Soil erosion modeling using erosion pins and artificial neural networks
•Erosion pins and ANNs were successfully used to assess the spatial variation of soil erosion.•Splash erosion is the dominant type of erosion in the study area compared to the erosion caused by surface runoff.•The highest soil erosion rates occur on the lower half of the hillslopes. Assessment of so...
        Saved in:
      
    
          | Published in | Catena (Giessen) Vol. 196; p. 104902 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0341-8162 1872-6887  | 
| DOI | 10.1016/j.catena.2020.104902 | 
Cover
| Abstract | •Erosion pins and ANNs were successfully used to assess the spatial variation of soil erosion.•Splash erosion is the dominant type of erosion in the study area compared to the erosion caused by surface runoff.•The highest soil erosion rates occur on the lower half of the hillslopes.
Assessment of soil erosion is crucial for any long-term soil conservation plan. Traditional in-situ measurements provide a precise amount of erosion rate; however, the procedure is costly and time-consuming when applied over an extensive area. This study aimed to investigate the use of erosion pins and artificial neural networks (ANNs) to assess the spatial distribution of annual soil erosion rates in the mountainous areas of the north of Iran. First, annual surface erosion and splash erosion were measured using two types of erosion pins. Next, the variables affecting soil erosion (vegetation canopy, the shape of slope, slope gradient, slope length, and soil properties) were identified and estimated through field studies and analysis of a digital elevation model (DEM) and the data set were divided into three subsets of training, cross-validation, and testing. Seven artificial neural network algorithms were used and evaluated to estimate the annual soil erosion rates for the areas without recorded erosion data. Finally, the modeled values were mapped in GIS, and the longitudinal profiles of soil erosion were extracted. Findings showed that (1) Consideration should be given to the generalized feed forward (GFF) network, given the high accuracy rate (NMSE:0.1; R-sqr:0.9) compared to other tested ANN algorithms. (2) Vegetation canopy was found to be the most significant variable in annual soil erosion rate (R: −0.75 to −0.85) compared to other input variables. And (3) Annual measurements of erosion pins revealed that the splash erosion is higher (contributing 62 percent to total erosion) compared to surface runoff erosion (contributing 38 percent to total erosion). | 
    
|---|---|
| AbstractList | Assessment of soil erosion is crucial for any long-term soil conservation plan. Traditional in-situ measurements provide a precise amount of erosion rate; however, the procedure is costly and time-consuming when applied over an extensive area. This study aimed to investigate the use of erosion pins and artificial neural networks (ANNs) to assess the spatial distribution of annual soil erosion rates in the mountainous areas of the north of Iran. First, annual surface erosion and splash erosion were measured using two types of erosion pins. Next, the variables affecting soil erosion (vegetation canopy, the shape of slope, slope gradient, slope length, and soil properties) were identified and estimated through field studies and analysis of a digital elevation model (DEM) and the data set were divided into three subsets of training, cross-validation, and testing. Seven artificial neural network algorithms were used and evaluated to estimate the annual soil erosion rates for the areas without recorded erosion data. Finally, the modeled values were mapped in GIS, and the longitudinal profiles of soil erosion were extracted. Findings showed that (1) Consideration should be given to the generalized feed forward (GFF) network, given the high accuracy rate (NMSE:0.1; R-sqr:0.9) compared to other tested ANN algorithms. (2) Vegetation canopy was found to be the most significant variable in annual soil erosion rate (R: −0.75 to −0.85) compared to other input variables. And (3) Annual measurements of erosion pins revealed that the splash erosion is higher (contributing 62 percent to total erosion) compared to surface runoff erosion (contributing 38 percent to total erosion). •Erosion pins and ANNs were successfully used to assess the spatial variation of soil erosion.•Splash erosion is the dominant type of erosion in the study area compared to the erosion caused by surface runoff.•The highest soil erosion rates occur on the lower half of the hillslopes. Assessment of soil erosion is crucial for any long-term soil conservation plan. Traditional in-situ measurements provide a precise amount of erosion rate; however, the procedure is costly and time-consuming when applied over an extensive area. This study aimed to investigate the use of erosion pins and artificial neural networks (ANNs) to assess the spatial distribution of annual soil erosion rates in the mountainous areas of the north of Iran. First, annual surface erosion and splash erosion were measured using two types of erosion pins. Next, the variables affecting soil erosion (vegetation canopy, the shape of slope, slope gradient, slope length, and soil properties) were identified and estimated through field studies and analysis of a digital elevation model (DEM) and the data set were divided into three subsets of training, cross-validation, and testing. Seven artificial neural network algorithms were used and evaluated to estimate the annual soil erosion rates for the areas without recorded erosion data. Finally, the modeled values were mapped in GIS, and the longitudinal profiles of soil erosion were extracted. Findings showed that (1) Consideration should be given to the generalized feed forward (GFF) network, given the high accuracy rate (NMSE:0.1; R-sqr:0.9) compared to other tested ANN algorithms. (2) Vegetation canopy was found to be the most significant variable in annual soil erosion rate (R: −0.75 to −0.85) compared to other input variables. And (3) Annual measurements of erosion pins revealed that the splash erosion is higher (contributing 62 percent to total erosion) compared to surface runoff erosion (contributing 38 percent to total erosion).  | 
    
| ArticleNumber | 104902 | 
    
| Author | Hadian Amri, Mohammad Ali Sahour, Hossein Gholami, Vahid  | 
    
| Author_xml | – sequence: 1 givenname: Vahid surname: Gholami fullname: Gholami, Vahid email: Gholami.vahid@guilan.ac.ir organization: Department of Range and Watershed Management and Dept. of Water Eng. and Environment, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran – sequence: 2 givenname: Hossein orcidid: 0000-0003-2975-516X surname: Sahour fullname: Sahour, Hossein organization: Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI 49008, USA – sequence: 3 givenname: Mohammad Ali surname: Hadian Amri fullname: Hadian Amri, Mohammad Ali organization: Department of Soil Conservation and Watershed Management, Mazandaran Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sari, Iran  | 
    
| BookMark | eNqFkE1Lw0AQhhepYFv9Bx5y9JK6X_moB0GKVqHgQT0vk81Etqa7dXej-O9NjF48KAMz8DLvy8wzIxPrLBJyyuiCUZafbxcaIlpYcMoHSS4pPyBTVhY8zcuymJApFZKlJcv5EZmFsKWUyiJjU7J-cKZN0LtgnE12rsbW2OekC0P_kffGhgRsnYCPpjHaQJtY7PzXiO_Ov4RjcthAG_Dke87J08314-o23dyv71ZXmxREzmOKvJCZyPqbOGd1yQTPEWTBZFlRXgHQHKqasmJJM1HJRlBaV7AUpUbNQGsu5uRszN1799phiGpngsa2BYuuC4pnWQ9BFH3NiRxXdf9G8NiovTc78B-KUTVwU1s1clMDNzVy620Xv2zaRIg9h-jBtP-ZL0cz9gzeDHoVtEGrsTYedVS1M38HfALSc4z4 | 
    
| CitedBy_id | crossref_primary_10_1016_j_ijsrc_2024_08_003 crossref_primary_10_3390_hydrology9100184 crossref_primary_10_1016_j_catena_2023_106958 crossref_primary_10_1007_s10661_020_08819_9 crossref_primary_10_1007_s13762_021_03536_3 crossref_primary_10_1007_s40333_023_0107_3 crossref_primary_10_1080_00103624_2024_2321934 crossref_primary_10_1016_j_geodrs_2025_e00928 crossref_primary_10_1016_j_catena_2023_107693 crossref_primary_10_1016_j_scitotenv_2022_157220 crossref_primary_10_1080_27658511_2023_2236406 crossref_primary_10_1007_s10064_023_03498_5 crossref_primary_10_1007_s11629_022_7888_2 crossref_primary_10_1080_02626667_2024_2385003 crossref_primary_10_1016_j_catena_2023_107537 crossref_primary_10_1080_17486025_2021_2006803 crossref_primary_10_32003_igge_1097942 crossref_primary_10_3390_rs13020305 crossref_primary_10_1080_19475705_2020_1861112 crossref_primary_10_1007_s10661_021_09334_1 crossref_primary_10_1002_ldr_3962 crossref_primary_10_1016_j_ecoinf_2021_101363 crossref_primary_10_1007_s12517_022_10898_6 crossref_primary_10_1016_j_catena_2021_105282 crossref_primary_10_3390_ijerph19031571 crossref_primary_10_1080_10256016_2023_2169859 crossref_primary_10_3390_atmos14111644 crossref_primary_10_1016_j_cageo_2022_105034 crossref_primary_10_1007_s11356_023_25596_3 crossref_primary_10_1002_nag_3252 crossref_primary_10_1016_j_envpol_2024_123661 crossref_primary_10_1016_j_still_2024_106305 crossref_primary_10_3390_geosciences13110338 crossref_primary_10_1007_s41748_022_00317_x crossref_primary_10_1016_j_buildenv_2021_108537 crossref_primary_10_1016_j_catena_2025_108881 crossref_primary_10_1038_s41598_022_15008_w crossref_primary_10_1007_s11269_021_02969_2 crossref_primary_10_1007_s12665_021_09593_8 crossref_primary_10_1016_j_catena_2021_105655 crossref_primary_10_1007_s10661_023_11796_4 crossref_primary_10_1016_j_eti_2021_101768 crossref_primary_10_1186_s12302_025_01079_9 crossref_primary_10_1007_s40808_024_02089_x crossref_primary_10_3390_ijgi11070401 crossref_primary_10_1016_j_scitotenv_2023_168602 crossref_primary_10_1139_cjce_2024_0402 crossref_primary_10_1016_j_teadva_2024_200107 crossref_primary_10_3390_s23031717 crossref_primary_10_1016_j_catena_2022_106570 crossref_primary_10_1016_j_catena_2022_106571 crossref_primary_10_3390_rs14010159 crossref_primary_10_1016_j_jenvman_2022_114589 crossref_primary_10_2478_fsmu_2023_0003 crossref_primary_10_3390_land10010061 crossref_primary_10_3390_w13243647 crossref_primary_10_1080_04353676_2023_2171999  | 
    
| Cites_doi | 10.1016/B0-12-348530-4/00089-8 10.1007/s12665-017-6758-7 10.1016/j.catena.2015.02.019 10.1016/j.compag.2008.07.008 10.17221/130/2016-JFS 10.1007/s11600-018-0110-9 10.1061/(ASCE)1084-0699(2005)10:1(85) 10.1016/j.scitotenv.2019.136060 10.1002/(SICI)1096-9837(200005)25:5<535::AID-ESP91>3.0.CO;2-N 10.1016/j.scitotenv.2019.135389 10.1029/1999WR900157 10.3390/rs12030533 10.1002/esp.3290060316 10.1016/j.apradiso.2011.05.031 10.1016/S0341-8162(02)00147-9 10.1016/j.geomorph.2008.07.011 10.1016/j.apm.2011.09.048 10.1002/esp.3290200604 10.1016/j.jhydrol.2012.08.032 10.2111/1551-5028(2007)60[285:RAEACW]2.0.CO;2 10.2307/2257784 10.1016/j.jhydrol.2007.03.017 10.1016/j.catena.2005.05.002 10.2111/04-164R2.1 10.1002/hyp.10608 10.1177/0309133311400330 10.1016/S0167-8809(99)00050-X 10.1007/978-3-642-58913-3_35 10.3390/rs12091361 10.3390/land2030370 10.1016/j.catena.2017.12.008 10.1016/j.scitotenv.2018.08.141 10.1002/esp.1000 10.1016/j.scitotenv.2019.135474 10.1029/91WR01191 10.1016/0341-8162(89)90021-0 10.1016/j.cose.2008.06.001 10.1016/j.scitotenv.2019.134716 10.1177/030913338901300203 10.1002/esp.3290180905 10.1080/00224561.1986.12455949 10.2747/0272-3646.30.1.1 10.1002/esp.1226 10.1002/esp.3775 10.1127/zfg/34/1991/385 10.17221/13/2012-SWR 10.1007/s00704-018-2470-0 10.17221/18/2012-SWR 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2 10.1111/j.1745-5871.2008.00527.x 10.1016/j.advwatres.2005.07.017 10.1016/j.buildenv.2007.01.047 10.1016/j.catena.2017.12.027 10.1016/0341-8162(94)00042-D  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.catena.2020.104902 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology Sciences (General)  | 
    
| EISSN | 1872-6887 | 
    
| ExternalDocumentID | 10_1016_j_catena_2020_104902 S0341816220304525  | 
    
| GeographicLocations | Iran | 
    
| GeographicLocations_xml | – name: Iran | 
    
| GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-a362t-e274535887221d81326ea47148b02baa06abd0179053b4f300dba938cec1acc23 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0341-8162 | 
    
| IngestDate | Mon Sep 29 04:17:49 EDT 2025 Thu Oct 09 00:27:50 EDT 2025 Thu Apr 24 22:57:13 EDT 2025 Fri Feb 23 02:47:08 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Surface erosion GFF network Splash erosion Soil erosion map Hillslope  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a362t-e274535887221d81326ea47148b02baa06abd0179053b4f300dba938cec1acc23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-2975-516X | 
    
| PQID | 2552023737 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_2552023737 crossref_primary_10_1016_j_catena_2020_104902 crossref_citationtrail_10_1016_j_catena_2020_104902 elsevier_sciencedirect_doi_10_1016_j_catena_2020_104902  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2021 2021-01-00 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Catena (Giessen) | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Masson, J.M., 1971. L’érosion des sols par l’eau en climatméditerranéen. Méthodesexpérimentales pour l’étude des quantitésérodées ‘al’échelle du champ. Thèse de Docteur-Ingénieur, USTL, Montpellier, 215 PP. Tervuren, J.M., 1990. Soil loss by rainwash: A case study from Rwanda. Z. Geomorphologie N.F. 1990, 34, 385–408. Lawler (b0230) 1992 Kumar Ghimire, Higaki, Prasad Bhattarai (b0210) 2013; 2 Uson (b0370) 1998 Loughran (b0255) 1989; 13 Lawler (b0235) 1993; 18 Jungerius, Verheggen, Wiggers (b0160) 1981; 6 Shi, Wen, Zhang, Yan (b0340) 2013; 69 Summer (b0350) 1986; 41 Akay, Erdas, Reis, Yuksel (b0005) 2008; 43 Beghdad (b0025) 2008; 27 Ireland, H.A., Sharpe, C.F.S. Eargle, D.H., 1939: Principles of gully erosion in the piedmont of South Carolina. Technical Bulletins 167374, United States Department of Agriculture, Economic Research. Doi: 10.22004/ag.econ.167374. Las Heras, Nicolau, Martín, Bradford, Wilcox (b0215) 2010; 46 Colbert (b0065) 1956; 28 United States Department of Agriculture, Natural Resources Conservation Service., 2010. Keys to Soil Taxonomy. Schumm (b0335) 1956; 67 Lawler (b0220) 1978; 16 Rosas, Gutierrez (b0315) 2020; 703 Sahour, Sultan, Vazifedan, Abdelmohsen, Karki, Yellich, Gebremichael, Alshehri, Elbayoumi (b0320) 2020; 12 Sun, Yu, Li, Yu, Wang, Tu, Liang (b0355) 2016; 136 Tehrani, Sahour, Booij (b0360) 2019; 136 Boardman, J., Favis-Mortlock, D.T., Foster, IDL., 2015. A 13-year record of erosion on badland sites in the Karoo, South Africa. Earth Surf. Proc. Land. doi: 10.1002/esp.3775. Wiggs, Thomas, Bullard, Livingstone (b0375) 1995; 20 Kirkby, Kirkby (b0190) 1974; 21 Alshehri, Sultan, Karki, Alwagdani, Alsefry, Alharbi, Sahour, Sturchio (b0015) 2020; 12 Clarke, Rendell (b0055) 2006; 31 Martınez-Casasnovas (b0265) 1998 Nadal-Romero, Martinez-Murillo, Vanmaercke, Poesen (b0280) 2011; 35 Emmett (b0085) 1965; 66 Naghdi, R., Dalir, P., Gholami, V., Pourghasemi, H.R., 2017. Modeling of sediment generation from forest roads employing SEDMODL and its calibration for Hyrcanian forests in northern Iran. Environ. Earth Sci. 76, 414 (2017). https://doi.org/10.1007/s12665-017-6758-7. Pickup, Marks (b0295) 2000; 25 Zhao, Chow, Rees, Yang, Xing, Meng (b0400) 2009; 65 Gholami, Khaleghi (b0100) 2013; 8 Streeter (b0345) 1975 Rosa, de la Mayol, Lozano (b0310) 1999; 73 Kearney, Fonte, Garcia, Smukler (b0170) 2017; 163 Pierson, Batees, Svejcar, Hardegree (b0300) 2007; 60 Aldrich, Tanaka, Adams, Buckhouse (b0010) 2005; 58 Bullock , P., 2005. Climate change impact. Encyclopedia of Soils in the Environment. Cranfield University–Silsoe, Silsoe, UK. 254-262. https://doi.org/10.1016/B0-12-348530-4/00089-8. Esmaeeli Gholzom, Gholami (b0090) 2012; 4 Gholami, Booij, Tehrani, Hadian (b0105) 2018; 163 Li, Ma, Zhang (b0245) 2020; 709 Jungerius, van der Meulen (b0165) 1989; 16 Foster, G.R., 2001. Keynote: soil erosion prediction technology for conservation planning. In: Stott, D.E., Mohtar, R.H., Steinhartdt, G.C. (Eds.), Proceedings of the Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting. Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, 24–29 May 1999. Keim, Skaugset, Weiler (b0180) 2006; 29 Yair, Lavee (b0390) 1974 Boardman, Favis-Mortlock (b0035) 2016; 3 Clayton, Tinker (b0060) 1971; 220 355 World reference base for soil resources (WRB)., 2014. Food and agriculture organization of the united nations, international soil classification system for naming soils and creating legends for soil maps. pp193. Harden, C.P., Foster, W., Morris, C., Chartrand, K.J., Henry, E., 2009. Rates and processes of streambank erosion in tributaries of the Little River, Tennessee. Phys. Geogr. doi: 10.2747/0272-3646.30.1.1. Descroix, L., Poulenard, J., 1995. Les formes d’érosion dans la Sierra Madre Ocidentale (Nord Ouest du Mexique). Bull. Lab. Rhod. Géomorphol. 33-34, 1-19, Lyon. Hancock, Lowry (b0130) 2015; 29 Gray (b0110) 2016; Vol(6) 3 Keay-Bright, Boardman (b0175) 2009; 103 Chen, Wang, Wei, Gao, Lu, Zhou (b0050) 2019; 648 Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agric. Handbook No. 282. US Department of Agriculture, Washington, DC. Mohamed, Atta (b0275) 2010; 10 Licznar, Nearingb (b0240) 2003; 51 Ranwell (b0305) 1964; 52 Sattari, Yurekli, Pal (b0330) 2011; 36 Khaleghi,M.R., 2017. The influence of deforestation and anthropogenic activities on runoff generation. J. For. Sci. 63, 2017 (6): 245–253. Anctil, F., Rat, A., 2005. Evaluation of neural networks streamflow forecasting on 47 watersheds. J. Hydrol. Eng .ASCE 10(1), 85-88.DOI: 10.1061/ (ASCE) 1084-0699(2005)10:1(85). Hancock, Loughran, Evans, Balog (b0125) 2008; 46 Khaleghi, Varvani (b0200) 2018; 66 Luetzenburg, Bittner, Calsamiglia, Renschler, Estrany, Poeppl (b0260) 2020; 704 Samani, Gohari-Moghadam, Safavi (b0325) 2007; 340 Pastor, Castro (b0290) 1995; 59 Dixon (b0080) 2004; 14 Kirkby, Bracken, Shannon (b0205) 2005; 62 Harris, T.M., Boardman, J., 1998. Alternative approaches to soil erosion prediction and conservation using expert systems and neural networks. Modeling soil erosion by water. NATO ASI Series I, vol. 55. Springer-Verlag, Berlin, 461 – 477. Di Stefano, Ferro, Porto, Tusa (b0075) 2000; 36 Haigh, M.J., 1977. The use of erosion pins in the study of slope evolution. In, Shorter Technical Methods (ll). Technical Bulletin No. 18, British Geomorphological Research Group. Geo Abstracts: Norwich, UK; 31-49. Bohm, Gerold (b0040) 1995; 25 Harvey (b0145) 1974 Lawler (b0225) 1991; 27 Zhang, Luo, Chen (b0395) 2020; 702 Livingstone (b0250) 2003; 28 Isik, Kalin, Schoonover, Srivastava, Lockaby (b0155) 2013; 485 Colbert (10.1016/j.catena.2020.104902_b0065) 1956; 28 Livingstone (10.1016/j.catena.2020.104902_b0250) 2003; 28 Tehrani (10.1016/j.catena.2020.104902_b0360) 2019; 136 Gholami (10.1016/j.catena.2020.104902_b0105) 2018; 163 Kumar Ghimire (10.1016/j.catena.2020.104902_b0210) 2013; 2 Uson (10.1016/j.catena.2020.104902_b0370) 1998 Summer (10.1016/j.catena.2020.104902_b0350) 1986; 41 Kirkby (10.1016/j.catena.2020.104902_b0205) 2005; 62 Boardman (10.1016/j.catena.2020.104902_b0035) 2016; 3 Khaleghi (10.1016/j.catena.2020.104902_b0200) 2018; 66 Bohm (10.1016/j.catena.2020.104902_b0040) 1995; 25 Akay (10.1016/j.catena.2020.104902_b0005) 2008; 43 10.1016/j.catena.2020.104902_b0135 Samani (10.1016/j.catena.2020.104902_b0325) 2007; 340 Jungerius (10.1016/j.catena.2020.104902_b0160) 1981; 6 Luetzenburg (10.1016/j.catena.2020.104902_b0260) 2020; 704 Alshehri (10.1016/j.catena.2020.104902_b0015) 2020; 12 10.1016/j.catena.2020.104902_b0380 Sahour (10.1016/j.catena.2020.104902_b0320) 2020; 12 Gray (10.1016/j.catena.2020.104902_b0110) 2016; Vol(6) 3 Streeter (10.1016/j.catena.2020.104902_b0345) 1975 Zhang (10.1016/j.catena.2020.104902_b0395) 2020; 702 10.1016/j.catena.2020.104902_b0385 10.1016/j.catena.2020.104902_b0020 10.1016/j.catena.2020.104902_b0185 10.1016/j.catena.2020.104902_b0140 Dixon (10.1016/j.catena.2020.104902_b0080) 2004; 14 Keim (10.1016/j.catena.2020.104902_b0180) 2006; 29 Chen (10.1016/j.catena.2020.104902_b0050) 2019; 648 Keay-Bright (10.1016/j.catena.2020.104902_b0175) 2009; 103 Clarke (10.1016/j.catena.2020.104902_b0055) 2006; 31 Lawler (10.1016/j.catena.2020.104902_b0230) 1992 Hancock (10.1016/j.catena.2020.104902_b0125) 2008; 46 Di Stefano (10.1016/j.catena.2020.104902_b0075) 2000; 36 Li (10.1016/j.catena.2020.104902_b0245) 2020; 709 10.1016/j.catena.2020.104902_b0150 Kearney (10.1016/j.catena.2020.104902_b0170) 2017; 163 Hancock (10.1016/j.catena.2020.104902_b0130) 2015; 29 10.1016/j.catena.2020.104902_b0270 Zhao (10.1016/j.catena.2020.104902_b0400) 2009; 65 10.1016/j.catena.2020.104902_b0070 Esmaeeli Gholzom (10.1016/j.catena.2020.104902_b0090) 2012; 4 10.1016/j.catena.2020.104902_b0030 Emmett (10.1016/j.catena.2020.104902_b0085) 1965; 66 Isik (10.1016/j.catena.2020.104902_b0155) 2013; 485 10.1016/j.catena.2020.104902_b0195 Licznar (10.1016/j.catena.2020.104902_b0240) 2003; 51 Clayton (10.1016/j.catena.2020.104902_b0060) 1971; 220 355 Loughran (10.1016/j.catena.2020.104902_b0255) 1989; 13 Wiggs (10.1016/j.catena.2020.104902_b0375) 1995; 20 Mohamed (10.1016/j.catena.2020.104902_b0275) 2010; 10 Lawler (10.1016/j.catena.2020.104902_b0220) 1978; 16 Schumm (10.1016/j.catena.2020.104902_b0335) 1956; 67 Las Heras (10.1016/j.catena.2020.104902_b0215) 2010; 46 Pierson (10.1016/j.catena.2020.104902_b0300) 2007; 60 Jungerius (10.1016/j.catena.2020.104902_b0165) 1989; 16 10.1016/j.catena.2020.104902_b0115 Lawler (10.1016/j.catena.2020.104902_b0235) 1993; 18 Nadal-Romero (10.1016/j.catena.2020.104902_b0280) 2011; 35 Rosas (10.1016/j.catena.2020.104902_b0315) 2020; 703 Rosa (10.1016/j.catena.2020.104902_b0310) 1999; 73 10.1016/j.catena.2020.104902_b0120 Martınez-Casasnovas (10.1016/j.catena.2020.104902_b0265) 1998 10.1016/j.catena.2020.104902_b0285 Pickup (10.1016/j.catena.2020.104902_b0295) 2000; 25 Ranwell (10.1016/j.catena.2020.104902_b0305) 1964; 52 Sun (10.1016/j.catena.2020.104902_b0355) 2016; 136 Beghdad (10.1016/j.catena.2020.104902_b0025) 2008; 27 Yair (10.1016/j.catena.2020.104902_b0390) 1974 Pastor (10.1016/j.catena.2020.104902_b0290) 1995; 59 Shi (10.1016/j.catena.2020.104902_b0340) 2013; 69 Kirkby (10.1016/j.catena.2020.104902_b0190) 1974; 21 Gholami (10.1016/j.catena.2020.104902_b0100) 2013; 8 Harvey (10.1016/j.catena.2020.104902_b0145) 1974 Aldrich (10.1016/j.catena.2020.104902_b0010) 2005; 58 10.1016/j.catena.2020.104902_b0365 10.1016/j.catena.2020.104902_b0045 Lawler (10.1016/j.catena.2020.104902_b0225) 1991; 27 Sattari (10.1016/j.catena.2020.104902_b0330) 2011; 36  | 
    
| References_xml | – start-page: 333 pp. year: 1998 ident: b0265 article-title: Soil-landscape-erosion. Gully erosion in the Alt Penedes-Anoia (Catalonia, Spain). A spatial information technology approach: spatial databases, GIS andremote sensing – volume: 648 start-page: 1097 year: 2019 end-page: 1104 ident: b0050 article-title: Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment publication-title: Sci. Total Environ. – volume: 340 start-page: 1 year: 2007 end-page: 11 ident: b0325 article-title: A simple neural network model for the determination of aquifer parameters publication-title: J. Hydrol. – volume: 12 start-page: 1361 year: 2020 ident: b0015 article-title: Mapping the Distribution of Shallow Groundwater Occurrences Using Remote Sensing-Based Statistical Modeling over Southwest Saudi Arabia publication-title: Remote Sensing – volume: 73 start-page: 211 year: 1999 end-page: 226 ident: b0310 article-title: An expert system/neural network model (impelERO) for evaluating agricultural soil erosion in Andalucia region, southern Spain publication-title: Agri. Ecosyst. Environ. – reference: Foster, G.R., 2001. Keynote: soil erosion prediction technology for conservation planning. In: Stott, D.E., Mohtar, R.H., Steinhartdt, G.C. (Eds.), Proceedings of the Sustaining the Global Farm. Selected papers from the 10th International Soil Conservation Organization Meeting. Purdue University and the USDA-ARS National Soil Erosion Research Laboratory, 24–29 May 1999. – volume: 709 start-page: 136060 year: 2020 ident: b0245 article-title: Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century publication-title: Sci. Total Environ. – volume: 29 start-page: 4809 year: 2015 end-page: 4816 ident: b0130 article-title: Hillslope erosion measurement–a simple approach to a complex process publication-title: Hydrol. Process. – volume: 59 start-page: 64 year: 1995 end-page: 74 ident: b0290 publication-title: Soil management systems and erosion. Olivae. – volume: 29 start-page: 974 year: 2006 end-page: 986 ident: b0180 article-title: Storage of water on vegetation under simulated rainfall of varying intensity publication-title: Adv. Water Resour. – volume: 58 start-page: 542 year: 2005 end-page: 552 ident: b0010 article-title: Economics of western juniper control in central Oregon publication-title: Rangeland Ecol. Manage. – volume: 25 start-page: 63 year: 1995 end-page: 75 ident: b0040 article-title: Pedo-hydrological and sediment responses to simulated rainfall on soils of the Konya Uplands (Turkey) publication-title: Catena. – volume: 66 start-page: 109 year: 2018 end-page: 119 ident: b0200 article-title: Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds publication-title: Acta Geophys. – reference: Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agric. Handbook No. 282. US Department of Agriculture, Washington, DC. – volume: 4 start-page: 166 year: 2012 end-page: 173 ident: b0090 article-title: A comparison between natural forests and reforested lands in terms of runoff generation potential and hydrologic response (case study: Kasilian Watershed) publication-title: Soil Water Res. – reference: United States Department of Agriculture, Natural Resources Conservation Service., 2010. Keys to Soil Taxonomy. – volume: 46 start-page: 1 year: 2010 end-page: 12 ident: b0215 article-title: Plot-scale effects on runoff and erosion along a slope degradation gradient publication-title: Water Resour. Res. – volume: 36 start-page: 2649 year: 2011 end-page: 2657 ident: b0330 article-title: Performance evaluation of artificial neural network approaches in forecasting reservoir inflow publication-title: Appl. Math. Model. – volume: 13 start-page: 216 year: 1989 end-page: 233 ident: b0255 article-title: The measurement of soil erosion publication-title: Prog. Phys. Geog. – reference: Masson, J.M., 1971. L’érosion des sols par l’eau en climatméditerranéen. Méthodesexpérimentales pour l’étude des quantitésérodées ‘al’échelle du champ. Thèse de Docteur-Ingénieur, USTL, Montpellier, 215 PP. – volume: 163 start-page: 427 year: 2017 end-page: 432 ident: b0170 article-title: Improving the utility of erosion pins: absolute value of pin height change as an indicator of relative erosion publication-title: Catena. – volume: 31 start-page: 15 year: 2006 end-page: 29 ident: b0055 article-title: Process-form realtionships in southern Italian badlands: erosion rates and implications for landform evolution publication-title: Earth Surf. Proc. Land. – reference: Anctil, F., Rat, A., 2005. Evaluation of neural networks streamflow forecasting on 47 watersheds. J. Hydrol. Eng .ASCE 10(1), 85-88.DOI: 10.1061/ (ASCE) 1084-0699(2005)10:1(85). – volume: 6 start-page: 375 year: 1981 end-page: 396 ident: b0160 article-title: The development of blowouts in ‘De Blink’, a coastal dune area near Noordwijkerhout publication-title: The Netherlands. Earth Surf. Proc. Land. – volume: 60 start-page: 285 year: 2007 end-page: 292 ident: b0300 article-title: Runoff and erosion after cutting western juniper publication-title: Rangeland Ecol. Manage. – volume: 702 start-page: 134716 year: 2020 ident: b0395 article-title: Spatially explicit quantification of total soil erosion by RTK GPS in wind and water eroded croplands publication-title: Sci. Total Environ. – volume: 43 start-page: 687 year: 2008 end-page: 695 ident: b0005 article-title: Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques publication-title: Build. Environ. – volume: 66 start-page: 89 year: 1965 end-page: 106 ident: b0085 article-title: The Virgil Network: methods of measurement and a sampling of data collected publication-title: Int. Assoc. Sci. Hydrol. Publ. – start-page: 117 year: 1992 end-page: 143 ident: b0230 article-title: Process dominance in bank erosion systems publication-title: Lowland Floodplain Rivers: Geographical Perspectives – reference: World reference base for soil resources (WRB)., 2014. Food and agriculture organization of the united nations, international soil classification system for naming soils and creating legends for soil maps. pp193. – reference: Haigh, M.J., 1977. The use of erosion pins in the study of slope evolution. In, Shorter Technical Methods (ll). Technical Bulletin No. 18, British Geomorphological Research Group. Geo Abstracts: Norwich, UK; 31-49. – reference: Bullock , P., 2005. Climate change impact. Encyclopedia of Soils in the Environment. Cranfield University–Silsoe, Silsoe, UK. 254-262. https://doi.org/10.1016/B0-12-348530-4/00089-8. – volume: 14 start-page: 1 year: 2004 end-page: 38 ident: b0080 article-title: Prediction of groundwater vulnerability using an integrated GIS-based neuro-fuzy techniques publication-title: J. Spa. hydrol. – reference: Harden, C.P., Foster, W., Morris, C., Chartrand, K.J., Henry, E., 2009. Rates and processes of streambank erosion in tributaries of the Little River, Tennessee. Phys. Geogr. doi: 10.2747/0272-3646.30.1.1. – volume: 27 start-page: 2125 year: 1991 end-page: 2128 ident: b0225 article-title: A new technique for the automatic monitoring of erosion and deposition rates publication-title: Water Resour. Res. – volume: 69 start-page: 1343 year: 2013 end-page: 1348 ident: b0340 article-title: Comparison of the soil losses from Be-7 measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region publication-title: China. Appl. Radiat. Isot. – volume: 12 start-page: 533 year: 2020 ident: b0320 article-title: Statistical applications to downscale GRACE-Derived terrestrial water storage data and to fill temporal gaps publication-title: Remote Sens. – reference: Boardman, J., Favis-Mortlock, D.T., Foster, IDL., 2015. A 13-year record of erosion on badland sites in the Karoo, South Africa. Earth Surf. Proc. Land. doi: 10.1002/esp.3775. – volume: 8 start-page: 158 year: 2013 end-page: 164 ident: b0100 article-title: The impact of vegetation on the bank erosion (case study: the Haraz river) publication-title: Soil Water Res. – reference: Tervuren, J.M., 1990. Soil loss by rainwash: A case study from Rwanda. Z. Geomorphologie N.F. 1990, 34, 385–408. – volume: 51 start-page: 89 year: 2003 end-page: 114 ident: b0240 article-title: Artificial neural networks of soil erosion and runoff prediction at the plot scale publication-title: Catena. – volume: 35 start-page: 297 year: 2011 end-page: 332 ident: b0280 article-title: Scale-dependency of sediment yield from badland areas in Mediterranean environments publication-title: Prog. Phys. Geog. – year: 1998 ident: b0370 article-title: Medidas de control de la erosion en suelos de vina de lascomarcasAnoia-AltPenedes (Barcelona) – volume: 27 start-page: 168 year: 2008 end-page: 175 ident: b0025 article-title: Critical study of neural networks in detecting intrusions publication-title: Computers & Security. – volume: 485 start-page: 103 year: 2013 end-page: 112 ident: b0155 article-title: Modeling effects of changing land use/cover on daily stream flow: An artificial neural network and curve number based hybrid approach publication-title: J. Hydrol. – volume: Vol(6) 3 start-page: 1000231 year: 2016 ident: b0110 article-title: Effect of slope shape on soil erosion publication-title: J. civil environ. eng. – reference: Naghdi, R., Dalir, P., Gholami, V., Pourghasemi, H.R., 2017. Modeling of sediment generation from forest roads employing SEDMODL and its calibration for Hyrcanian forests in northern Iran. Environ. Earth Sci. 76, 414 (2017). https://doi.org/10.1007/s12665-017-6758-7. – volume: 28 start-page: 1025 year: 2003 end-page: 1031 ident: b0250 article-title: A twenty-one-year record of surface change on a Namib linera dune publication-title: Earth Surf. Proc. Land. – year: 1974 ident: b0390 article-title: Areal contribution to runoff on scree slopes in an extreme arid environment – volume: 25 start-page: 535 year: 2000 end-page: 557 ident: b0295 article-title: Identifying large-scale erosion and deposition processes fromairbone gamma radiometrics and digital elevation models in a weathered landscape publication-title: Earth Surf. Proc. Land. – volume: 703 start-page: 135474 year: 2020 ident: b0315 article-title: Assessing soil erosion risk at national scale in developing countries: The technical challenges, a proposed methodology, and a case history publication-title: Sci. Total Environ. – volume: 62 start-page: 136 year: 2005 end-page: 159 ident: b0205 article-title: The influence of rainfall distribution and morphological factors on runoff delivery from dryland catchments in SE Spain publication-title: Catena. – volume: 36 start-page: 607 year: 2000 end-page: 617 ident: b0075 article-title: Slope curvature influence on soil erosion and deposition processes publication-title: Water Resour. Res. – volume: 16 start-page: 369 year: 1989 end-page: 376 ident: b0165 article-title: The development of dune blowouts, as measured with erosion pins and sequential air photos publication-title: Catena. – volume: 41 start-page: 126 year: 1986 end-page: 128 ident: b0350 article-title: Geomorphic impacts of horse traffic on Montane landforms publication-title: J. Soil Water Conserv. – volume: 67 start-page: 597 year: 1956 end-page: 646 ident: b0335 article-title: Evolution of drainage systems and slopes in badlands at perth amboy, New Jersey publication-title: Geol. Soc. Am. Bull. – volume: 136 start-page: 128 year: 2016 end-page: 134 ident: b0355 article-title: Simulated erosion using soils from vegetated slopes in the Jiufeng Mountains publication-title: China. Catena. – volume: 16 start-page: 9 year: 1978 end-page: 18 ident: b0220 article-title: The use of erosion pins in river banks publication-title: Swansea Geographer. – volume: 163 start-page: 210 year: 2018 end-page: 218 ident: b0105 article-title: Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data publication-title: Catena. – volume: 28 start-page: 73 year: 1956 end-page: 76 ident: b0065 article-title: Rates of erosion in the Chinle Formation publication-title: Plateau. – volume: 2 start-page: 370 year: 2013 end-page: 391 ident: b0210 article-title: Estimation of soil erosion rates and eroded sediment in a degraded catchment of the Siwalik Hills publication-title: Nepal, Land – volume: 103 start-page: 455 year: 2009 end-page: 465 ident: b0175 article-title: Evidence from field-based studies of rates of erosion on degraded land in the central Karoo, South Africa publication-title: Geomorphology – volume: 704 start-page: 135389 year: 2020 ident: b0260 article-title: Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz-Austria publication-title: Can Revull-Spain. Sci. Total Environ. – volume: 46 start-page: 333 year: 2008 end-page: 349 ident: b0125 article-title: Estimation of soil erosion using field and modelling approaches in an undisturbed Arnhem land catchment, Northern Territory, Australia publication-title: Geogr. Res. – start-page: 45 year: 1974 end-page: 58 ident: b0145 article-title: Gully erosion and sediment yield in the Howgill Fells, Westmorland publication-title: Fluvial Processes in Instrumented Watersheds – reference: Khaleghi,M.R., 2017. The influence of deforestation and anthropogenic activities on runoff generation. J. For. Sci. 63, 2017 (6): 245–253. – volume: 65 start-page: 36 year: 2009 end-page: 48 ident: b0400 article-title: Predict soil texture distributions using an artificial neural network model publication-title: Comput. Electron. Agri. – volume: 52 start-page: 79 year: 1964 end-page: 94 ident: b0305 article-title: Spartina salt marshes in southern England 11: Rate and seasonal pattern of sediment accretion publication-title: J. Ecol. – year: 1975 ident: b0345 article-title: Preliminary observations on rates of erosion on Chalk Downland paths – volume: 18 start-page: 777 year: 1993 end-page: 821 ident: b0235 article-title: The measurement of river bank erosion and lateral channel change: a review publication-title: Earth Surf. Proc. Land. – volume: 136 start-page: 85 year: 2019 end-page: 97 ident: b0360 article-title: Trend analysis of hydro-climatic variables in the north of Iran publication-title: Theo. Appl. Climatol. – reference: Ireland, H.A., Sharpe, C.F.S. Eargle, D.H., 1939: Principles of gully erosion in the piedmont of South Carolina. Technical Bulletins 167374, United States Department of Agriculture, Economic Research. Doi: 10.22004/ag.econ.167374. – reference: Harris, T.M., Boardman, J., 1998. Alternative approaches to soil erosion prediction and conservation using expert systems and neural networks. Modeling soil erosion by water. NATO ASI Series I, vol. 55. Springer-Verlag, Berlin, 461 – 477. – volume: 21 start-page: 151 year: 1974 end-page: 176 ident: b0190 article-title: Surface wash at the semi-arid break in slope publication-title: Zeitschrift fur Geomorphologie Suppl. – volume: 20 start-page: 515 year: 1995 end-page: 529 ident: b0375 article-title: Dune mobility and vegetation cover in the southwest Kalahari Desert publication-title: Earth Sur. Proc. Land. – volume: 10 start-page: 86 year: 2010 end-page: 91 ident: b0275 article-title: Automated classification of galaxies using transformed domain features. IJCSNS International Journal of Computer Science 86 and Network publication-title: Security – reference: Descroix, L., Poulenard, J., 1995. Les formes d’érosion dans la Sierra Madre Ocidentale (Nord Ouest du Mexique). Bull. Lab. Rhod. Géomorphol. 33-34, 1-19, Lyon. – volume: 220 355 start-page: 1 year: 1971 end-page: 36 ident: b0060 article-title: Rates of hillslope lowering in the Badlands of North Dakota. North Dakota University Water Resources Research Institute, Report W1–221-012-71. W73.09121.N.T.I.S publication-title: PB – volume: 3 start-page: Sec. 5.3 year: 2016 ident: b0035 article-title: The use of erosion pins in geomorphology publication-title: Geomorphological Techniques, Chap. – ident: 10.1016/j.catena.2020.104902_b0115 – ident: 10.1016/j.catena.2020.104902_b0045 doi: 10.1016/B0-12-348530-4/00089-8 – ident: 10.1016/j.catena.2020.104902_b0285 doi: 10.1007/s12665-017-6758-7 – volume: 136 start-page: 128 year: 2016 ident: 10.1016/j.catena.2020.104902_b0355 article-title: Simulated erosion using soils from vegetated slopes in the Jiufeng Mountains publication-title: China. Catena. doi: 10.1016/j.catena.2015.02.019 – volume: 65 start-page: 36 issue: 2009 year: 2009 ident: 10.1016/j.catena.2020.104902_b0400 article-title: Predict soil texture distributions using an artificial neural network model publication-title: Comput. Electron. Agri. doi: 10.1016/j.compag.2008.07.008 – ident: 10.1016/j.catena.2020.104902_b0195 doi: 10.17221/130/2016-JFS – volume: 66 start-page: 109 issue: 1 year: 2018 ident: 10.1016/j.catena.2020.104902_b0200 article-title: Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds publication-title: Acta Geophys. doi: 10.1007/s11600-018-0110-9 – volume: 14 start-page: 1 issue: 12 year: 2004 ident: 10.1016/j.catena.2020.104902_b0080 article-title: Prediction of groundwater vulnerability using an integrated GIS-based neuro-fuzy techniques publication-title: J. Spa. hydrol. – ident: 10.1016/j.catena.2020.104902_b0020 doi: 10.1061/(ASCE)1084-0699(2005)10:1(85) – volume: 10 start-page: 86 year: 2010 ident: 10.1016/j.catena.2020.104902_b0275 article-title: Automated classification of galaxies using transformed domain features. IJCSNS International Journal of Computer Science 86 and Network publication-title: Security – volume: 709 start-page: 136060 year: 2020 ident: 10.1016/j.catena.2020.104902_b0245 article-title: Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136060 – volume: 25 start-page: 535 year: 2000 ident: 10.1016/j.catena.2020.104902_b0295 article-title: Identifying large-scale erosion and deposition processes fromairbone gamma radiometrics and digital elevation models in a weathered landscape publication-title: Earth Surf. Proc. Land. doi: 10.1002/(SICI)1096-9837(200005)25:5<535::AID-ESP91>3.0.CO;2-N – ident: 10.1016/j.catena.2020.104902_b0150 – volume: 704 start-page: 135389 year: 2020 ident: 10.1016/j.catena.2020.104902_b0260 article-title: Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz-Austria publication-title: Can Revull-Spain. Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135389 – volume: 36 start-page: 607 issue: 2 year: 2000 ident: 10.1016/j.catena.2020.104902_b0075 article-title: Slope curvature influence on soil erosion and deposition processes publication-title: Water Resour. Res. doi: 10.1029/1999WR900157 – ident: 10.1016/j.catena.2020.104902_b0120 – volume: 12 start-page: 533 year: 2020 ident: 10.1016/j.catena.2020.104902_b0320 article-title: Statistical applications to downscale GRACE-Derived terrestrial water storage data and to fill temporal gaps publication-title: Remote Sens. doi: 10.3390/rs12030533 – volume: 6 start-page: 375 year: 1981 ident: 10.1016/j.catena.2020.104902_b0160 article-title: The development of blowouts in ‘De Blink’, a coastal dune area near Noordwijkerhout publication-title: The Netherlands. Earth Surf. Proc. Land. doi: 10.1002/esp.3290060316 – ident: 10.1016/j.catena.2020.104902_b0070 – start-page: 45 year: 1974 ident: 10.1016/j.catena.2020.104902_b0145 article-title: Gully erosion and sediment yield in the Howgill Fells, Westmorland – volume: 69 start-page: 1343 year: 2013 ident: 10.1016/j.catena.2020.104902_b0340 article-title: Comparison of the soil losses from Be-7 measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region publication-title: China. Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2011.05.031 – volume: 51 start-page: 89 issue: 2003 year: 2003 ident: 10.1016/j.catena.2020.104902_b0240 article-title: Artificial neural networks of soil erosion and runoff prediction at the plot scale publication-title: Catena. doi: 10.1016/S0341-8162(02)00147-9 – volume: 103 start-page: 455 year: 2009 ident: 10.1016/j.catena.2020.104902_b0175 article-title: Evidence from field-based studies of rates of erosion on degraded land in the central Karoo, South Africa publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.07.011 – year: 1998 ident: 10.1016/j.catena.2020.104902_b0370 – volume: 21 start-page: 151 year: 1974 ident: 10.1016/j.catena.2020.104902_b0190 article-title: Surface wash at the semi-arid break in slope publication-title: Zeitschrift fur Geomorphologie Suppl. – volume: 36 start-page: 2649 issue: 6 year: 2011 ident: 10.1016/j.catena.2020.104902_b0330 article-title: Performance evaluation of artificial neural network approaches in forecasting reservoir inflow publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.09.048 – volume: 20 start-page: 515 year: 1995 ident: 10.1016/j.catena.2020.104902_b0375 article-title: Dune mobility and vegetation cover in the southwest Kalahari Desert publication-title: Earth Sur. Proc. Land. doi: 10.1002/esp.3290200604 – volume: 485 start-page: 103 year: 2013 ident: 10.1016/j.catena.2020.104902_b0155 article-title: Modeling effects of changing land use/cover on daily stream flow: An artificial neural network and curve number based hybrid approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.08.032 – start-page: 333 pp. year: 1998 ident: 10.1016/j.catena.2020.104902_b0265 – volume: 60 start-page: 285 year: 2007 ident: 10.1016/j.catena.2020.104902_b0300 article-title: Runoff and erosion after cutting western juniper publication-title: Rangeland Ecol. Manage. doi: 10.2111/1551-5028(2007)60[285:RAEACW]2.0.CO;2 – volume: 52 start-page: 79 year: 1964 ident: 10.1016/j.catena.2020.104902_b0305 article-title: Spartina salt marshes in southern England 11: Rate and seasonal pattern of sediment accretion publication-title: J. Ecol. doi: 10.2307/2257784 – volume: 340 start-page: 1 year: 2007 ident: 10.1016/j.catena.2020.104902_b0325 article-title: A simple neural network model for the determination of aquifer parameters publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.03.017 – year: 1974 ident: 10.1016/j.catena.2020.104902_b0390 – volume: 62 start-page: 136 year: 2005 ident: 10.1016/j.catena.2020.104902_b0205 article-title: The influence of rainfall distribution and morphological factors on runoff delivery from dryland catchments in SE Spain publication-title: Catena. doi: 10.1016/j.catena.2005.05.002 – volume: 58 start-page: 542 year: 2005 ident: 10.1016/j.catena.2020.104902_b0010 article-title: Economics of western juniper control in central Oregon publication-title: Rangeland Ecol. Manage. doi: 10.2111/04-164R2.1 – volume: 29 start-page: 4809 year: 2015 ident: 10.1016/j.catena.2020.104902_b0130 article-title: Hillslope erosion measurement–a simple approach to a complex process publication-title: Hydrol. Process. doi: 10.1002/hyp.10608 – volume: 35 start-page: 297 year: 2011 ident: 10.1016/j.catena.2020.104902_b0280 article-title: Scale-dependency of sediment yield from badland areas in Mediterranean environments publication-title: Prog. Phys. Geog. doi: 10.1177/0309133311400330 – volume: 16 start-page: 9 year: 1978 ident: 10.1016/j.catena.2020.104902_b0220 article-title: The use of erosion pins in river banks publication-title: Swansea Geographer. – volume: 73 start-page: 211 issue: 3 year: 1999 ident: 10.1016/j.catena.2020.104902_b0310 article-title: An expert system/neural network model (impelERO) for evaluating agricultural soil erosion in Andalucia region, southern Spain publication-title: Agri. Ecosyst. Environ. doi: 10.1016/S0167-8809(99)00050-X – ident: 10.1016/j.catena.2020.104902_b0140 doi: 10.1007/978-3-642-58913-3_35 – volume: 66 start-page: 89 year: 1965 ident: 10.1016/j.catena.2020.104902_b0085 article-title: The Virgil Network: methods of measurement and a sampling of data collected publication-title: Int. Assoc. Sci. Hydrol. Publ. – ident: 10.1016/j.catena.2020.104902_b0385 – volume: 12 start-page: 1361 issue: 9 year: 2020 ident: 10.1016/j.catena.2020.104902_b0015 article-title: Mapping the Distribution of Shallow Groundwater Occurrences Using Remote Sensing-Based Statistical Modeling over Southwest Saudi Arabia publication-title: Remote Sensing doi: 10.3390/rs12091361 – volume: 2 start-page: 370 year: 2013 ident: 10.1016/j.catena.2020.104902_b0210 article-title: Estimation of soil erosion rates and eroded sediment in a degraded catchment of the Siwalik Hills publication-title: Nepal, Land doi: 10.3390/land2030370 – ident: 10.1016/j.catena.2020.104902_b0270 – volume: 163 start-page: 427 year: 2017 ident: 10.1016/j.catena.2020.104902_b0170 article-title: Improving the utility of erosion pins: absolute value of pin height change as an indicator of relative erosion publication-title: Catena. doi: 10.1016/j.catena.2017.12.008 – volume: 648 start-page: 1097 year: 2019 ident: 10.1016/j.catena.2020.104902_b0050 article-title: Land-use change from arable lands to orchards reduced soil erosion and increased nutrient loss in a small catchment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.141 – volume: 28 start-page: 1025 year: 2003 ident: 10.1016/j.catena.2020.104902_b0250 article-title: A twenty-one-year record of surface change on a Namib linera dune publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.1000 – volume: 703 start-page: 135474 year: 2020 ident: 10.1016/j.catena.2020.104902_b0315 article-title: Assessing soil erosion risk at national scale in developing countries: The technical challenges, a proposed methodology, and a case history publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135474 – volume: 59 start-page: 64 year: 1995 ident: 10.1016/j.catena.2020.104902_b0290 publication-title: Soil management systems and erosion. Olivae. – volume: 27 start-page: 2125 issue: 8 year: 1991 ident: 10.1016/j.catena.2020.104902_b0225 article-title: A new technique for the automatic monitoring of erosion and deposition rates publication-title: Water Resour. Res. doi: 10.1029/91WR01191 – volume: 16 start-page: 369 year: 1989 ident: 10.1016/j.catena.2020.104902_b0165 article-title: The development of dune blowouts, as measured with erosion pins and sequential air photos publication-title: Catena. doi: 10.1016/0341-8162(89)90021-0 – volume: 27 start-page: 168 issue: 5 year: 2008 ident: 10.1016/j.catena.2020.104902_b0025 article-title: Critical study of neural networks in detecting intrusions publication-title: Computers & Security. doi: 10.1016/j.cose.2008.06.001 – volume: 702 start-page: 134716 year: 2020 ident: 10.1016/j.catena.2020.104902_b0395 article-title: Spatially explicit quantification of total soil erosion by RTK GPS in wind and water eroded croplands publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134716 – volume: 13 start-page: 216 year: 1989 ident: 10.1016/j.catena.2020.104902_b0255 article-title: The measurement of soil erosion publication-title: Prog. Phys. Geog. doi: 10.1177/030913338901300203 – volume: 18 start-page: 777 year: 1993 ident: 10.1016/j.catena.2020.104902_b0235 article-title: The measurement of river bank erosion and lateral channel change: a review publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.3290180905 – volume: 41 start-page: 126 issue: 2 year: 1986 ident: 10.1016/j.catena.2020.104902_b0350 article-title: Geomorphic impacts of horse traffic on Montane landforms publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.1986.12455949 – ident: 10.1016/j.catena.2020.104902_b0135 doi: 10.2747/0272-3646.30.1.1 – ident: 10.1016/j.catena.2020.104902_b0185 – volume: 31 start-page: 15 year: 2006 ident: 10.1016/j.catena.2020.104902_b0055 article-title: Process-form realtionships in southern Italian badlands: erosion rates and implications for landform evolution publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.1226 – volume: 28 start-page: 73 issue: 4 year: 1956 ident: 10.1016/j.catena.2020.104902_b0065 article-title: Rates of erosion in the Chinle Formation publication-title: Plateau. – ident: 10.1016/j.catena.2020.104902_b0030 doi: 10.1002/esp.3775 – volume: 220 355 start-page: 1 year: 1971 ident: 10.1016/j.catena.2020.104902_b0060 article-title: Rates of hillslope lowering in the Badlands of North Dakota. North Dakota University Water Resources Research Institute, Report W1–221-012-71. W73.09121.N.T.I.S publication-title: PB – ident: 10.1016/j.catena.2020.104902_b0380 – ident: 10.1016/j.catena.2020.104902_b0365 doi: 10.1127/zfg/34/1991/385 – volume: 46 start-page: 1 year: 2010 ident: 10.1016/j.catena.2020.104902_b0215 article-title: Plot-scale effects on runoff and erosion along a slope degradation gradient publication-title: Water Resour. Res. – year: 1975 ident: 10.1016/j.catena.2020.104902_b0345 – volume: 8 start-page: 158 issue: 4 year: 2013 ident: 10.1016/j.catena.2020.104902_b0100 article-title: The impact of vegetation on the bank erosion (case study: the Haraz river) publication-title: Soil Water Res. doi: 10.17221/13/2012-SWR – volume: 136 start-page: 85 issue: 1–2 year: 2019 ident: 10.1016/j.catena.2020.104902_b0360 article-title: Trend analysis of hydro-climatic variables in the north of Iran publication-title: Theo. Appl. Climatol. doi: 10.1007/s00704-018-2470-0 – volume: 3 start-page: Sec. 5.3 year: 2016 ident: 10.1016/j.catena.2020.104902_b0035 article-title: The use of erosion pins in geomorphology publication-title: Geomorphological Techniques, Chap. – volume: 4 start-page: 166 year: 2012 ident: 10.1016/j.catena.2020.104902_b0090 article-title: A comparison between natural forests and reforested lands in terms of runoff generation potential and hydrologic response (case study: Kasilian Watershed) publication-title: Soil Water Res. doi: 10.17221/18/2012-SWR – volume: 67 start-page: 597 year: 1956 ident: 10.1016/j.catena.2020.104902_b0335 article-title: Evolution of drainage systems and slopes in badlands at perth amboy, New Jersey publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2 – start-page: 117 year: 1992 ident: 10.1016/j.catena.2020.104902_b0230 article-title: Process dominance in bank erosion systems – volume: 46 start-page: 333 issue: 3 year: 2008 ident: 10.1016/j.catena.2020.104902_b0125 article-title: Estimation of soil erosion using field and modelling approaches in an undisturbed Arnhem land catchment, Northern Territory, Australia publication-title: Geogr. Res. doi: 10.1111/j.1745-5871.2008.00527.x – volume: 29 start-page: 974 issue: 7 year: 2006 ident: 10.1016/j.catena.2020.104902_b0180 article-title: Storage of water on vegetation under simulated rainfall of varying intensity publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2005.07.017 – volume: 43 start-page: 687 year: 2008 ident: 10.1016/j.catena.2020.104902_b0005 article-title: Estimating sediment yield from a forest road network by using a sediment prediction model and GIS techniques publication-title: Build. Environ. doi: 10.1016/j.buildenv.2007.01.047 – volume: 163 start-page: 210 year: 2018 ident: 10.1016/j.catena.2020.104902_b0105 article-title: Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data publication-title: Catena. doi: 10.1016/j.catena.2017.12.027 – volume: Vol(6) 3 start-page: 1000231 year: 2016 ident: 10.1016/j.catena.2020.104902_b0110 article-title: Effect of slope shape on soil erosion publication-title: J. civil environ. eng. – volume: 25 start-page: 63 issue: 1–41 year: 1995 ident: 10.1016/j.catena.2020.104902_b0040 article-title: Pedo-hydrological and sediment responses to simulated rainfall on soils of the Konya Uplands (Turkey) publication-title: Catena. doi: 10.1016/0341-8162(94)00042-D  | 
    
| SSID | ssj0004751 | 
    
| Score | 2.5254328 | 
    
| Snippet | •Erosion pins and ANNs were successfully used to assess the spatial variation of soil erosion.•Splash erosion is the dominant type of erosion in the study area... Assessment of soil erosion is crucial for any long-term soil conservation plan. Traditional in-situ measurements provide a precise amount of erosion rate;...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 104902 | 
    
| SubjectTerms | canopy catenas data collection digital elevation models GFF network Hillslope Iran mountains neural networks soil conservation Soil erosion map Splash erosion Surface erosion  | 
    
| Title | Soil erosion modeling using erosion pins and artificial neural networks | 
    
| URI | https://dx.doi.org/10.1016/j.catena.2020.104902 https://www.proquest.com/docview/2552023737  | 
    
| Volume | 196 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEb2I8wfOX0TwoIe4Lsma9ihDNxW9qOAtJGnUyeiGmwcv_u2-l6aKIgieWkrSlpfkvbzky_cRcpBIZ_Mk98xBNGZSCceMdF0mCl9YJ3KfBRWFq-t0cCcv7rv3DdKrz8IgrDL6_sqnB28dn7SjNduT4bB9k4ADzjop52G3j-NBcykVqhgcv3_BPKQKEoxYmGHp-vhcwHgh6KhE9iEeNjvzuLjyS3j64ahD9DlbIctx2khPqj9rkoYvV8liVDB_elslC_0g0Qt3zThcp_QwckofrZH-zXg4oh6-Ce1Ag_wNxCyKqPfHz8eoYk1NWVA0QMUsQZHvMlwCWny6Tu7OTm97AxY1FJiB0DRjHrLOruiCK-G8U2SQe6beQECSmU24NSZJjS2SQNMlrHwQSVJYk4vMedcxznGxQebKcek3CbV46DqHfE1CEvaQCpNmPlcGCbO4UapoEVGbTrtIMI46FyNdI8medWVwjQbXlcFbhH3WmlQEG3-UV3Wr6G8dRUMM-KPmft2IGsYQboyY0o9fpxrSKlSRV0Jt_fvt22SJI9wlrM7skLnZy6vfhfnKzO6FDrlH5k_OLwfXH2Az52c | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5iIFQuaMCmMQZ40g7j4DW1kzg5TmhQNuDSVuJm2Y67dapSRMthF3477zlO0RBSJU6OIjuJnu338uzP3wfwJUmdLZPSc4fRmKdKOm5Sl3FZ-co6WfoiqChcXef9UfrzJrtZg9P2LAzBKqPvb3x68NbxTjdas3s7mXQHCTrgopcLEXb7RPYGNrBQlIF9e3jCeaQqaDBSbU7V2_NzAeRFqKOa6IdE2O0s4-rKC_HpmacO4efsLWzH_0b2vfm0HVjz9S50ooT5n3-7sHkeNHrxaifO1zn7GkmlT_bgfDCbTJnHd2JHsKB_g0GLEez99_I2yVgzU1eMLNBQSzAivAxFgIvP38Ho7MfwtM-jiAI3GJsW3GPamckMfYkQvarA5DP3BiNSWthEWGOS3NgqCTxd0qZjmSSVNaUsnHc945yQ72G9ntX-AzBLp65LTNhSzMLGuTR54UtliDFLGKWqfZCt6bSLDOMkdDHVLZTsr24MrsngujH4PvBlq9uGYWNFfdX2iv5vpGgMAitafm47UeMkop0RU_vZ_VxjXkUy8kqqj69--jF0-sOrS315cf3rALYEYV_CUs0nWF_c3ftD_HlZ2KMwOB8Bznfo_A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+erosion+modeling+using+erosion+pins+and+artificial+neural+networks&rft.jtitle=Catena+%28Giessen%29&rft.au=Gholami%2C+Vahid&rft.au=Sahour%2C+Hossein&rft.au=Hadian+Amri%2C+Mohammad+Ali&rft.date=2021-01-01&rft.issn=0341-8162&rft.volume=196+p.104902-&rft_id=info:doi/10.1016%2Fj.catena.2020.104902&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |