Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China

Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lij...

Full description

Saved in:
Bibliographic Details
Published inCatena (Giessen) Vol. 158; pp. 286 - 297
Main Authors Liu, Guang, Jin, Qingwen, Li, Jingyi, Li, Lei, He, Chengxin, Huang, Yuqing, Yao, Yuefeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2017
Subjects
Online AccessGet full text
ISSN0341-8162
1872-6887
DOI10.1016/j.catena.2017.07.003

Cover

Abstract Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lijiang River Basin in the Guangxi Zhuang Autonomous Region in southern China was selected for this study. The predicted characteristics of land use change were explored using the CLUE-S numerical model and logistic regression. Using Landsat remote sensing imagery as source data, we simulated the tendency of land use change from 1993 to 2020 under two scenarios: a Natural Growth Scenario (NS) and a Government Intervention Scenario (GS), and we analyzed the possible social driving factors. The results revealed that from 1993 to 2015, both construction and cultivated land have shown a tendency of areal increase. Water and woodland areas both decreased from 1993 to 2006 but then they increased dramatically from 2006 to 2015. Shrubland areas increased from 1993 to 2006 but decreased slightly from 2006 to 2015. The CLUE-S model was used to predict the spatial patterns of land use for 2020. It showed that under the NS, the areas of construction and cultivated land increased, while the areas of other land uses decreased. Under the GS, the areas of construction land, woodland, cultivated land, and water all increased, while the areas of the others declined. Furthermore, the area of woodland decreased for every county under the NS, but areas of woodland expansion were located in Lingchuan and Lingui counties under the GS. Hotspots of cultivated land occurred in Lingchuan County under the NS and in Xingan County under the GS. Water area decreased in every county under the NS, whereas increases in water areas occurred in Lingchuan and Guilin counties under the GS. Construction land expanded in Lingchuan County under the NS and in Guilin County under the GS. The Returning Farmland to Forest Program could be considered a successful addition to the eco-environmental policies implemented in the Lijiang River Basin. •Discover the spatiotemporal distribution of recent land use change in the Lijiang River Basin in China.•Predict the spatial patterns of land use for 2020 under two scenarios using the CLUE-S model and logistic regression.•Investigate the influence of Returning Farmland to Forest Program on the tendency of land use change.
AbstractList Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lijiang River Basin in the Guangxi Zhuang Autonomous Region in southern China was selected for this study. The predicted characteristics of land use change were explored using the CLUE-S numerical model and logistic regression. Using Landsat remote sensing imagery as source data, we simulated the tendency of land use change from 1993 to 2020 under two scenarios: a Natural Growth Scenario (NS) and a Government Intervention Scenario (GS), and we analyzed the possible social driving factors. The results revealed that from 1993 to 2015, both construction and cultivated land have shown a tendency of areal increase. Water and woodland areas both decreased from 1993 to 2006 but then they increased dramatically from 2006 to 2015. Shrubland areas increased from 1993 to 2006 but decreased slightly from 2006 to 2015. The CLUE-S model was used to predict the spatial patterns of land use for 2020. It showed that under the NS, the areas of construction and cultivated land increased, while the areas of other land uses decreased. Under the GS, the areas of construction land, woodland, cultivated land, and water all increased, while the areas of the others declined. Furthermore, the area of woodland decreased for every county under the NS, but areas of woodland expansion were located in Lingchuan and Lingui counties under the GS. Hotspots of cultivated land occurred in Lingchuan County under the NS and in Xingan County under the GS. Water area decreased in every county under the NS, whereas increases in water areas occurred in Lingchuan and Guilin counties under the GS. Construction land expanded in Lingchuan County under the NS and in Guilin County under the GS. The Returning Farmland to Forest Program could be considered a successful addition to the eco-environmental policies implemented in the Lijiang River Basin. •Discover the spatiotemporal distribution of recent land use change in the Lijiang River Basin in China.•Predict the spatial patterns of land use for 2020 under two scenarios using the CLUE-S model and logistic regression.•Investigate the influence of Returning Farmland to Forest Program on the tendency of land use change.
Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lijiang River Basin in the Guangxi Zhuang Autonomous Region in southern China was selected for this study. The predicted characteristics of land use change were explored using the CLUE-S numerical model and logistic regression. Using Landsat remote sensing imagery as source data, we simulated the tendency of land use change from 1993 to 2020 under two scenarios: a Natural Growth Scenario (NS) and a Government Intervention Scenario (GS), and we analyzed the possible social driving factors. The results revealed that from 1993 to 2015, both construction and cultivated land have shown a tendency of areal increase. Water and woodland areas both decreased from 1993 to 2006 but then they increased dramatically from 2006 to 2015. Shrubland areas increased from 1993 to 2006 but decreased slightly from 2006 to 2015. The CLUE-S model was used to predict the spatial patterns of land use for 2020. It showed that under the NS, the areas of construction and cultivated land increased, while the areas of other land uses decreased. Under the GS, the areas of construction land, woodland, cultivated land, and water all increased, while the areas of the others declined. Furthermore, the area of woodland decreased for every county under the NS, but areas of woodland expansion were located in Lingchuan and Lingui counties under the GS. Hotspots of cultivated land occurred in Lingchuan County under the NS and in Xingan County under the GS. Water area decreased in every county under the NS, whereas increases in water areas occurred in Lingchuan and Guilin counties under the GS. Construction land expanded in Lingchuan County under the NS and in Guilin County under the GS. The Returning Farmland to Forest Program could be considered a successful addition to the eco-environmental policies implemented in the Lijiang River Basin.
Author Liu, Guang
Li, Jingyi
Huang, Yuqing
He, Chengxin
Li, Lei
Yao, Yuefeng
Jin, Qingwen
Author_xml – sequence: 1
  givenname: Guang
  surname: Liu
  fullname: Liu, Guang
  organization: Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Key Laboratory of Digital Earth Science, No. 9 Dengzhuang South Rd., Haidian District, Beijing 100094, China
– sequence: 2
  givenname: Qingwen
  surname: Jin
  fullname: Jin, Qingwen
  email: jinqingwen838981@163.com
  organization: Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Key Laboratory of Digital Earth Science, No. 9 Dengzhuang South Rd., Haidian District, Beijing 100094, China
– sequence: 3
  givenname: Jingyi
  surname: Li
  fullname: Li, Jingyi
  organization: Baoji University of Arts and Sciences, Institute of Geography and Environment, No. 1 Gaoxin Rd., Gaoxin District, Baoji 721013, China
– sequence: 4
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: Beijing Jiaotong University, School of Civil Engineering, Department of Survey, No. 3 Shangyuancun, Haidian District, Beijing 100044, China
– sequence: 5
  givenname: Chengxin
  surname: He
  fullname: He, Chengxin
  organization: Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, No. 35 Yanshan Rd., Yanshan District, Guilin 541006, China
– sequence: 6
  givenname: Yuqing
  surname: Huang
  fullname: Huang, Yuqing
  organization: Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, No. 35 Yanshan Rd., Yanshan District, Guilin 541006, China
– sequence: 7
  givenname: Yuefeng
  surname: Yao
  fullname: Yao, Yuefeng
  organization: Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, No. 35 Yanshan Rd., Yanshan District, Guilin 541006, China
BookMark eNqFkEFvEzEQhS1UJNLCP-jBRw5sGHvTXS8HJIhaQIpUBPRsTexZOtGuHWy3Uv49DuHEgUojzWj0vie9dy7OQgwkxKWCpQLVvd0tHRYKuNSg-iXUgfaZWCjT66Yzpj8TC2hXqjGq0y_Eec47AFj1V2oh0tc4sTvIEV2JKUue9_WSGHA6ZM5yi5m8jEEmmmMhmSlkDj-lx4JV5WW5J7ne3F033-UcPU2Sw5_fhneMVfiNHynJj1ipN3J9zwFfiucjTple_d0X4u7m-sf6c7O5_fRl_WHTYNvp0nSDwt4Mg9KtMZoMeICRtg4M-g6VG7dANeGghppWkabRI6hx6_t-HAyt2gvx-uS7T_HXA-ViZ86OpgkDxYdsNRxBbfRQpe9OUpdizolG67hg4RhKQp6sAnss2u7sqWh7LNpCHWgrvPoH3ieeMR2ewt6fMKodPDIlmx1TcOQ5kSvWR_6_wW8qdpuC
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118320
crossref_primary_10_3390_rs15040940
crossref_primary_10_1007_s10661_023_11416_1
crossref_primary_10_3390_su12083335
crossref_primary_10_1007_s11356_023_31614_1
crossref_primary_10_1016_j_nexus_2024_100305
crossref_primary_10_7717_peerj_12122
crossref_primary_10_1016_j_gecco_2019_e00811
crossref_primary_10_3390_w10060742
crossref_primary_10_3390_land13081174
crossref_primary_10_1016_j_apgeog_2020_102247
crossref_primary_10_3390_su16135777
crossref_primary_10_1016_j_resourpol_2021_101999
crossref_primary_10_24057_2071_9388_2020_14
crossref_primary_10_1016_j_ecolind_2023_110181
crossref_primary_10_3390_f14040768
crossref_primary_10_1007_s11442_019_1690_2
crossref_primary_10_1016_j_habitatint_2020_102198
crossref_primary_10_3390_land10010086
crossref_primary_10_1016_j_scitotenv_2020_140051
crossref_primary_10_1007_s40808_024_01983_8
crossref_primary_10_3390_su14084424
crossref_primary_10_1007_s11625_018_0642_6
crossref_primary_10_1016_j_scitotenv_2020_139929
crossref_primary_10_3390_f13050673
crossref_primary_10_1016_j_ecolind_2021_108176
crossref_primary_10_3390_w16071001
crossref_primary_10_1007_s12665_018_7413_7
crossref_primary_10_3390_land12010189
crossref_primary_10_1038_s41598_024_60036_3
crossref_primary_10_1007_s10661_021_09188_7
crossref_primary_10_3390_app13127142
crossref_primary_10_3390_atmos14081237
crossref_primary_10_3390_rs11243048
crossref_primary_10_3390_su10041299
crossref_primary_10_3390_su142013592
crossref_primary_10_1016_j_jhydrol_2022_127811
crossref_primary_10_3389_fenvs_2024_1403248
crossref_primary_10_3390_land8090140
crossref_primary_10_3390_ijerph18030921
crossref_primary_10_1007_s11104_024_07039_1
crossref_primary_10_1007_s10668_019_00485_3
crossref_primary_10_3390_su16166736
crossref_primary_10_1016_j_agsy_2024_104063
crossref_primary_10_1007_s10661_022_10876_1
crossref_primary_10_1016_j_ecolind_2022_108743
crossref_primary_10_3390_ijerph19138089
crossref_primary_10_1002_eco_2601
crossref_primary_10_1016_j_scitotenv_2022_160262
crossref_primary_10_3390_land12010120
crossref_primary_10_1007_s12518_021_00390_3
crossref_primary_10_1016_j_scitotenv_2022_158940
crossref_primary_10_1016_j_envc_2021_100148
crossref_primary_10_1016_j_landusepol_2022_106113
crossref_primary_10_3390_land12111982
crossref_primary_10_3390_rs14215391
crossref_primary_10_5937_gp28_47299
crossref_primary_10_1088_1748_9326_abb4ff
crossref_primary_10_1016_j_ecolind_2023_111337
Cites_doi 10.1016/j.foreco.2007.08.017
10.1016/j.jhydrol.2013.11.053
10.1016/j.landusepol.2014.06.018
10.1016/S0895-7177(02)00259-5
10.1007/s10531-008-9423-3
10.1007/s10980-007-9159-6
10.3390/e15093490
10.1007/s11629-013-2871-6
10.3390/rs8030201
10.1016/j.habitatint.2014.07.009
10.1007/BF00124382
10.1007/s12665-016-5322-1
10.1007/s00267-002-2630-x
10.1007/s11629-008-0217-6
10.1002/ldr.588
10.1016/j.cosust.2013.04.003
10.1080/13658811003752332
10.1016/j.apgeog.2014.05.020
10.1068/b240323
10.1007/s10661-009-0880-2
10.1016/j.catena.2010.07.003
10.1016/j.ecoleng.2015.12.014
10.1007/s11442-016-1261-8
10.1017/S1466046613000355
10.1007/s12665-011-1037-5
10.1007/s00477-012-0671-0
10.1016/j.ecocom.2010.02.001
10.3390/s8031613
10.3390/ijerph110303215
10.1016/j.jhydrol.2016.01.033
10.1002/ldr.592
10.1073/pnas.0608343103
10.1166/jbns.2015.1287
10.1016/S0167-8809(01)00199-2
10.1073/pnas.1405557111
10.1016/j.ecoleng.2014.04.021
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.catena.2017.07.003
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Sciences (General)
EISSN 1872-6887
EndPage 297
ExternalDocumentID 10_1016_j_catena_2017_07_003
S0341816217302266
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a362t-691a7899123882e80d00febc08ad6a1cfb0e1879190031e2efda01fbd77f98e43
IEDL.DBID .~1
ISSN 0341-8162
IngestDate Sat Sep 27 20:06:41 EDT 2025
Wed Oct 01 04:05:54 EDT 2025
Thu Apr 24 23:00:29 EDT 2025
Fri Feb 23 02:33:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Scenarios
CLUE-S
Land use change
Returning Farmland to Forest Program
Lijiang River Basin
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a362t-691a7899123882e80d00febc08ad6a1cfb0e1879190031e2efda01fbd77f98e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000312829
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2000312829
crossref_citationtrail_10_1016_j_catena_2017_07_003
crossref_primary_10_1016_j_catena_2017_07_003
elsevier_sciencedirect_doi_10_1016_j_catena_2017_07_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationTitle Catena (Giessen)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kauppi, Ausubel, Fang, Mather, Sedjo, Waggoner (bb0070) 2006; 103
Jansen, Bagnoli, Focacci (bb0060) 2008; 254
Meyfroidt, Lambin, Erb, Hertel (bb0125) 2013; 5
Verburg, Soepboer, Veldkamp, Limpiada, Espaldon, Mastura (bb0175) 2002; 30
Xia, Wu, Zhou, Verburg, Yu, Yang, Ye (bb0205) 2016; 26
Du, Jin, Yang, Yang, Zhou (bb0015) 2014; 11
Veldkamp, Lambin (bb0170) 2001; 85
Zucca, Canu, Previtali (bb0240) 2010; 83
Figueroa, Sánchez-Cordero (bb0030) 2008; 17
Lin, Chu, Wu, Verburg (bb0090) 2011; 25
Luo, Yin, Chen, Xu, Lu (bb0110) 2010; 7
Pocewicz, Nielsen-Pincus, Goldberg, Johnson, Morgan, Force, Waits, Vierling (bb0145) 2008; 23
Liu, Zhang, Xinliang, Kuang, Zhou, Zhang, Rendong, Yan, Dongsheng, Shixin, Iang Nan (bb0100) 2009; 64
Waiyasusri, Yumuang, Chotpantarat (bb0180) 2016; 75
Mao, Meng, Wang (bb0115) 2014; 11
Liu, Wang, Deng (bb0095) 2008; 5
Wang, Liu, Zhang (bb0195) 2004; 15
Hu, Zhou, Teng (bb0050) 2015; 9
Liu, Huang, Yang, Zhong (bb0105) 2014; 44
Zhou, Troy, Grove (bb0230) 2008; 8
Guilin City People's Government (bb0040) 2016
Rafiee, Salman Mahiny, Khorasani (bb0160) 2009; 11
Edition (bb0020) 2010; 38
Gvang Bouxcuengh Swcigih Yinzminz Cwngfuj (bb0045) 2011
Braimoh (bb0010) 2004; 15
Li, Wu, Zang (bb0080) 2014; 28
Zhang, Li, Qin (bb0225) 2016; 8
Xu, Li, Song, Yin (bb0210) 2013; 15
York, Munroe (bb0215) 2004
Muller, Middleton (bb0135) 1994; 9
White, Engelen, Uljee (bb0200) 1997; 24
Li, Chen, Tonina, Cai (bb0085) 2015; 76
Gao, Yi (bb0035) 2012; 28
Promper, Puissant, Malet, Glade (bb0155) 2014; 53
Jiang, Chen, Lei, He, Jia, Zhang (bb0065) 2016; 88
Trac, Schmidt, Harrell, Hinckley (bb0165) 2013; 15
Lawler, Lewis, Nelson, Plantinga, Polasky, Withey, Helmers, Martinuzzi, Pennington, Radeloff (bb0075) 2014; 111
Wang, He (bb0185) 2011
Wang, Wang (bb0190) 2016; 535
Zhu, Liu, Chen, Zhang, Verburg (bb0235) 2010; 164
Mao, Meng, Wang (bb0120) 2014; 41
El Yacoubi, El Jai (bb0025) 2002; 36
Pontius (bb0150) 2000; 66
Barany-Kevei (bb0005) 2003; 32
Zhang, Zhao, Yuan (bb0220) 2013
Molina-Navarro, Trolle, Martínez-Pérez, Sastre-Merlín, Jeppesen (bb0130) 2014; 509
Peng, Xu, Cai, Xiao (bb0140) 2011; 64
Huang, Chak, Peng, Li (bb0055) 2016; 144
Peng (10.1016/j.catena.2017.07.003_bb0140) 2011; 64
Lawler (10.1016/j.catena.2017.07.003_bb0075) 2014; 111
Li (10.1016/j.catena.2017.07.003_bb0080) 2014; 28
Veldkamp (10.1016/j.catena.2017.07.003_bb0170) 2001; 85
Verburg (10.1016/j.catena.2017.07.003_bb0175) 2002; 30
Waiyasusri (10.1016/j.catena.2017.07.003_bb0180) 2016; 75
Jansen (10.1016/j.catena.2017.07.003_bb0060) 2008; 254
Xu (10.1016/j.catena.2017.07.003_bb0210) 2013; 15
Mao (10.1016/j.catena.2017.07.003_bb0115) 2014; 11
Jiang (10.1016/j.catena.2017.07.003_bb0065) 2016; 88
Barany-Kevei (10.1016/j.catena.2017.07.003_bb0005) 2003; 32
Xia (10.1016/j.catena.2017.07.003_bb0205) 2016; 26
Figueroa (10.1016/j.catena.2017.07.003_bb0030) 2008; 17
Gvang Bouxcuengh Swcigih Yinzminz Cwngfuj (10.1016/j.catena.2017.07.003_bb0045) 2011
Promper (10.1016/j.catena.2017.07.003_bb0155) 2014; 53
Braimoh (10.1016/j.catena.2017.07.003_bb0010) 2004; 15
Guilin City People's Government (10.1016/j.catena.2017.07.003_bb0040) 2016
Molina-Navarro (10.1016/j.catena.2017.07.003_bb0130) 2014; 509
Zucca (10.1016/j.catena.2017.07.003_bb0240) 2010; 83
Gao (10.1016/j.catena.2017.07.003_bb0035) 2012; 28
Mao (10.1016/j.catena.2017.07.003_bb0120) 2014; 41
Liu (10.1016/j.catena.2017.07.003_bb0095) 2008; 5
Luo (10.1016/j.catena.2017.07.003_bb0110) 2010; 7
White (10.1016/j.catena.2017.07.003_bb0200) 1997; 24
Trac (10.1016/j.catena.2017.07.003_bb0165) 2013; 15
Zhang (10.1016/j.catena.2017.07.003_bb0225) 2016; 8
Zhang (10.1016/j.catena.2017.07.003_bb0220) 2013
Li (10.1016/j.catena.2017.07.003_bb0085) 2015; 76
Kauppi (10.1016/j.catena.2017.07.003_bb0070) 2006; 103
Pocewicz (10.1016/j.catena.2017.07.003_bb0145) 2008; 23
Lin (10.1016/j.catena.2017.07.003_bb0090) 2011; 25
Wang (10.1016/j.catena.2017.07.003_bb0195) 2004; 15
Du (10.1016/j.catena.2017.07.003_bb0015) 2014; 11
York (10.1016/j.catena.2017.07.003_bb0215) 2004
Hu (10.1016/j.catena.2017.07.003_bb0050) 2015; 9
Liu (10.1016/j.catena.2017.07.003_bb0105) 2014; 44
Muller (10.1016/j.catena.2017.07.003_bb0135) 1994; 9
Edition (10.1016/j.catena.2017.07.003_bb0020) 2010; 38
Huang (10.1016/j.catena.2017.07.003_bb0055) 2016; 144
Liu (10.1016/j.catena.2017.07.003_bb0100) 2009; 64
Zhu (10.1016/j.catena.2017.07.003_bb0235) 2010; 164
Pontius (10.1016/j.catena.2017.07.003_bb0150) 2000; 66
Meyfroidt (10.1016/j.catena.2017.07.003_bb0125) 2013; 5
Wang (10.1016/j.catena.2017.07.003_bb0190) 2016; 535
Zhou (10.1016/j.catena.2017.07.003_bb0230) 2008; 8
Rafiee (10.1016/j.catena.2017.07.003_bb0160) 2009; 11
Wang (10.1016/j.catena.2017.07.003_bb0185) 2011
El Yacoubi (10.1016/j.catena.2017.07.003_bb0025) 2002; 36
References_xml – volume: 15
  start-page: 3490
  year: 2013
  end-page: 3506
  ident: bb0210
  article-title: Land-use planning for urban sprawl based on the CLUE-S model: a case study of Guangzhou, China
  publication-title: Entropy
– volume: 23
  start-page: 195
  year: 2008
  end-page: 210
  ident: bb0145
  article-title: Predicting land use change: comparison of models based on landowner surveys and historical land cover trends
  publication-title: Landsc. Ecol.
– start-page: 442
  year: 2011
  end-page: 445
  ident: bb0185
  article-title: Lijiang River ecological interpretation of remote sensing of environmental change
  publication-title: International Conference on Remote Sensing, Environment and Transportation Engineering
– volume: 24
  start-page: 323
  year: 1997
  end-page: 343
  ident: bb0200
  article-title: The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics
  publication-title: Environ. Plan. B Plan. Des.
– volume: 15
  start-page: 37
  year: 2004
  end-page: 47
  ident: bb0010
  article-title: Seasonal migration and land-use change in Ghana
  publication-title: L. Degrad. Dev.
– volume: 25
  start-page: 65
  year: 2011
  end-page: 87
  ident: bb0090
  article-title: Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling - a case study
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 5
  start-page: 438
  year: 2013
  end-page: 444
  ident: bb0125
  article-title: Globalization of land use: distant drivers of land change and geographic displacement of land use
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 9
  start-page: 151
  year: 1994
  end-page: 157
  ident: bb0135
  article-title: A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada
  publication-title: Landsc. Ecol.
– volume: 164
  start-page: 133
  year: 2010
  end-page: 142
  ident: bb0235
  article-title: Land-use change simulation and assessment of driving factors in the loess hilly region-a case study as Pengyang County
  publication-title: Environ. Monit. Assess.
– volume: 17
  start-page: 3223
  year: 2008
  end-page: 3240
  ident: bb0030
  article-title: Effectiveness of natural protected areas to prevent land use and land cover change in Mexico
  publication-title: Biodivers. Conserv.
– start-page: 1
  year: 2004
  end-page: 33
  ident: bb0215
  article-title: Growth management policy and land use change
  publication-title: Midwest Political Science Association Annual Meeting
– volume: 111
  start-page: 7492
  year: 2014
  end-page: 7497
  ident: bb0075
  article-title: Projected land-use change impacts on ecosystem services in the United States
  publication-title: Proc. Natl. Acad. Sci.
– volume: 83
  start-page: 46
  year: 2010
  end-page: 54
  ident: bb0240
  article-title: Soil degradation by land use change in an agropastoral area in Sardinia (Italy)
  publication-title: Catena
– volume: 9
  start-page: 153
  year: 2015
  end-page: 160
  ident: bb0050
  article-title: The spatiotemporal variation of ecological risk in the Lijiang River Basin based on land use change
  publication-title: J. Bionanoscience.
– year: 2016
  ident: bb0040
  article-title: Report on the Work of the Government in 2016
– volume: 254
  start-page: 308
  year: 2008
  end-page: 326
  ident: bb0060
  article-title: Analysis of land-cover/use change dynamics in Manica Province in Mozambique in a period of transition (1990–2004)
  publication-title: For. Ecol. Manag.
– volume: 36
  start-page: 1059
  year: 2002
  end-page: 1074
  ident: bb0025
  article-title: Cellular automata modelling and spreadability
  publication-title: Math. Comput. Model.
– volume: 7
  start-page: 198
  year: 2010
  end-page: 207
  ident: bb0110
  article-title: Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: a case study of Sangong watershed in Xinjiang, China
  publication-title: Ecol. Complex.
– volume: 75
  start-page: 1
  year: 2016
  end-page: 16
  ident: bb0180
  article-title: Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model
  publication-title: Environ. Earth Sci.
– volume: 15
  start-page: 115
  year: 2004
  end-page: 121
  ident: bb0195
  article-title: Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation
  publication-title: L. Degrad. Dev.
– volume: 32
  start-page: 175
  year: 2003
  end-page: 185
  ident: bb0005
  article-title: Human impact on Hungarian karst terrains, with special regard to sylviculture
  publication-title: Acta Carsologica
– volume: 66
  start-page: 1011
  year: 2000
  end-page: 1016
  ident: bb0150
  article-title: Quantification error versus location error in comparison of categorical maps
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 15
  start-page: 350
  year: 2013
  end-page: 366
  ident: bb0165
  article-title: Is the returning farmland to forest program a success? Three case studies from Sichuan
  publication-title: Environ. Pract.
– volume: 30
  start-page: 391
  year: 2002
  end-page: 405
  ident: bb0175
  article-title: Modeling the spatial dynamics of regional land use: the CLUE-S model
  publication-title: Environ. Manag.
– volume: 76
  start-page: 75
  year: 2015
  end-page: 83
  ident: bb0085
  article-title: Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China
  publication-title: Ecol. Eng.
– volume: 26
  start-page: 171
  year: 2016
  end-page: 187
  ident: bb0205
  article-title: Model-based analysis of spatio-temporal changes in land use in Northeast China
  publication-title: J. Geogr. Sci.
– volume: 64
  start-page: 2107
  year: 2011
  end-page: 2118
  ident: bb0140
  article-title: Climatic and anthropogenic drivers of land use/cover change in fragile karst areas of southwest China since the early 1970s: a case study on the Maotiaohe watershed
  publication-title: Environ. Earth Sci.
– volume: 53
  start-page: 11
  year: 2014
  end-page: 19
  ident: bb0155
  article-title: Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios
  publication-title: Appl. Geogr.
– volume: 509
  start-page: 354
  year: 2014
  end-page: 366
  ident: bb0130
  article-title: Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios
  publication-title: J. Hydrol.
– volume: 28
  start-page: 208
  year: 2012
  end-page: 216
  ident: bb0035
  article-title: Land use change in China and analysis of its driving forces using CLUE-S and Dinamica EGO model
  publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng.
– volume: 64
  start-page: 1411
  year: 2009
  end-page: 1420
  ident: bb0100
  article-title: Spatial patterns and driving forces of land use change in China in the early 21st century
  publication-title: Acta Geograph. Sin.
– volume: 28
  start-page: 817
  year: 2014
  end-page: 828
  ident: bb0080
  article-title: Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches
  publication-title: Stoch. Env. Res. Risk A.
– volume: 11
  start-page: 3215
  year: 2014
  end-page: 3232
  ident: bb0015
  article-title: Spatial pattern of land use change and its driving force in Jiangsu province
  publication-title: Int. J. Environ. Res. Public Health
– volume: 11
  start-page: 431
  year: 2009
  end-page: 438
  ident: bb0160
  article-title: Assessment of changes in urban green spaces of Mashad city using satellite data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 8
  start-page: 1613
  year: 2008
  end-page: 1636
  ident: bb0230
  article-title: Object-based land cover classification and change analysis in the Baltimore Metropolitan area using multitemporal high resolution remote sensing data
  publication-title: Sensors
– volume: 144
  start-page: 184
  year: 2016
  end-page: 193
  ident: bb0055
  article-title: Catena qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China
  publication-title: A Hazard Index Approach
– volume: 85
  start-page: 1
  year: 2001
  end-page: 6
  ident: bb0170
  article-title: Predicting land-use change
  publication-title: Agric. Ecosyst. Environ.
– volume: 88
  start-page: 112
  year: 2016
  end-page: 121
  ident: bb0065
  article-title: Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: a case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration
  publication-title: Ecol. Eng.
– volume: 5
  start-page: 350
  year: 2008
  end-page: 357
  ident: bb0095
  article-title: Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China
  publication-title: J. Mt. Sci.
– volume: 535
  start-page: 173
  year: 2016
  end-page: 180
  ident: bb0190
  article-title: Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective
  publication-title: J. Hydrol.
– year: 2011
  ident: bb0045
  article-title: 全国巩固退耕还林成果部际联席会议在广西召开
– volume: 103
  start-page: 17574
  year: 2006
  end-page: 17579
  ident: bb0070
  article-title: Returning forests analyzed with the forest identity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 44
  start-page: 339
  year: 2014
  end-page: 348
  ident: bb0105
  article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - a case study of Guiyang
  publication-title: Habitat Int.
– volume: 41
  start-page: 368
  year: 2014
  end-page: 377
  ident: bb0120
  article-title: Modeling the effects of tourism and land regulation on land-use change in tourist regions: a case study of the Lijiang River basin in Guilin, China
  publication-title: L. Use Policy.
– volume: 8
  start-page: 201
  year: 2016
  ident: bb0225
  article-title: Identification of factors influencing locations of tree cover loss and gain and their spatio-temporally-variant importance in the Li River Basin, China
  publication-title: Remote Sens.
– volume: 38
  start-page: 184
  year: 2010
  end-page: 186
  ident: bb0020
  article-title: Applied logistic regression analysis
  publication-title: Technometrics
– volume: 11
  start-page: 1606
  year: 2014
  end-page: 1619
  ident: bb0115
  article-title: Tourism and land transformation: a case study of the Li River Basin, Guilin, China
  publication-title: J. Mt. Sci.
– start-page: 185
  year: 2013
  end-page: 190
  ident: bb0220
  article-title: https. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-2/W1(2)
– start-page: 185
  year: 2013
  ident: 10.1016/j.catena.2017.07.003_bb0220
– volume: 254
  start-page: 308
  year: 2008
  ident: 10.1016/j.catena.2017.07.003_bb0060
  article-title: Analysis of land-cover/use change dynamics in Manica Province in Mozambique in a period of transition (1990–2004)
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2007.08.017
– volume: 32
  start-page: 175
  year: 2003
  ident: 10.1016/j.catena.2017.07.003_bb0005
  article-title: Human impact on Hungarian karst terrains, with special regard to sylviculture
  publication-title: Acta Carsologica
– volume: 509
  start-page: 354
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0130
  article-title: Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.053
– volume: 41
  start-page: 368
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0120
  article-title: Modeling the effects of tourism and land regulation on land-use change in tourist regions: a case study of the Lijiang River basin in Guilin, China
  publication-title: L. Use Policy.
  doi: 10.1016/j.landusepol.2014.06.018
– volume: 36
  start-page: 1059
  year: 2002
  ident: 10.1016/j.catena.2017.07.003_bb0025
  article-title: Cellular automata modelling and spreadability
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(02)00259-5
– volume: 17
  start-page: 3223
  year: 2008
  ident: 10.1016/j.catena.2017.07.003_bb0030
  article-title: Effectiveness of natural protected areas to prevent land use and land cover change in Mexico
  publication-title: Biodivers. Conserv.
  doi: 10.1007/s10531-008-9423-3
– year: 2011
  ident: 10.1016/j.catena.2017.07.003_bb0045
– volume: 144
  start-page: 184
  year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0055
  article-title: Catena qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China
– start-page: 442
  year: 2011
  ident: 10.1016/j.catena.2017.07.003_bb0185
  article-title: Lijiang River ecological interpretation of remote sensing of environmental change
– volume: 66
  start-page: 1011
  year: 2000
  ident: 10.1016/j.catena.2017.07.003_bb0150
  article-title: Quantification error versus location error in comparison of categorical maps
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 23
  start-page: 195
  year: 2008
  ident: 10.1016/j.catena.2017.07.003_bb0145
  article-title: Predicting land use change: comparison of models based on landowner surveys and historical land cover trends
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-007-9159-6
– volume: 15
  start-page: 3490
  year: 2013
  ident: 10.1016/j.catena.2017.07.003_bb0210
  article-title: Land-use planning for urban sprawl based on the CLUE-S model: a case study of Guangzhou, China
  publication-title: Entropy
  doi: 10.3390/e15093490
– volume: 64
  start-page: 1411
  year: 2009
  ident: 10.1016/j.catena.2017.07.003_bb0100
  article-title: Spatial patterns and driving forces of land use change in China in the early 21st century
  publication-title: Acta Geograph. Sin.
– volume: 11
  start-page: 1606
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0115
  article-title: Tourism and land transformation: a case study of the Li River Basin, Guilin, China
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-013-2871-6
– volume: 8
  start-page: 201
  year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0225
  article-title: Identification of factors influencing locations of tree cover loss and gain and their spatio-temporally-variant importance in the Li River Basin, China
  publication-title: Remote Sens.
  doi: 10.3390/rs8030201
– year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0040
– volume: 44
  start-page: 339
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0105
  article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - a case study of Guiyang
  publication-title: Habitat Int.
  doi: 10.1016/j.habitatint.2014.07.009
– volume: 9
  start-page: 151
  year: 1994
  ident: 10.1016/j.catena.2017.07.003_bb0135
  article-title: A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada
  publication-title: Landsc. Ecol.
  doi: 10.1007/BF00124382
– volume: 75
  start-page: 1
  year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0180
  article-title: Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-016-5322-1
– volume: 30
  start-page: 391
  year: 2002
  ident: 10.1016/j.catena.2017.07.003_bb0175
  article-title: Modeling the spatial dynamics of regional land use: the CLUE-S model
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-002-2630-x
– volume: 5
  start-page: 350
  year: 2008
  ident: 10.1016/j.catena.2017.07.003_bb0095
  article-title: Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China
  publication-title: J. Mt. Sci.
  doi: 10.1007/s11629-008-0217-6
– volume: 15
  start-page: 37
  year: 2004
  ident: 10.1016/j.catena.2017.07.003_bb0010
  article-title: Seasonal migration and land-use change in Ghana
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.588
– volume: 5
  start-page: 438
  year: 2013
  ident: 10.1016/j.catena.2017.07.003_bb0125
  article-title: Globalization of land use: distant drivers of land change and geographic displacement of land use
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2013.04.003
– volume: 25
  start-page: 65
  year: 2011
  ident: 10.1016/j.catena.2017.07.003_bb0090
  article-title: Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling - a case study
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658811003752332
– volume: 53
  start-page: 11
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0155
  article-title: Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2014.05.020
– volume: 24
  start-page: 323
  year: 1997
  ident: 10.1016/j.catena.2017.07.003_bb0200
  article-title: The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics
  publication-title: Environ. Plan. B Plan. Des.
  doi: 10.1068/b240323
– volume: 164
  start-page: 133
  year: 2010
  ident: 10.1016/j.catena.2017.07.003_bb0235
  article-title: Land-use change simulation and assessment of driving factors in the loess hilly region-a case study as Pengyang County
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-009-0880-2
– volume: 83
  start-page: 46
  year: 2010
  ident: 10.1016/j.catena.2017.07.003_bb0240
  article-title: Soil degradation by land use change in an agropastoral area in Sardinia (Italy)
  publication-title: Catena
  doi: 10.1016/j.catena.2010.07.003
– volume: 88
  start-page: 112
  year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0065
  article-title: Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: a case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2015.12.014
– start-page: 1
  year: 2004
  ident: 10.1016/j.catena.2017.07.003_bb0215
  article-title: Growth management policy and land use change
– volume: 28
  start-page: 208
  year: 2012
  ident: 10.1016/j.catena.2017.07.003_bb0035
  article-title: Land use change in China and analysis of its driving forces using CLUE-S and Dinamica EGO model
  publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng.
– volume: 26
  start-page: 171
  year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0205
  article-title: Model-based analysis of spatio-temporal changes in land use in Northeast China
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-016-1261-8
– volume: 15
  start-page: 350
  year: 2013
  ident: 10.1016/j.catena.2017.07.003_bb0165
  article-title: Is the returning farmland to forest program a success? Three case studies from Sichuan
  publication-title: Environ. Pract.
  doi: 10.1017/S1466046613000355
– volume: 64
  start-page: 2107
  year: 2011
  ident: 10.1016/j.catena.2017.07.003_bb0140
  article-title: Climatic and anthropogenic drivers of land use/cover change in fragile karst areas of southwest China since the early 1970s: a case study on the Maotiaohe watershed
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1037-5
– volume: 28
  start-page: 817
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0080
  article-title: Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-012-0671-0
– volume: 7
  start-page: 198
  year: 2010
  ident: 10.1016/j.catena.2017.07.003_bb0110
  article-title: Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: a case study of Sangong watershed in Xinjiang, China
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2010.02.001
– volume: 8
  start-page: 1613
  year: 2008
  ident: 10.1016/j.catena.2017.07.003_bb0230
  article-title: Object-based land cover classification and change analysis in the Baltimore Metropolitan area using multitemporal high resolution remote sensing data
  publication-title: Sensors
  doi: 10.3390/s8031613
– volume: 11
  start-page: 431
  year: 2009
  ident: 10.1016/j.catena.2017.07.003_bb0160
  article-title: Assessment of changes in urban green spaces of Mashad city using satellite data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 3215
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0015
  article-title: Spatial pattern of land use change and its driving force in Jiangsu province
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph110303215
– volume: 535
  start-page: 173
  year: 2016
  ident: 10.1016/j.catena.2017.07.003_bb0190
  article-title: Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.01.033
– volume: 38
  start-page: 184
  year: 2010
  ident: 10.1016/j.catena.2017.07.003_bb0020
  article-title: Applied logistic regression analysis
  publication-title: Technometrics
– volume: 15
  start-page: 115
  year: 2004
  ident: 10.1016/j.catena.2017.07.003_bb0195
  article-title: Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation
  publication-title: L. Degrad. Dev.
  doi: 10.1002/ldr.592
– volume: 103
  start-page: 17574
  year: 2006
  ident: 10.1016/j.catena.2017.07.003_bb0070
  article-title: Returning forests analyzed with the forest identity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0608343103
– volume: 9
  start-page: 153
  year: 2015
  ident: 10.1016/j.catena.2017.07.003_bb0050
  article-title: The spatiotemporal variation of ecological risk in the Lijiang River Basin based on land use change
  publication-title: J. Bionanoscience.
  doi: 10.1166/jbns.2015.1287
– volume: 85
  start-page: 1
  year: 2001
  ident: 10.1016/j.catena.2017.07.003_bb0170
  article-title: Predicting land-use change
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00199-2
– volume: 111
  start-page: 7492
  year: 2014
  ident: 10.1016/j.catena.2017.07.003_bb0075
  article-title: Projected land-use change impacts on ecosystem services in the United States
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1405557111
– volume: 76
  start-page: 75
  year: 2015
  ident: 10.1016/j.catena.2017.07.003_bb0085
  article-title: Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.04.021
SSID ssj0004751
Score 2.4913647
Snippet Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 286
SubjectTerms agricultural land
China
CLUE-S
forests
issues and policy
Land use change
Landsat
Lijiang River Basin
mathematical models
regression analysis
remote sensing
Returning Farmland to Forest Program
Scenarios
shrublands
spatial data
watersheds
woodlands
Title Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China
URI https://dx.doi.org/10.1016/j.catena.2017.07.003
https://www.proquest.com/docview/2000312829
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: AKRWK
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ74ZwYOCcROb7eOoi7o-8KAueCvpJllXpCu768GLv92ZNFXUg-CtDUlpM8nMpPnyfYztaswBjDWOZ5gNc5U2NS-My7hwXXUkjDSJ9Sjfm7jdUZcPzYcJ1qrPwhCsMvj-yqd7bx1KGqE3Gy_9fuNOoANOZYw5dYSBKCbabWL_wjF9-P4F81CJl2Ckypxq18fnPMaLQEclsQ_JxFN41tJZv8PTD0fto8_ZPJsLaSMcV2-2wCZsuchmgoL549simz73Er14tRCm6wj2Aqf0_hIbVvy_EOR1oDocCTpQkgAFMwODEoYWbWdhRLj2sgcEIMVaBjBPhNZ155TfgRfPgX7py677TzjAenBL-A440djqALwo9zLrnJ3et9o8yC1wjVFszONM6gSXXxjLMO22qTBCOFt0RapNrGXXFcKSNrmkn5_SHllntJCuMEnistSqaIVNloPSrjKwuA7SmKplqpkpEr2KEumkiLRSJo0jvcaiupfzbuAiJ0mM57wGnT3llW1ysk0uaJM8WmP8s9VLxcXxR_2kNmD-bUzlGC7-aLlT2zvH6UZ7KLq0g9cRqXbix9P28_q_n77BZumuOtG4ySbHw1e7hanNuNj2Y3ebTR1fXLVvPgCqCvYz
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVKhcKlpALc9B4gASVuyus49jiVpSGnKgjdSb5Y3tkgptqiQ98O874_WCSg-VuK28ntWux54Zr7-ZD-CDpRjAeRdERdGw0OXAitqFSsgw0wfSKVf4iPKd5KOp_nYxuNiAYZcLw7DKZPtbmx6tdWrpp9HsX8_n_TNJBrhUOcXUGTmiPH8Em3pANrkHm4cnp6PJ3_TIIrIwcn_BAl0GXYR5Me6o4QJEqohVPDv2rPse6h9bHR3Q8VPYTpEjHrYvtwMbvtmFrURi_vP3Ljz-Gll66WonrdgVfkxlpT89g2VbAhgTww62-ZFoU1USZH_mcNHg0pP6PK4Y2t5cImNIqZdDChVxOJ4eiTOM_Dk4b2LbeH5Fc-wSfzDEA79YkvqMkZf7OUyPj86HI5EYF4QlR7YWeaVsQTswcmcUeftSOimDr2eytC63ahZq6ZmeXPH_T-UPfHBWqlC7oghV6XX2AnrNovF7gJ62QpaitUoPKs28V1mhgpKZ1dqVeWb3IetG2cxSOXJmxfhlOtzZlWl1Y1g3RvI5ebYP4o_UdVuO44H-RadAc2daGfIYD0i-7_RtaMXxMYpt_OJmxcSd9PF8Av3yv5_-DrZG59_HZnwyOX0FT_hOm-D4Gnrr5Y1_Q5HOun6bZvItDsv43g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Policy+factors+impact+analysis+based+on+remote+sensing+data+and+the+CLUE-S+model+in+the+Lijiang+River+Basin%2C+China&rft.jtitle=Catena+%28Giessen%29&rft.au=Liu%2C+Guang&rft.au=Jin%2C+Qingwen&rft.au=Li%2C+Jingyi&rft.au=Li%2C+Lei&rft.date=2017-11-01&rft.issn=0341-8162&rft.volume=158&rft.spage=286&rft.epage=297&rft_id=info:doi/10.1016%2Fj.catena.2017.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_catena_2017_07_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon