A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS
Rockfall hazards occur widely in regions with steep terrain such as Kinta Valley, Malaysia. Rockfalls threaten urban areas and the transportation corridors that pass through such areas. This paper proposes a comprehensive rockfall hazard assessment strategy based on high-resolution laser scanning da...
Saved in:
| Published in | Catena (Giessen) Vol. 172; pp. 435 - 450 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0341-8162 1872-6887 |
| DOI | 10.1016/j.catena.2018.09.012 |
Cover
| Abstract | Rockfall hazards occur widely in regions with steep terrain such as Kinta Valley, Malaysia. Rockfalls threaten urban areas and the transportation corridors that pass through such areas. This paper proposes a comprehensive rockfall hazard assessment strategy based on high-resolution laser scanning data (LiDAR), both airborne and terrestrial. It provides (1) rockfall source identification by developing a hybrid model based on a bagging neural network (BBNN), which is compared with various machine learning algorithms and ensemble models (bagging, boosting, voting) and a Gaussian mixture model; (2) 3D modelling of rockfall kinematic processes (trajectory distribution, frequency, velocity, kinetic energy, bounce height, impact location); and (3) hazard zonation based on spatial modelling in combination with an analytical hierarchy process (AHP) in a geographic information system (GIS). In addition, mitigation measures are suggested based on the modelling results. The proposed methodology was validated in three study areas to test the applicability and generalisability of the methods. The results show that the proposed hybrid model can accurately identify rockfall source areas at the regional scale. It achieved a 97% training accuracy and 5-fold cross-validation area under curve (AUC) value of 0.96. The mechanical parameters of the developed 3D model were calibrated with an accuracy of 97%, 93% and 95% for Gunung Lang, Gua Tambun and Gunung Rapat areas, respectively. In addition, the proposed spatial model effectively delineates areas at risk of rockfalls. This method provides a comprehensive understanding of rockfall hazards that can assist authorities to develop proper management and protection of urban areas and transportation corridors.
[Display omitted]
•Airborne and terrestrial laser data were employed to derive high-resolution DTM.•Gaussian Mixture Model (GMM) was used to calculate slope angle thresholds.•Different machine learning algorithms were applied and tested.•A hybrid model was proposed to identify the source of rockfall.•3D rockfall modelling was performed to derive rockfall trajectories. |
|---|---|
| AbstractList | Rockfall hazards occur widely in regions with steep terrain such as Kinta Valley, Malaysia. Rockfalls threaten urban areas and the transportation corridors that pass through such areas. This paper proposes a comprehensive rockfall hazard assessment strategy based on high-resolution laser scanning data (LiDAR), both airborne and terrestrial. It provides (1) rockfall source identification by developing a hybrid model based on a bagging neural network (BBNN), which is compared with various machine learning algorithms and ensemble models (bagging, boosting, voting) and a Gaussian mixture model; (2) 3D modelling of rockfall kinematic processes (trajectory distribution, frequency, velocity, kinetic energy, bounce height, impact location); and (3) hazard zonation based on spatial modelling in combination with an analytical hierarchy process (AHP) in a geographic information system (GIS). In addition, mitigation measures are suggested based on the modelling results. The proposed methodology was validated in three study areas to test the applicability and generalisability of the methods. The results show that the proposed hybrid model can accurately identify rockfall source areas at the regional scale. It achieved a 97% training accuracy and 5-fold cross-validation area under curve (AUC) value of 0.96. The mechanical parameters of the developed 3D model were calibrated with an accuracy of 97%, 93% and 95% for Gunung Lang, Gua Tambun and Gunung Rapat areas, respectively. In addition, the proposed spatial model effectively delineates areas at risk of rockfalls. This method provides a comprehensive understanding of rockfall hazards that can assist authorities to develop proper management and protection of urban areas and transportation corridors. Rockfall hazards occur widely in regions with steep terrain such as Kinta Valley, Malaysia. Rockfalls threaten urban areas and the transportation corridors that pass through such areas. This paper proposes a comprehensive rockfall hazard assessment strategy based on high-resolution laser scanning data (LiDAR), both airborne and terrestrial. It provides (1) rockfall source identification by developing a hybrid model based on a bagging neural network (BBNN), which is compared with various machine learning algorithms and ensemble models (bagging, boosting, voting) and a Gaussian mixture model; (2) 3D modelling of rockfall kinematic processes (trajectory distribution, frequency, velocity, kinetic energy, bounce height, impact location); and (3) hazard zonation based on spatial modelling in combination with an analytical hierarchy process (AHP) in a geographic information system (GIS). In addition, mitigation measures are suggested based on the modelling results. The proposed methodology was validated in three study areas to test the applicability and generalisability of the methods. The results show that the proposed hybrid model can accurately identify rockfall source areas at the regional scale. It achieved a 97% training accuracy and 5-fold cross-validation area under curve (AUC) value of 0.96. The mechanical parameters of the developed 3D model were calibrated with an accuracy of 97%, 93% and 95% for Gunung Lang, Gua Tambun and Gunung Rapat areas, respectively. In addition, the proposed spatial model effectively delineates areas at risk of rockfalls. This method provides a comprehensive understanding of rockfall hazards that can assist authorities to develop proper management and protection of urban areas and transportation corridors. [Display omitted] •Airborne and terrestrial laser data were employed to derive high-resolution DTM.•Gaussian Mixture Model (GMM) was used to calculate slope angle thresholds.•Different machine learning algorithms were applied and tested.•A hybrid model was proposed to identify the source of rockfall.•3D rockfall modelling was performed to derive rockfall trajectories. |
| Author | Pradhan, Biswajeet Fanos, Ali Mutar |
| Author_xml | – sequence: 1 givenname: Ali Mutar surname: Fanos fullname: Fanos, Ali Mutar organization: Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia – sequence: 2 givenname: Biswajeet orcidid: 0000-0001-9863-2054 surname: Pradhan fullname: Pradhan, Biswajeet email: Biswajeet.Pradhan@uts.edu.au organization: Research Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Information, Systems & Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia |
| BookMark | eNqFkD1PAzEMhiMEEm3hHzBkZLkjzn0zIKECBQmJAZgjX84HKdcEkrQS_HquKhMDTJYtP6_sZ8r2rbPE2AmIFASUZ8tUYySLqRRQp6JJBcg9NoG6kklZ19U-m4gsh6SGUh6yaQhLIUReFTBhT5fcug0N3Dv91uMw8Ff8Qt9xDIFCWJGNfB2MfeEDBvI8aLR223YYkaPteHbFV66jYdhOjeWLu8cjdjBGBTr-qTP2fHP9NL9N7h8Wd_PL-wSzUsaklVgUmRY5SOioqTQAlRmKtqh6qFCIFrHPmqLUkuq8roA6orbtG9TF-FWRzdjpLvfdu481hahWJujxFLTk1kFJqMosl7Uox9V8t6q9C8FTr969WaH_VCDUVqJaqp1EtZWoRKNGiSN2_gvTJmI0zkaPZvgPvtjBNDrYGPIqaENWU2c86ag6Z_4O-AYzt5Gh |
| CitedBy_id | crossref_primary_10_1007_s10706_020_01261_1 crossref_primary_10_1016_j_jrmge_2024_09_041 crossref_primary_10_1016_j_jrmge_2024_12_023 crossref_primary_10_3390_rs12111755 crossref_primary_10_1007_s10064_022_02917_3 crossref_primary_10_13168_AGG_2019_0033 crossref_primary_10_35414_akufemubid_658662 crossref_primary_10_1007_s11629_024_8685_x crossref_primary_10_1109_ACCESS_2019_2917868 crossref_primary_10_24232_jmd_1267107 crossref_primary_10_3390_ijgi10030119 crossref_primary_10_1007_s11069_020_04457_z crossref_primary_10_3390_rs13173450 crossref_primary_10_1016_j_enggeo_2023_106993 crossref_primary_10_1016_j_enggeo_2023_107004 crossref_primary_10_1007_s12665_025_12135_1 crossref_primary_10_1117_1_JRS_14_034525 crossref_primary_10_1007_s40534_024_00351_7 crossref_primary_10_1007_s10346_020_01532_1 crossref_primary_10_3389_feart_2021_755876 crossref_primary_10_1007_s12665_024_11517_1 crossref_primary_10_1088_1755_1315_833_1_012063 crossref_primary_10_1088_1755_1315_365_1_012063 crossref_primary_10_1109_JSTARS_2021_3075112 crossref_primary_10_3390_drones8010031 crossref_primary_10_1016_j_enggeo_2021_106023 crossref_primary_10_1007_s00603_022_02905_9 crossref_primary_10_1016_j_geomorph_2022_108356 crossref_primary_10_1007_s10064_023_03133_3 crossref_primary_10_1007_s12665_022_10603_6 crossref_primary_10_1016_j_catena_2020_104833 crossref_primary_10_3390_ijgi8080325 crossref_primary_10_1016_j_ejrs_2022_03_010 crossref_primary_10_1007_s11069_023_05999_8 crossref_primary_10_1007_s12665_021_09950_7 crossref_primary_10_2139_ssrn_4169415 crossref_primary_10_1111_tgis_13046 crossref_primary_10_1515_geo_2022_0692 crossref_primary_10_1007_s10064_021_02426_9 crossref_primary_10_1016_j_heliyon_2023_e20225 crossref_primary_10_1007_s10064_021_02137_1 crossref_primary_10_1007_s10064_024_03646_5 crossref_primary_10_31466_kfbd_1446997 crossref_primary_10_1016_j_engfailanal_2022_106668 crossref_primary_10_3390_app10010247 crossref_primary_10_1029_2019EA000662 crossref_primary_10_1016_j_istruc_2024_106178 crossref_primary_10_1016_j_enggeo_2021_106001 crossref_primary_10_1080_19475705_2020_1819445 crossref_primary_10_1016_j_enggeo_2023_107014 |
| Cites_doi | 10.1016/j.catena.2016.09.007 10.1016/j.catena.2015.05.019 10.1007/s12665-016-5936-3 10.5194/nhess-3-491-2003 10.1016/j.cageo.2012.08.023 10.1007/s10346-010-0246-4 10.5194/nhess-9-1643-2009 10.1016/0377-2217(90)90057-I 10.1007/s12665-010-0705-1 10.1007/s10346-012-0374-0 10.1109/TGRS.2006.890412 10.1016/j.ijrmms.2011.09.011 10.1016/j.apgeog.2011.10.020 10.1007/s12665-009-0245-8 10.1016/j.neucom.2013.10.044 10.1016/j.geomorph.2006.10.037 10.1016/j.cageo.2006.05.013 10.5194/nhess-11-2617-2011 10.1007/s12665-014-4008-9 10.1191/0309133303pp359ra 10.1007/s10706-016-0049-z 10.1007/s00603-004-0027-2 10.1007/s11069-014-1128-1 10.1007/s12665-013-2247-9 10.1007/s11069-011-9899-0 10.1016/j.envsoft.2016.07.005 10.1016/j.geomorph.2013.02.001 10.1016/j.catena.2016.03.028 10.5194/nhess-6-941-2006 10.1007/s10346-017-0818-7 10.1177/0962280211428385 10.1007/s11069-016-2563-y |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.catena.2018.09.012 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Sciences (General) |
| EISSN | 1872-6887 |
| EndPage | 450 |
| ExternalDocumentID | 10_1016_j_catena_2018_09_012 S0341816218303801 |
| GeographicLocations | Malaysia |
| GeographicLocations_xml | – name: Malaysia |
| GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a362t-b2a553c04121de97c11e63a0b57f17a00baaf3956c2e84871edeebbf9ac588753 |
| IEDL.DBID | .~1 |
| ISSN | 0341-8162 |
| IngestDate | Sat Sep 27 21:43:35 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Thu Oct 09 00:49:16 EDT 2025 Fri Feb 23 02:47:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | GIS AHP 3D modelling Hazard Rockfall LiDAR |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a362t-b2a553c04121de97c11e63a0b57f17a00baaf3956c2e84871edeebbf9ac588753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9863-2054 |
| PQID | 2176342806 |
| PQPubID | 24069 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2176342806 crossref_primary_10_1016_j_catena_2018_09_012 crossref_citationtrail_10_1016_j_catena_2018_09_012 elsevier_sciencedirect_doi_10_1016_j_catena_2018_09_012 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Catena (Giessen) |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jaboyedoff, Labiouse (bb0085) 2003 Frattini, Crosta, Carrara, Agliardi (bb0060) 2008; 94 Zhang, Cai, Zheng, Zhen, Liu, Huang (bb0205) 2016; 142 Pradhan (bb0150) 2013; 51 Mongus, Zalik (bb0115) 2014; 7 Pradhan, Lee (bb0165) 2010; 60 Volkwein, Schellenberg, Labiouse, Agliardi, Berger, Bourrier, Dorren, Gerber, Jaboyedo (bb0195) 2011; 11 Corona, Trappmann, Stoffel (bb0025) 2013; 202 Chen, Zeng, Jiang, Tang (bb0020) 2015; 149 Palma, Parise, Reichenbach, Guzzetti (bb0125) 2012; 61 Youssef (bb0200) 2015; 73 Fanos, Pradhan, Aziz, Jebur, Park (bb0045) 2016; 75 Ritchie (bb0175) 1963; 17 Saaty (bb0185) 1990; 48 Papathanassiou, Marinos, Vogiatzis, Valkaniotis (bb0130) 2013 RocPro3D (bb0180) 2014 Aksoy, Ercanoglu (bb0010) 2006; 6 Matas, Lantada, Corominas, Gili, Ruiz-Carulla, Prades (bb0110) 2017; 14 Jiang, Huang, Zhang (bb0090) 2013; 22 Gigli, Morelli, Fornera, Casagli (bb0070) 2014; 11 Pradhan (bb0145) 2011; 63 Evans, Hudak (bb0035) 2007; 45 Loye, Jaboyedoff, Pedrazzini (bb0105) 2009; 9 Giani, Giacomini, Migliazza, Segalini (bb0065) 2004; 37 Lan, Martin, Lim (bb0100) 2007; 33 Dorren (bb0030) 2003; 27 Pham, Pradhan, Bui, Prakash, Dholakia (bb0135) 2016; 84 Vishal, Siddique, Purohit, Phophliya, Pradhan (bb0190) 2017; 85 Pradhan, Abokharima, Jebur, Tehrany (bb0170) 2014; 73 Ferrero, Umili (bb0050) 2011; 48 Ferrero, Migliazza, Roncella, Rabbi (bb0055) 2011; 8 Guzzetti, Reichenbach, Wieczorek (bb0075) 2003; 3 Fanos, Pradhan (bb0040) 2016; 34 Hong, Pradhan, Xu, Bui (bb0080) 2015; 133 Abellán, Calvet, Vilaplana, Blanchard (bb0005) 2010; 119 Keskin (bb0095) 2013; 70 Morelli, Segoni, Manzo, Ermini, Catani (bb0120) 2012; 34 Pradhan, Fanos (bb0155) 2017 Pham, Bui, Prakash, Dholakia (bb0140) 2017; 149 Pradhan, Fanos (bb0160) 2017 Gigli (10.1016/j.catena.2018.09.012_bb0070) 2014; 11 Aksoy (10.1016/j.catena.2018.09.012_bb0010) 2006; 6 Pradhan (10.1016/j.catena.2018.09.012_bb0145) 2011; 63 RocPro3D (10.1016/j.catena.2018.09.012_bb0180) Corona (10.1016/j.catena.2018.09.012_bb0025) 2013; 202 Ferrero (10.1016/j.catena.2018.09.012_bb0050) 2011; 48 Palma (10.1016/j.catena.2018.09.012_bb0125) 2012; 61 Guzzetti (10.1016/j.catena.2018.09.012_bb0075) 2003; 3 Pradhan (10.1016/j.catena.2018.09.012_bb0170) 2014; 73 Saaty (10.1016/j.catena.2018.09.012_bb0185) 1990; 48 Vishal (10.1016/j.catena.2018.09.012_bb0190) 2017; 85 Fanos (10.1016/j.catena.2018.09.012_bb0040) 2016; 34 Dorren (10.1016/j.catena.2018.09.012_bb0030) 2003; 27 Evans (10.1016/j.catena.2018.09.012_bb0035) 2007; 45 Chen (10.1016/j.catena.2018.09.012_bb0020) 2015; 149 Papathanassiou (10.1016/j.catena.2018.09.012_bb0130) 2013 Keskin (10.1016/j.catena.2018.09.012_bb0095) 2013; 70 Morelli (10.1016/j.catena.2018.09.012_bb0120) 2012; 34 Pham (10.1016/j.catena.2018.09.012_bb0135) 2016; 84 Matas (10.1016/j.catena.2018.09.012_bb0110) 2017; 14 Jiang (10.1016/j.catena.2018.09.012_bb0090) 2013; 22 Youssef (10.1016/j.catena.2018.09.012_bb0200) 2015; 73 Frattini (10.1016/j.catena.2018.09.012_bb0060) 2008; 94 Zhang (10.1016/j.catena.2018.09.012_bb0205) 2016; 142 Loye (10.1016/j.catena.2018.09.012_bb0105) 2009; 9 Pradhan (10.1016/j.catena.2018.09.012_bb0160) 2017 Pham (10.1016/j.catena.2018.09.012_bb0140) 2017; 149 Volkwein (10.1016/j.catena.2018.09.012_bb0195) 2011; 11 Abellán (10.1016/j.catena.2018.09.012_bb0005) 2010; 119 Pradhan (10.1016/j.catena.2018.09.012_bb0155) 2017 Fanos (10.1016/j.catena.2018.09.012_bb0045) 2016; 75 Jaboyedoff (10.1016/j.catena.2018.09.012_bb0085) 2003 Lan (10.1016/j.catena.2018.09.012_bb0100) 2007; 33 Ritchie (10.1016/j.catena.2018.09.012_bb0175) 1963; 17 Hong (10.1016/j.catena.2018.09.012_bb0080) 2015; 133 Ferrero (10.1016/j.catena.2018.09.012_bb0055) 2011; 8 Giani (10.1016/j.catena.2018.09.012_bb0065) 2004; 37 Pradhan (10.1016/j.catena.2018.09.012_bb0165) 2010; 60 Mongus (10.1016/j.catena.2018.09.012_bb0115) 2014; 7 Pradhan (10.1016/j.catena.2018.09.012_bb0150) 2013; 51 |
| References_xml | – volume: 33 start-page: 262 year: 2007 end-page: 279 ident: bb0100 article-title: RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling publication-title: Comput. Geosci. – volume: 11 start-page: 2617 year: 2011 end-page: 2651 ident: bb0195 article-title: Rockfall characterisation and structural protection - a review publication-title: Nat. Hazards Earth Syst. Sci. – start-page: 299 year: 2017 end-page: 322 ident: bb0160 article-title: Rockfall hazard assessment: an overview publication-title: Laser Scanning Applications in Landslide Assessment – volume: 133 start-page: 266 year: 2015 end-page: 281 ident: bb0080 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena – volume: 34 start-page: 205 year: 2012 end-page: 218 ident: bb0120 article-title: Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy publication-title: Appl. Geogr. – volume: 27 start-page: 69 year: 2003 end-page: 87 ident: bb0030 article-title: A review of rockfall mechanics and modelling approaches publication-title: Prog. Phys. Geogr. – year: 2014 ident: bb0180 article-title: RocPro3D software – volume: 75 start-page: 1129 year: 2016 ident: bb0045 article-title: Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area publication-title: Environ. Earth Sci. – start-page: 67 year: 2013 end-page: 72 ident: bb0130 article-title: A rock fall analysis study in Parnassos area, Central Greece publication-title: Landslide Science and Practice – year: 2003 ident: bb0085 publication-title: Preliminary assessment of rockfall hazard based on GIS data – volume: 119 year: 2010 ident: bb0005 article-title: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring publication-title: Geomorphology – volume: 94 start-page: 419 year: 2008 end-page: 437 ident: bb0060 article-title: Assessment of rockfall susceptibility by integrating statistical and physically-based approaches publication-title: Geomorphology – volume: 149 start-page: 151 year: 2015 end-page: 157 ident: bb0020 article-title: Deformation prediction of landslide based on functional network publication-title: Neurocomputing – volume: 85 start-page: 487 year: 2017 end-page: 503 ident: bb0190 article-title: Hazard assessment in rockfall-prone Himalayan slopes along National Highway-58, India: rating and simulation publication-title: Nat. Hazards – volume: 8 start-page: 221 year: 2011 end-page: 231 ident: bb0055 article-title: Rock slopes risk assessment based on advanced geostructural survey techniques publication-title: Landslides – volume: 73 start-page: 8499 year: 2015 end-page: 8518 ident: bb0200 article-title: Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models publication-title: Environ. Earth Sci. – volume: 9 start-page: 1643 year: 2009 end-page: 1653 ident: bb0105 article-title: Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis publication-title: Nat. Hazards Earth Syst. Sci. – volume: 45 start-page: 1029 year: 2007 end-page: 1038 ident: bb0035 article-title: A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments publication-title: IEEE Trans. Geosci. Remote – volume: 3 start-page: 491 year: 2003 end-page: 503 ident: bb0075 article-title: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA publication-title: Nat. Hazards Earth Syst. Sci. – start-page: 323 year: 2017 end-page: 359 ident: bb0155 article-title: Application of LiDAR in rockfall hazard assessment in tropical region publication-title: Laser Scanning Applications in Landslide Assessment – volume: 70 start-page: 1619 year: 2013 end-page: 1628 ident: bb0095 article-title: Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey) publication-title: Environ. Earth Sci. – volume: 48 start-page: 9 year: 1990 end-page: 26 ident: bb0185 article-title: The analytical hierarchy process publication-title: Eur. J. Oper. Res. – volume: 142 start-page: 233 year: 2016 end-page: 244 ident: bb0205 article-title: Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China publication-title: Catena – volume: 14 start-page: 1565 year: 2017 end-page: 1578 ident: bb0110 article-title: RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls publication-title: Landslides – volume: 22 start-page: 505 year: 2013 end-page: 518 ident: bb0090 article-title: The cross-validated AUC for MCP-Logistic regression with high-dimensional data publication-title: Stat. Methods Med. Res. – volume: 60 start-page: 1037 year: 2010 end-page: 1054 ident: bb0165 article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models publication-title: Environ. Earth Sci. – volume: 37 start-page: 369 year: 2004 end-page: 389 ident: bb0065 article-title: Experimental and theoretical studies to improve rock fall analysis and protection work design publication-title: Rock Mech. Rock. Eng. – volume: 11 start-page: 1 year: 2014 end-page: 14 ident: bb0070 article-title: Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios publication-title: Landslides – volume: 73 start-page: 1019 year: 2014 end-page: 1042 ident: bb0170 article-title: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS publication-title: Nat. Hazards – volume: 61 start-page: 187 year: 2012 end-page: 201 ident: bb0125 article-title: Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy publication-title: Nat. Hazards – volume: 17 year: 1963 ident: bb0175 article-title: Evaluation of rockfall and its control publication-title: Highw. Res. Rec. – volume: 63 start-page: 329 year: 2011 end-page: 349 ident: bb0145 article-title: Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia publication-title: Environ. Earth Sci. – volume: 7 start-page: 340 year: 2014 end-page: 351 ident: bb0115 article-title: Computationally efficient method for the generation of a digital terrain model from airborne LiDAR data using connected operators publication-title: IEEE J. Sel. Top. – volume: 149 start-page: 52 year: 2017 end-page: 63 ident: bb0140 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena – volume: 34 start-page: 1375 year: 2016 end-page: 1393 ident: bb0040 article-title: Multi-scenario rockfall hazard assessment using LiDAR data and GIS publication-title: Geotech. Geol. Eng. – volume: 51 start-page: 350 year: 2013 end-page: 365 ident: bb0150 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. – volume: 202 start-page: 33 year: 2013 end-page: 42 ident: bb0025 article-title: Parameterization of rockfall source areas and magnitudes with ecological recorders: when disturbances in trees serve the calibration and validation of simulation runs publication-title: Geomorphology – volume: 84 start-page: 240 year: 2016 end-page: 250 ident: bb0135 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India) publication-title: Environ. Model. Softw. – volume: 6 start-page: 941 year: 2006 end-page: 954 ident: bb0010 article-title: Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation publication-title: Nat. Hazards Earth Syst. Sci. – volume: 48 start-page: 1262 year: 2011 end-page: 1270 ident: bb0050 article-title: Comparison of methods for estimating fracture size and intensity applied to Aiguille Marbrée (Mont Blanc) publication-title: Int. J. Rock Mech. Min. Sci. – volume: 149 start-page: 52 year: 2017 ident: 10.1016/j.catena.2018.09.012_bb0140 article-title: Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS publication-title: Catena doi: 10.1016/j.catena.2016.09.007 – volume: 133 start-page: 266 year: 2015 ident: 10.1016/j.catena.2018.09.012_bb0080 article-title: Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines publication-title: Catena doi: 10.1016/j.catena.2015.05.019 – volume: 75 start-page: 1129 issue: 15 year: 2016 ident: 10.1016/j.catena.2018.09.012_bb0045 article-title: Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5936-3 – start-page: 299 year: 2017 ident: 10.1016/j.catena.2018.09.012_bb0160 article-title: Rockfall hazard assessment: an overview – volume: 3 start-page: 491 issue: 6 year: 2003 ident: 10.1016/j.catena.2018.09.012_bb0075 article-title: Rockfall hazard and risk assessment in the Yosemite Valley, California, USA publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-3-491-2003 – volume: 51 start-page: 350 year: 2013 ident: 10.1016/j.catena.2018.09.012_bb0150 article-title: A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.08.023 – volume: 8 start-page: 221 issue: 2 year: 2011 ident: 10.1016/j.catena.2018.09.012_bb0055 article-title: Rock slopes risk assessment based on advanced geostructural survey techniques publication-title: Landslides doi: 10.1007/s10346-010-0246-4 – volume: 9 start-page: 1643 issue: 5 year: 2009 ident: 10.1016/j.catena.2018.09.012_bb0105 article-title: Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-9-1643-2009 – volume: 48 start-page: 9 year: 1990 ident: 10.1016/j.catena.2018.09.012_bb0185 article-title: The analytical hierarchy process publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(90)90057-I – volume: 63 start-page: 329 issue: 2 year: 2011 ident: 10.1016/j.catena.2018.09.012_bb0145 article-title: Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0705-1 – volume: 11 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.catena.2018.09.012_bb0070 article-title: Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios publication-title: Landslides doi: 10.1007/s10346-012-0374-0 – start-page: 67 year: 2013 ident: 10.1016/j.catena.2018.09.012_bb0130 article-title: A rock fall analysis study in Parnassos area, Central Greece – start-page: 323 year: 2017 ident: 10.1016/j.catena.2018.09.012_bb0155 article-title: Application of LiDAR in rockfall hazard assessment in tropical region – volume: 45 start-page: 1029 issue: 4 year: 2007 ident: 10.1016/j.catena.2018.09.012_bb0035 article-title: A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/TGRS.2006.890412 – volume: 48 start-page: 1262 issue: 8 year: 2011 ident: 10.1016/j.catena.2018.09.012_bb0050 article-title: Comparison of methods for estimating fracture size and intensity applied to Aiguille Marbrée (Mont Blanc) publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2011.09.011 – volume: 34 start-page: 205 year: 2012 ident: 10.1016/j.catena.2018.09.012_bb0120 article-title: Urban planning, flood risk and public policy: the case of the Arno River, Firenze, Italy publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2011.10.020 – volume: 60 start-page: 1037 issue: 5 year: 2010 ident: 10.1016/j.catena.2018.09.012_bb0165 article-title: Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-009-0245-8 – volume: 149 start-page: 151 year: 2015 ident: 10.1016/j.catena.2018.09.012_bb0020 article-title: Deformation prediction of landslide based on functional network publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.10.044 – volume: 94 start-page: 419 issue: 3–4 year: 2008 ident: 10.1016/j.catena.2018.09.012_bb0060 article-title: Assessment of rockfall susceptibility by integrating statistical and physically-based approaches publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.037 – volume: 33 start-page: 262 issue: 2 year: 2007 ident: 10.1016/j.catena.2018.09.012_bb0100 article-title: RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2006.05.013 – volume: 11 start-page: 2617 issue: 9 year: 2011 ident: 10.1016/j.catena.2018.09.012_bb0195 article-title: Rockfall characterisation and structural protection - a review publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-11-2617-2011 – volume: 73 start-page: 8499 issue: 12 year: 2015 ident: 10.1016/j.catena.2018.09.012_bb0200 article-title: Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-014-4008-9 – volume: 17 year: 1963 ident: 10.1016/j.catena.2018.09.012_bb0175 article-title: Evaluation of rockfall and its control publication-title: Highw. Res. Rec. – volume: 27 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.catena.2018.09.012_bb0030 article-title: A review of rockfall mechanics and modelling approaches publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133303pp359ra – volume: 34 start-page: 1375 issue: 5 year: 2016 ident: 10.1016/j.catena.2018.09.012_bb0040 article-title: Multi-scenario rockfall hazard assessment using LiDAR data and GIS publication-title: Geotech. Geol. Eng. doi: 10.1007/s10706-016-0049-z – volume: 37 start-page: 369 issue: 5 year: 2004 ident: 10.1016/j.catena.2018.09.012_bb0065 article-title: Experimental and theoretical studies to improve rock fall analysis and protection work design publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-004-0027-2 – year: 2003 ident: 10.1016/j.catena.2018.09.012_bb0085 – volume: 73 start-page: 1019 issue: 2 year: 2014 ident: 10.1016/j.catena.2018.09.012_bb0170 article-title: Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS publication-title: Nat. Hazards doi: 10.1007/s11069-014-1128-1 – volume: 70 start-page: 1619 issue: 4 year: 2013 ident: 10.1016/j.catena.2018.09.012_bb0095 article-title: Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey) publication-title: Environ. Earth Sci. doi: 10.1007/s12665-013-2247-9 – volume: 61 start-page: 187 issue: 1 year: 2012 ident: 10.1016/j.catena.2018.09.012_bb0125 article-title: Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy publication-title: Nat. Hazards doi: 10.1007/s11069-011-9899-0 – volume: 84 start-page: 240 year: 2016 ident: 10.1016/j.catena.2018.09.012_bb0135 article-title: A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India) publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.07.005 – volume: 202 start-page: 33 year: 2013 ident: 10.1016/j.catena.2018.09.012_bb0025 article-title: Parameterization of rockfall source areas and magnitudes with ecological recorders: when disturbances in trees serve the calibration and validation of simulation runs publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.02.001 – volume: 142 start-page: 233 year: 2016 ident: 10.1016/j.catena.2018.09.012_bb0205 article-title: Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China publication-title: Catena doi: 10.1016/j.catena.2016.03.028 – volume: 6 start-page: 941 issue: 6 year: 2006 ident: 10.1016/j.catena.2018.09.012_bb0010 article-title: Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-6-941-2006 – volume: 14 start-page: 1565 issue: 5 year: 2017 ident: 10.1016/j.catena.2018.09.012_bb0110 article-title: RockGIS: a GIS-based model for the analysis of fragmentation in rockfalls publication-title: Landslides doi: 10.1007/s10346-017-0818-7 – volume: 7 start-page: 340 issue: 1 year: 2014 ident: 10.1016/j.catena.2018.09.012_bb0115 article-title: Computationally efficient method for the generation of a digital terrain model from airborne LiDAR data using connected operators publication-title: IEEE J. Sel. Top. – ident: 10.1016/j.catena.2018.09.012_bb0180 – volume: 22 start-page: 505 issue: 5 year: 2013 ident: 10.1016/j.catena.2018.09.012_bb0090 article-title: The cross-validated AUC for MCP-Logistic regression with high-dimensional data publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280211428385 – volume: 119 issue: 3–4 year: 2010 ident: 10.1016/j.catena.2018.09.012_bb0005 article-title: Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring publication-title: Geomorphology – volume: 85 start-page: 487 issue: 1 year: 2017 ident: 10.1016/j.catena.2018.09.012_bb0190 article-title: Hazard assessment in rockfall-prone Himalayan slopes along National Highway-58, India: rating and simulation publication-title: Nat. Hazards doi: 10.1007/s11069-016-2563-y |
| SSID | ssj0004751 |
| Score | 2.4928463 |
| Snippet | Rockfall hazards occur widely in regions with steep terrain such as Kinta Valley, Malaysia. Rockfalls threaten urban areas and the transportation corridors... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 435 |
| SubjectTerms | 3D modelling AHP algorithms artificial intelligence geographic information systems GIS Hazard hazard characterization kinetic energy landscapes LiDAR Malaysia risk Rockfall rockfalls transportation urban areas |
| Title | A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS |
| URI | https://dx.doi.org/10.1016/j.catena.2018.09.012 https://www.proquest.com/docview/2176342806 |
| Volume | 172 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ76J4EEPcdNt08dx8bUqelHBW8irurp0xV0FPfjbnUlTRUEEb22ZlDJJ5tHMfB8h24nWCBNXspRrwxKrFCuUSJkGfxKXusiNxy04v0i718npjbgZI_tNLwyWVQbbX9t0b63Dk1bQZuux12tdcjDAeZSij-dx7nu4kiRDFoO9968yjyTzFIwozFC6aZ_zNV5YdFQh-lCUe7TTqP2be_phqL33OZolMyFspJ36y-bImKvmyVRgML97nSeTx56iF67mwnYd0p2AKb27QK46tBq8uD4Ff_VQqn6f3qk3WBxUfSJzUiyBv6UQTbsnOjQ1lxHFClKqKkvjA-pZc7B9nfYqenxyuUiujw6v9rssECowBX5qxHRbCREbhNiKrCsyE0UujRXXIiujTHGulSpjyJhM2-WQyUTOOqd1WSgjckxslsh4NajcMqE6hVDPCmG1RjgaqwsQMbnSbSMst3yFxI0epQlo40h60ZdNWdm9rLUvUfuSFxK0v0LY56jHGm3jD_msmSL5bdVIcAh_jNxqZlTChsJTElW5wfNQQo6WxgkeOK_---1rZBruivpXzToZHz09uw0IXkZ606_OTTLROTnrXnwAVmTtfA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQFaIXVLZFhULrShzag1nn4TyOiMIuzwu70t4svwILqyxil0pw4Lcz4zhUVEJI3KJkHEVjex7xzPcRsp1qjTBxFcu4Niy1SrFSiYxp8CdJpcvCeNyC07OsP0yPRmK0QPbaXhgsqwy2v7Hp3lqHO92gze7NeNw952CAiyhDH8-TAnu4PqQizjED23n8V-eR5p6DEaUZirf9c77IC6uOaoQfigoPdxrFr_mn_yy1dz8Hn8hKiBvpbvNpq2TB1R2yHCjML-87ZKnnOXrhajXs1xn9FUClf38mg11aT_-6CQWHdV2pyYReqgdYHVQ9Q3NSrIG_oBBOu1s6Mw2ZEcUSUqpqS5M_1NPmYP86Hde0d3j-hQwP9gd7fRYYFZgCRzVnOlZCJAYxtiLrytxEkcsSxbXIqyhXnGulqgRSJhO7AlKZyFnntK5KZUSBmc0aWayntftKqM4g1rNCWK0Rj8bqEkRMoXRshOWWr5Ok1aM0AW4cWS8msq0ru5KN9iVqX_JSgvbXCXseddPAbbwhn7dTJF8sGwke4Y2RP9sZlbCj8JhE1W56N5OQpGVJiifOG-9--w-y3B-cnsiTw7Pjb-QjPCmb_zabZHF-e-e2IJKZ6-9-pT4B34LvEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+rockfall+hazard+assessment+using+laser+scanning+data+and+3D+modelling+in+GIS&rft.jtitle=Catena+%28Giessen%29&rft.au=Fanos%2C+Ali+Mutar&rft.au=Pradhan%2C+Biswajeet&rft.date=2019-01-01&rft.pub=Elsevier+B.V&rft.issn=0341-8162&rft.eissn=1872-6887&rft.volume=172&rft.spage=435&rft.epage=450&rft_id=info:doi/10.1016%2Fj.catena.2018.09.012&rft.externalDocID=S0341816218303801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |