO UV photodetector transistors p−n heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a363t-15428d59a51dfebcfc61b3f5866bfbee7b6293bba5d3795104d08355a85cd0473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5301-6693 0000-0002-4458-4621 |
PMID | 29441792 |
PQID | 2002217596 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2067287317 proquest_miscellaneous_2002217596 pubmed_primary_29441792 crossref_primary_10_1021_acsami_7b16498 crossref_citationtrail_10_1021_acsami_7b16498 acs_journals_10_1021_acsami_7b16498 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-07 |
PublicationDateYYYYMMDD | 2018-03-07 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1063/1.4916664 – ident: ref8/cit8 doi: 10.1063/1.4811153 – ident: ref28/cit28 doi: 10.1002/adma.201601196 – ident: ref19/cit19 doi: 10.1002/adma.201401732 – ident: ref5/cit5 doi: 10.1063/1.3299269 – ident: ref33/cit33 doi: 10.1002/adma.201200293 – ident: ref16/cit16 doi: 10.1063/1.4773307 – ident: ref26/cit26 doi: 10.1039/c7tc01084b – ident: ref31/cit31 doi: 10.1016/j.orgel.2010.04.010 – ident: ref30/cit30 doi: 10.1016/j.mssp.2015.04.005 – ident: ref2/cit2 doi: 10.1049/el.2011.1695 – ident: ref27/cit27 doi: 10.1002/adma.201201909 – ident: ref7/cit7 doi: 10.1016/j.optmat.2015.11.023 – ident: ref13/cit13 doi: 10.1109/jdt.2013.2292580 – ident: ref15/cit15 doi: 10.1038/nmat3256 – ident: ref22/cit22 doi: 10.1021/acsami.6b06301 – ident: ref4/cit4 doi: 10.1002/adma.201501517 – ident: ref1/cit1 doi: 10.1063/1.4938129 – ident: ref3/cit3 doi: 10.2320/matertrans.m2015366 – ident: ref35/cit35 doi: 10.1002/adfm.201102506 – ident: ref17/cit17 doi: 10.1063/1.4808164 – ident: ref18/cit18 doi: 10.1364/oe.24.008411 – ident: ref11/cit11 doi: 10.1063/1.4737648 – ident: ref32/cit32 doi: 10.1021/acsami.5b11709 – ident: ref6/cit6 doi: 10.1063/1.2837645 – ident: ref20/cit20 doi: 10.1063/1.3517506 – ident: ref29/cit29 doi: 10.1039/c4tc02390k – ident: ref25/cit25 doi: 10.1109/led.2016.2525761 – ident: ref21/cit21 doi: 10.1063/1.4922642 – ident: ref23/cit23 doi: 10.1021/am508879b – ident: ref10/cit10 doi: 10.1002/adma.201003156 – ident: ref24/cit24 doi: 10.1016/j.orgel.2010.06.007 – ident: ref12/cit12 doi: 10.1038/am.2015.137 – ident: ref9/cit9 doi: 10.1109/tnano.2015.2393877 – ident: ref14/cit14 doi: 10.1002/adma.201304621 |
SSID | ssj0063205 |
Score | 2.562333 |
Snippet | A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8102 |
SubjectTerms | electric power lighting materials science transistors wavelengths |
Title | High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction |
URI | http://dx.doi.org/10.1021/acsami.7b16498 https://www.ncbi.nlm.nih.gov/pubmed/29441792 https://www.proquest.com/docview/2002217596 https://www.proquest.com/docview/2067287317 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVaeoFDaUuhSwsyKhInQ2InTnIsqy4LEi0Suwj1EvlT0EbJimQvPfU_8A_5JR07WT61tNdooiT2OO_ZM_MGoe3IBNykjJFQBYxEWiiSasuIoi5KwwKhuCsUPv7Gh-Po6Dw-vzvveBzBp-GeULVrhZNIIPZZ-hK9ohxAxpGg_unsn8sZ9cmKsCOPSAqINZNnfHK_AyFVPwShOczSI8xguZU7qr0woUss-bU7beSu-v1UtvGfL_8Gve5oJv7S-sVb9MKU79DSPfHBFVS4FA9yclc4gM8uYX0UhuwD9dR4XDRXwsftG3xyUTWVNo0_4sf7gHwaVyU-PPjxHY8GI9yvppMCrrlTXTy5-XNd4qHLs6l-Amy6qX-PxoOvo_6QdL0XiGCcNQSYFU11nIk41NZIZRUPJbNxyrm00phEciAKUopYs8SxtEg7MheLNFY6iBK2ihbKqjQfEGaBVUkaZIGWMrI2FFZpV1AbhjbKgG700GcYprxbO3Xuw-I0zNuxy7ux6yEym7JcdfLlrotGMdd-59Z-0gp3zLXcmnlADmvLBUxEaapp7Vp0UtiyxRl_zoYnsOsEGtZDa6373D6PZr7BG13_ry_8iBaBjfmCxyD5hBaaq6nZAMbTyE3v7H8BRJ38Ug |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAH3tDlaQQSJ7dJ_EhybFcsW2jLSuyiqpfITwGNklWTvXDiP_Qf9pcw9iZbHloEV2uS2OOZzGfPC6FXzEbCZpSSWEeUMCM1yYyjRCfeS0MjqYVPFD48EuMZe3fMjzfQTp8LA5No4E1NcOJfVheId2DMd8RJFeD7PLuCrnLBhO_VsDv82P96BU1CzCIczBnJwHD1VRr_eN7bIt38aovWAMxgaEa30GQ1xRBfcrq9aNW2_vZb9cb_WMNtdLMDnXh3KSV30Iat7qIbP5UivIdKH_BBJpdpBPjTF9CW0pI9AKIGz8r2TAYvfosnn-u2NrYNF_54D-ygwXWF99-efMDT0RQP68W8hDF_x4vnF9_PKzz2UTf1VzCiXhDuo9nozXQ4Jl0nBiKpoC0BnJVkhueSx8ZZpZ0WsaKOZ0Iop6xNlQDYoJTkhqYeszHjoR2XGdcmYil9gDarurJbCNPI6TSL8sgoxZyLpdPGp9fGsWM5gI8BeglsKjpNaorgJE_iYsm7ouPdAJF-5wrdFTP3PTXKtfSvV_TzZRmPtZQvekEoQNO8-0RWtl40vmFnAgc4nou_0YgUzqAAygbo4VKKVt9L8tDuLXn0Tyt8jq6Np4cHxcH-0fvH6DrgtJAKGaVP0GZ7trBPAQu16lmQ_x_MiwTD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BIiE47PKmLA8jkDh5iePESY67hdLlsVSiRau9RH4K2CipNumFE_-Bf8gvYeym5aUiuFqTxB7PZD57XgCPExsJm3NOmY44TYzUNDeOUx17Lw2PpBY-UfjNkRjPkpfH6XGfx-1zYXASLb6pDU58r9Vz4_oKA-wpjvuuOJlCjF_k5-ECohHm-zXsD9-tfr-CxyFuEQ_nCc3ReK0qNf7xvLdHuv3VHm0AmcHYjHZgup5miDE53Vt0ak9__q2C43-u4wps9-CT7C-l5Sqcs_U1uPxTScLrUPnADzr5kU5A3n9EraksPUBAasis6s5k8OZ3ZPKh6Rpju3DxTw7QHhrS1OTwxclbMh1NybBZzCsc83e9ZP7ty9eajH30TfMJjakXiBswGz2fDse078hAJRe8o4i34tykhUyZcVZppwVT3KW5EMopazMlED4oJVPDM4_dEuMhXirzVJsoyfhN2Kqb2t4GwiOnszwqIqNU4hyTThufZsuYSwoEIQN4hGwqe41qy-Asj1m55F3Z824AdLV7pe6LmvveGtVG-idr-vmynMdGyocrYShR47wbRda2WbS-cWeMB7m0EH-jERmeRRGcDeDWUpLW34uL0PYtvvNPK3wAFyfPRuXrw6NXu3AJ4VrIiIyyu7DVnS3sPYREnbofVOA7GrwHPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+Visible-Blind+Ultraviolet+Photodetector+Based+on+IGZO+TFT+Coupled+with+p-n+Heterojunction&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yu%2C+Jingjing&rft.au=Javaid%2C+Kashif&rft.au=Liang%2C+Lingyan&rft.au=Wu%2C+Weihua&rft.date=2018-03-07&rft.eissn=1944-8252&rft.volume=10&rft.issue=9&rft.spage=8102&rft_id=info:doi/10.1021%2Facsami.7b16498&rft_id=info%3Apmid%2F29441792&rft.externalDocID=29441792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |