Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China
Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lij...
Saved in:
Published in | Catena (Giessen) Vol. 158; pp. 286 - 297 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0341-8162 1872-6887 |
DOI | 10.1016/j.catena.2017.07.003 |
Cover
Abstract | Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lijiang River Basin in the Guangxi Zhuang Autonomous Region in southern China was selected for this study. The predicted characteristics of land use change were explored using the CLUE-S numerical model and logistic regression. Using Landsat remote sensing imagery as source data, we simulated the tendency of land use change from 1993 to 2020 under two scenarios: a Natural Growth Scenario (NS) and a Government Intervention Scenario (GS), and we analyzed the possible social driving factors. The results revealed that from 1993 to 2015, both construction and cultivated land have shown a tendency of areal increase. Water and woodland areas both decreased from 1993 to 2006 but then they increased dramatically from 2006 to 2015. Shrubland areas increased from 1993 to 2006 but decreased slightly from 2006 to 2015. The CLUE-S model was used to predict the spatial patterns of land use for 2020. It showed that under the NS, the areas of construction and cultivated land increased, while the areas of other land uses decreased. Under the GS, the areas of construction land, woodland, cultivated land, and water all increased, while the areas of the others declined. Furthermore, the area of woodland decreased for every county under the NS, but areas of woodland expansion were located in Lingchuan and Lingui counties under the GS. Hotspots of cultivated land occurred in Lingchuan County under the NS and in Xingan County under the GS. Water area decreased in every county under the NS, whereas increases in water areas occurred in Lingchuan and Guilin counties under the GS. Construction land expanded in Lingchuan County under the NS and in Guilin County under the GS. The Returning Farmland to Forest Program could be considered a successful addition to the eco-environmental policies implemented in the Lijiang River Basin.
•Discover the spatiotemporal distribution of recent land use change in the Lijiang River Basin in China.•Predict the spatial patterns of land use for 2020 under two scenarios using the CLUE-S model and logistic regression.•Investigate the influence of Returning Farmland to Forest Program on the tendency of land use change. |
---|---|
AbstractList | Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lijiang River Basin in the Guangxi Zhuang Autonomous Region in southern China was selected for this study. The predicted characteristics of land use change were explored using the CLUE-S numerical model and logistic regression. Using Landsat remote sensing imagery as source data, we simulated the tendency of land use change from 1993 to 2020 under two scenarios: a Natural Growth Scenario (NS) and a Government Intervention Scenario (GS), and we analyzed the possible social driving factors. The results revealed that from 1993 to 2015, both construction and cultivated land have shown a tendency of areal increase. Water and woodland areas both decreased from 1993 to 2006 but then they increased dramatically from 2006 to 2015. Shrubland areas increased from 1993 to 2006 but decreased slightly from 2006 to 2015. The CLUE-S model was used to predict the spatial patterns of land use for 2020. It showed that under the NS, the areas of construction and cultivated land increased, while the areas of other land uses decreased. Under the GS, the areas of construction land, woodland, cultivated land, and water all increased, while the areas of the others declined. Furthermore, the area of woodland decreased for every county under the NS, but areas of woodland expansion were located in Lingchuan and Lingui counties under the GS. Hotspots of cultivated land occurred in Lingchuan County under the NS and in Xingan County under the GS. Water area decreased in every county under the NS, whereas increases in water areas occurred in Lingchuan and Guilin counties under the GS. Construction land expanded in Lingchuan County under the NS and in Guilin County under the GS. The Returning Farmland to Forest Program could be considered a successful addition to the eco-environmental policies implemented in the Lijiang River Basin.
•Discover the spatiotemporal distribution of recent land use change in the Lijiang River Basin in China.•Predict the spatial patterns of land use for 2020 under two scenarios using the CLUE-S model and logistic regression.•Investigate the influence of Returning Farmland to Forest Program on the tendency of land use change. Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between government policy and land use change to develop an understanding applicable to the formulation of strategies for sustainable land use. The Lijiang River Basin in the Guangxi Zhuang Autonomous Region in southern China was selected for this study. The predicted characteristics of land use change were explored using the CLUE-S numerical model and logistic regression. Using Landsat remote sensing imagery as source data, we simulated the tendency of land use change from 1993 to 2020 under two scenarios: a Natural Growth Scenario (NS) and a Government Intervention Scenario (GS), and we analyzed the possible social driving factors. The results revealed that from 1993 to 2015, both construction and cultivated land have shown a tendency of areal increase. Water and woodland areas both decreased from 1993 to 2006 but then they increased dramatically from 2006 to 2015. Shrubland areas increased from 1993 to 2006 but decreased slightly from 2006 to 2015. The CLUE-S model was used to predict the spatial patterns of land use for 2020. It showed that under the NS, the areas of construction and cultivated land increased, while the areas of other land uses decreased. Under the GS, the areas of construction land, woodland, cultivated land, and water all increased, while the areas of the others declined. Furthermore, the area of woodland decreased for every county under the NS, but areas of woodland expansion were located in Lingchuan and Lingui counties under the GS. Hotspots of cultivated land occurred in Lingchuan County under the NS and in Xingan County under the GS. Water area decreased in every county under the NS, whereas increases in water areas occurred in Lingchuan and Guilin counties under the GS. Construction land expanded in Lingchuan County under the NS and in Guilin County under the GS. The Returning Farmland to Forest Program could be considered a successful addition to the eco-environmental policies implemented in the Lijiang River Basin. |
Author | Liu, Guang Li, Jingyi Huang, Yuqing He, Chengxin Li, Lei Yao, Yuefeng Jin, Qingwen |
Author_xml | – sequence: 1 givenname: Guang surname: Liu fullname: Liu, Guang organization: Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Key Laboratory of Digital Earth Science, No. 9 Dengzhuang South Rd., Haidian District, Beijing 100094, China – sequence: 2 givenname: Qingwen surname: Jin fullname: Jin, Qingwen email: jinqingwen838981@163.com organization: Chinese Academy of Sciences, Institute of Remote Sensing and Digital Earth, Key Laboratory of Digital Earth Science, No. 9 Dengzhuang South Rd., Haidian District, Beijing 100094, China – sequence: 3 givenname: Jingyi surname: Li fullname: Li, Jingyi organization: Baoji University of Arts and Sciences, Institute of Geography and Environment, No. 1 Gaoxin Rd., Gaoxin District, Baoji 721013, China – sequence: 4 givenname: Lei surname: Li fullname: Li, Lei organization: Beijing Jiaotong University, School of Civil Engineering, Department of Survey, No. 3 Shangyuancun, Haidian District, Beijing 100044, China – sequence: 5 givenname: Chengxin surname: He fullname: He, Chengxin organization: Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, No. 35 Yanshan Rd., Yanshan District, Guilin 541006, China – sequence: 6 givenname: Yuqing surname: Huang fullname: Huang, Yuqing organization: Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, No. 35 Yanshan Rd., Yanshan District, Guilin 541006, China – sequence: 7 givenname: Yuefeng surname: Yao fullname: Yao, Yuefeng organization: Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi Institute of Botany, Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, No. 35 Yanshan Rd., Yanshan District, Guilin 541006, China |
BookMark | eNqFkEFvEzEQhS1UJNLCP-jBRw5sGHvTXS8HJIhaQIpUBPRsTexZOtGuHWy3Uv49DuHEgUojzWj0vie9dy7OQgwkxKWCpQLVvd0tHRYKuNSg-iXUgfaZWCjT66Yzpj8TC2hXqjGq0y_Eec47AFj1V2oh0tc4sTvIEV2JKUue9_WSGHA6ZM5yi5m8jEEmmmMhmSlkDj-lx4JV5WW5J7ne3F033-UcPU2Sw5_fhneMVfiNHynJj1ipN3J9zwFfiucjTple_d0X4u7m-sf6c7O5_fRl_WHTYNvp0nSDwt4Mg9KtMZoMeICRtg4M-g6VG7dANeGghppWkabRI6hx6_t-HAyt2gvx-uS7T_HXA-ViZ86OpgkDxYdsNRxBbfRQpe9OUpdizolG67hg4RhKQp6sAnss2u7sqWh7LNpCHWgrvPoH3ieeMR2ewt6fMKodPDIlmx1TcOQ5kSvWR_6_wW8qdpuC |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_118320 crossref_primary_10_3390_rs15040940 crossref_primary_10_1007_s10661_023_11416_1 crossref_primary_10_3390_su12083335 crossref_primary_10_1007_s11356_023_31614_1 crossref_primary_10_1016_j_nexus_2024_100305 crossref_primary_10_7717_peerj_12122 crossref_primary_10_1016_j_gecco_2019_e00811 crossref_primary_10_3390_w10060742 crossref_primary_10_3390_land13081174 crossref_primary_10_1016_j_apgeog_2020_102247 crossref_primary_10_3390_su16135777 crossref_primary_10_1016_j_resourpol_2021_101999 crossref_primary_10_24057_2071_9388_2020_14 crossref_primary_10_1016_j_ecolind_2023_110181 crossref_primary_10_3390_f14040768 crossref_primary_10_1007_s11442_019_1690_2 crossref_primary_10_1016_j_habitatint_2020_102198 crossref_primary_10_3390_land10010086 crossref_primary_10_1016_j_scitotenv_2020_140051 crossref_primary_10_1007_s40808_024_01983_8 crossref_primary_10_3390_su14084424 crossref_primary_10_1007_s11625_018_0642_6 crossref_primary_10_1016_j_scitotenv_2020_139929 crossref_primary_10_3390_f13050673 crossref_primary_10_1016_j_ecolind_2021_108176 crossref_primary_10_3390_w16071001 crossref_primary_10_1007_s12665_018_7413_7 crossref_primary_10_3390_land12010189 crossref_primary_10_1038_s41598_024_60036_3 crossref_primary_10_1007_s10661_021_09188_7 crossref_primary_10_3390_app13127142 crossref_primary_10_3390_atmos14081237 crossref_primary_10_3390_rs11243048 crossref_primary_10_3390_su10041299 crossref_primary_10_3390_su142013592 crossref_primary_10_1016_j_jhydrol_2022_127811 crossref_primary_10_3389_fenvs_2024_1403248 crossref_primary_10_3390_land8090140 crossref_primary_10_3390_ijerph18030921 crossref_primary_10_1007_s11104_024_07039_1 crossref_primary_10_1007_s10668_019_00485_3 crossref_primary_10_3390_su16166736 crossref_primary_10_1016_j_agsy_2024_104063 crossref_primary_10_1007_s10661_022_10876_1 crossref_primary_10_1016_j_ecolind_2022_108743 crossref_primary_10_3390_ijerph19138089 crossref_primary_10_1002_eco_2601 crossref_primary_10_1016_j_scitotenv_2022_160262 crossref_primary_10_3390_land12010120 crossref_primary_10_1007_s12518_021_00390_3 crossref_primary_10_1016_j_scitotenv_2022_158940 crossref_primary_10_1016_j_envc_2021_100148 crossref_primary_10_1016_j_landusepol_2022_106113 crossref_primary_10_3390_land12111982 crossref_primary_10_3390_rs14215391 crossref_primary_10_5937_gp28_47299 crossref_primary_10_1088_1748_9326_abb4ff crossref_primary_10_1016_j_ecolind_2023_111337 |
Cites_doi | 10.1016/j.foreco.2007.08.017 10.1016/j.jhydrol.2013.11.053 10.1016/j.landusepol.2014.06.018 10.1016/S0895-7177(02)00259-5 10.1007/s10531-008-9423-3 10.1007/s10980-007-9159-6 10.3390/e15093490 10.1007/s11629-013-2871-6 10.3390/rs8030201 10.1016/j.habitatint.2014.07.009 10.1007/BF00124382 10.1007/s12665-016-5322-1 10.1007/s00267-002-2630-x 10.1007/s11629-008-0217-6 10.1002/ldr.588 10.1016/j.cosust.2013.04.003 10.1080/13658811003752332 10.1016/j.apgeog.2014.05.020 10.1068/b240323 10.1007/s10661-009-0880-2 10.1016/j.catena.2010.07.003 10.1016/j.ecoleng.2015.12.014 10.1007/s11442-016-1261-8 10.1017/S1466046613000355 10.1007/s12665-011-1037-5 10.1007/s00477-012-0671-0 10.1016/j.ecocom.2010.02.001 10.3390/s8031613 10.3390/ijerph110303215 10.1016/j.jhydrol.2016.01.033 10.1002/ldr.592 10.1073/pnas.0608343103 10.1166/jbns.2015.1287 10.1016/S0167-8809(01)00199-2 10.1073/pnas.1405557111 10.1016/j.ecoleng.2014.04.021 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.catena.2017.07.003 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Sciences (General) |
EISSN | 1872-6887 |
EndPage | 297 |
ExternalDocumentID | 10_1016_j_catena_2017_07_003 S0341816217302266 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-a362t-691a7899123882e80d00febc08ad6a1cfb0e1879190031e2efda01fbd77f98e43 |
IEDL.DBID | .~1 |
ISSN | 0341-8162 |
IngestDate | Sat Sep 27 20:06:41 EDT 2025 Wed Oct 01 04:05:54 EDT 2025 Thu Apr 24 23:00:29 EDT 2025 Fri Feb 23 02:33:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scenarios CLUE-S Land use change Returning Farmland to Forest Program Lijiang River Basin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a362t-691a7899123882e80d00febc08ad6a1cfb0e1879190031e2efda01fbd77f98e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000312829 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000312829 crossref_citationtrail_10_1016_j_catena_2017_07_003 crossref_primary_10_1016_j_catena_2017_07_003 elsevier_sciencedirect_doi_10_1016_j_catena_2017_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2017 2017-11-00 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationTitle | Catena (Giessen) |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kauppi, Ausubel, Fang, Mather, Sedjo, Waggoner (bb0070) 2006; 103 Jansen, Bagnoli, Focacci (bb0060) 2008; 254 Meyfroidt, Lambin, Erb, Hertel (bb0125) 2013; 5 Verburg, Soepboer, Veldkamp, Limpiada, Espaldon, Mastura (bb0175) 2002; 30 Xia, Wu, Zhou, Verburg, Yu, Yang, Ye (bb0205) 2016; 26 Du, Jin, Yang, Yang, Zhou (bb0015) 2014; 11 Veldkamp, Lambin (bb0170) 2001; 85 Zucca, Canu, Previtali (bb0240) 2010; 83 Figueroa, Sánchez-Cordero (bb0030) 2008; 17 Lin, Chu, Wu, Verburg (bb0090) 2011; 25 Luo, Yin, Chen, Xu, Lu (bb0110) 2010; 7 Pocewicz, Nielsen-Pincus, Goldberg, Johnson, Morgan, Force, Waits, Vierling (bb0145) 2008; 23 Liu, Zhang, Xinliang, Kuang, Zhou, Zhang, Rendong, Yan, Dongsheng, Shixin, Iang Nan (bb0100) 2009; 64 Waiyasusri, Yumuang, Chotpantarat (bb0180) 2016; 75 Mao, Meng, Wang (bb0115) 2014; 11 Liu, Wang, Deng (bb0095) 2008; 5 Wang, Liu, Zhang (bb0195) 2004; 15 Hu, Zhou, Teng (bb0050) 2015; 9 Liu, Huang, Yang, Zhong (bb0105) 2014; 44 Zhou, Troy, Grove (bb0230) 2008; 8 Guilin City People's Government (bb0040) 2016 Rafiee, Salman Mahiny, Khorasani (bb0160) 2009; 11 Edition (bb0020) 2010; 38 Gvang Bouxcuengh Swcigih Yinzminz Cwngfuj (bb0045) 2011 Braimoh (bb0010) 2004; 15 Li, Wu, Zang (bb0080) 2014; 28 Zhang, Li, Qin (bb0225) 2016; 8 Xu, Li, Song, Yin (bb0210) 2013; 15 York, Munroe (bb0215) 2004 Muller, Middleton (bb0135) 1994; 9 White, Engelen, Uljee (bb0200) 1997; 24 Li, Chen, Tonina, Cai (bb0085) 2015; 76 Gao, Yi (bb0035) 2012; 28 Promper, Puissant, Malet, Glade (bb0155) 2014; 53 Jiang, Chen, Lei, He, Jia, Zhang (bb0065) 2016; 88 Trac, Schmidt, Harrell, Hinckley (bb0165) 2013; 15 Lawler, Lewis, Nelson, Plantinga, Polasky, Withey, Helmers, Martinuzzi, Pennington, Radeloff (bb0075) 2014; 111 Wang, He (bb0185) 2011 Wang, Wang (bb0190) 2016; 535 Zhu, Liu, Chen, Zhang, Verburg (bb0235) 2010; 164 Mao, Meng, Wang (bb0120) 2014; 41 El Yacoubi, El Jai (bb0025) 2002; 36 Pontius (bb0150) 2000; 66 Barany-Kevei (bb0005) 2003; 32 Zhang, Zhao, Yuan (bb0220) 2013 Molina-Navarro, Trolle, Martínez-Pérez, Sastre-Merlín, Jeppesen (bb0130) 2014; 509 Peng, Xu, Cai, Xiao (bb0140) 2011; 64 Huang, Chak, Peng, Li (bb0055) 2016; 144 Peng (10.1016/j.catena.2017.07.003_bb0140) 2011; 64 Lawler (10.1016/j.catena.2017.07.003_bb0075) 2014; 111 Li (10.1016/j.catena.2017.07.003_bb0080) 2014; 28 Veldkamp (10.1016/j.catena.2017.07.003_bb0170) 2001; 85 Verburg (10.1016/j.catena.2017.07.003_bb0175) 2002; 30 Waiyasusri (10.1016/j.catena.2017.07.003_bb0180) 2016; 75 Jansen (10.1016/j.catena.2017.07.003_bb0060) 2008; 254 Xu (10.1016/j.catena.2017.07.003_bb0210) 2013; 15 Mao (10.1016/j.catena.2017.07.003_bb0115) 2014; 11 Jiang (10.1016/j.catena.2017.07.003_bb0065) 2016; 88 Barany-Kevei (10.1016/j.catena.2017.07.003_bb0005) 2003; 32 Xia (10.1016/j.catena.2017.07.003_bb0205) 2016; 26 Figueroa (10.1016/j.catena.2017.07.003_bb0030) 2008; 17 Gvang Bouxcuengh Swcigih Yinzminz Cwngfuj (10.1016/j.catena.2017.07.003_bb0045) 2011 Promper (10.1016/j.catena.2017.07.003_bb0155) 2014; 53 Braimoh (10.1016/j.catena.2017.07.003_bb0010) 2004; 15 Guilin City People's Government (10.1016/j.catena.2017.07.003_bb0040) 2016 Molina-Navarro (10.1016/j.catena.2017.07.003_bb0130) 2014; 509 Zucca (10.1016/j.catena.2017.07.003_bb0240) 2010; 83 Gao (10.1016/j.catena.2017.07.003_bb0035) 2012; 28 Mao (10.1016/j.catena.2017.07.003_bb0120) 2014; 41 Liu (10.1016/j.catena.2017.07.003_bb0095) 2008; 5 Luo (10.1016/j.catena.2017.07.003_bb0110) 2010; 7 White (10.1016/j.catena.2017.07.003_bb0200) 1997; 24 Trac (10.1016/j.catena.2017.07.003_bb0165) 2013; 15 Zhang (10.1016/j.catena.2017.07.003_bb0225) 2016; 8 Zhang (10.1016/j.catena.2017.07.003_bb0220) 2013 Li (10.1016/j.catena.2017.07.003_bb0085) 2015; 76 Kauppi (10.1016/j.catena.2017.07.003_bb0070) 2006; 103 Pocewicz (10.1016/j.catena.2017.07.003_bb0145) 2008; 23 Lin (10.1016/j.catena.2017.07.003_bb0090) 2011; 25 Wang (10.1016/j.catena.2017.07.003_bb0195) 2004; 15 Du (10.1016/j.catena.2017.07.003_bb0015) 2014; 11 York (10.1016/j.catena.2017.07.003_bb0215) 2004 Hu (10.1016/j.catena.2017.07.003_bb0050) 2015; 9 Liu (10.1016/j.catena.2017.07.003_bb0105) 2014; 44 Muller (10.1016/j.catena.2017.07.003_bb0135) 1994; 9 Edition (10.1016/j.catena.2017.07.003_bb0020) 2010; 38 Huang (10.1016/j.catena.2017.07.003_bb0055) 2016; 144 Liu (10.1016/j.catena.2017.07.003_bb0100) 2009; 64 Zhu (10.1016/j.catena.2017.07.003_bb0235) 2010; 164 Pontius (10.1016/j.catena.2017.07.003_bb0150) 2000; 66 Meyfroidt (10.1016/j.catena.2017.07.003_bb0125) 2013; 5 Wang (10.1016/j.catena.2017.07.003_bb0190) 2016; 535 Zhou (10.1016/j.catena.2017.07.003_bb0230) 2008; 8 Rafiee (10.1016/j.catena.2017.07.003_bb0160) 2009; 11 Wang (10.1016/j.catena.2017.07.003_bb0185) 2011 El Yacoubi (10.1016/j.catena.2017.07.003_bb0025) 2002; 36 |
References_xml | – volume: 15 start-page: 3490 year: 2013 end-page: 3506 ident: bb0210 article-title: Land-use planning for urban sprawl based on the CLUE-S model: a case study of Guangzhou, China publication-title: Entropy – volume: 23 start-page: 195 year: 2008 end-page: 210 ident: bb0145 article-title: Predicting land use change: comparison of models based on landowner surveys and historical land cover trends publication-title: Landsc. Ecol. – start-page: 442 year: 2011 end-page: 445 ident: bb0185 article-title: Lijiang River ecological interpretation of remote sensing of environmental change publication-title: International Conference on Remote Sensing, Environment and Transportation Engineering – volume: 24 start-page: 323 year: 1997 end-page: 343 ident: bb0200 article-title: The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics publication-title: Environ. Plan. B Plan. Des. – volume: 15 start-page: 37 year: 2004 end-page: 47 ident: bb0010 article-title: Seasonal migration and land-use change in Ghana publication-title: L. Degrad. Dev. – volume: 25 start-page: 65 year: 2011 end-page: 87 ident: bb0090 article-title: Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling - a case study publication-title: Int. J. Geogr. Inf. Sci. – volume: 5 start-page: 438 year: 2013 end-page: 444 ident: bb0125 article-title: Globalization of land use: distant drivers of land change and geographic displacement of land use publication-title: Curr. Opin. Environ. Sustain. – volume: 9 start-page: 151 year: 1994 end-page: 157 ident: bb0135 article-title: A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada publication-title: Landsc. Ecol. – volume: 164 start-page: 133 year: 2010 end-page: 142 ident: bb0235 article-title: Land-use change simulation and assessment of driving factors in the loess hilly region-a case study as Pengyang County publication-title: Environ. Monit. Assess. – volume: 17 start-page: 3223 year: 2008 end-page: 3240 ident: bb0030 article-title: Effectiveness of natural protected areas to prevent land use and land cover change in Mexico publication-title: Biodivers. Conserv. – start-page: 1 year: 2004 end-page: 33 ident: bb0215 article-title: Growth management policy and land use change publication-title: Midwest Political Science Association Annual Meeting – volume: 111 start-page: 7492 year: 2014 end-page: 7497 ident: bb0075 article-title: Projected land-use change impacts on ecosystem services in the United States publication-title: Proc. Natl. Acad. Sci. – volume: 83 start-page: 46 year: 2010 end-page: 54 ident: bb0240 article-title: Soil degradation by land use change in an agropastoral area in Sardinia (Italy) publication-title: Catena – volume: 9 start-page: 153 year: 2015 end-page: 160 ident: bb0050 article-title: The spatiotemporal variation of ecological risk in the Lijiang River Basin based on land use change publication-title: J. Bionanoscience. – year: 2016 ident: bb0040 article-title: Report on the Work of the Government in 2016 – volume: 254 start-page: 308 year: 2008 end-page: 326 ident: bb0060 article-title: Analysis of land-cover/use change dynamics in Manica Province in Mozambique in a period of transition (1990–2004) publication-title: For. Ecol. Manag. – volume: 36 start-page: 1059 year: 2002 end-page: 1074 ident: bb0025 article-title: Cellular automata modelling and spreadability publication-title: Math. Comput. Model. – volume: 7 start-page: 198 year: 2010 end-page: 207 ident: bb0110 article-title: Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: a case study of Sangong watershed in Xinjiang, China publication-title: Ecol. Complex. – volume: 75 start-page: 1 year: 2016 end-page: 16 ident: bb0180 article-title: Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model publication-title: Environ. Earth Sci. – volume: 15 start-page: 115 year: 2004 end-page: 121 ident: bb0195 article-title: Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation publication-title: L. Degrad. Dev. – volume: 32 start-page: 175 year: 2003 end-page: 185 ident: bb0005 article-title: Human impact on Hungarian karst terrains, with special regard to sylviculture publication-title: Acta Carsologica – volume: 66 start-page: 1011 year: 2000 end-page: 1016 ident: bb0150 article-title: Quantification error versus location error in comparison of categorical maps publication-title: Photogramm. Eng. Remote Sens. – volume: 15 start-page: 350 year: 2013 end-page: 366 ident: bb0165 article-title: Is the returning farmland to forest program a success? Three case studies from Sichuan publication-title: Environ. Pract. – volume: 30 start-page: 391 year: 2002 end-page: 405 ident: bb0175 article-title: Modeling the spatial dynamics of regional land use: the CLUE-S model publication-title: Environ. Manag. – volume: 76 start-page: 75 year: 2015 end-page: 83 ident: bb0085 article-title: Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China publication-title: Ecol. Eng. – volume: 26 start-page: 171 year: 2016 end-page: 187 ident: bb0205 article-title: Model-based analysis of spatio-temporal changes in land use in Northeast China publication-title: J. Geogr. Sci. – volume: 64 start-page: 2107 year: 2011 end-page: 2118 ident: bb0140 article-title: Climatic and anthropogenic drivers of land use/cover change in fragile karst areas of southwest China since the early 1970s: a case study on the Maotiaohe watershed publication-title: Environ. Earth Sci. – volume: 53 start-page: 11 year: 2014 end-page: 19 ident: bb0155 article-title: Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios publication-title: Appl. Geogr. – volume: 509 start-page: 354 year: 2014 end-page: 366 ident: bb0130 article-title: Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios publication-title: J. Hydrol. – volume: 28 start-page: 208 year: 2012 end-page: 216 ident: bb0035 article-title: Land use change in China and analysis of its driving forces using CLUE-S and Dinamica EGO model publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. – volume: 64 start-page: 1411 year: 2009 end-page: 1420 ident: bb0100 article-title: Spatial patterns and driving forces of land use change in China in the early 21st century publication-title: Acta Geograph. Sin. – volume: 28 start-page: 817 year: 2014 end-page: 828 ident: bb0080 article-title: Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches publication-title: Stoch. Env. Res. Risk A. – volume: 11 start-page: 3215 year: 2014 end-page: 3232 ident: bb0015 article-title: Spatial pattern of land use change and its driving force in Jiangsu province publication-title: Int. J. Environ. Res. Public Health – volume: 11 start-page: 431 year: 2009 end-page: 438 ident: bb0160 article-title: Assessment of changes in urban green spaces of Mashad city using satellite data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 8 start-page: 1613 year: 2008 end-page: 1636 ident: bb0230 article-title: Object-based land cover classification and change analysis in the Baltimore Metropolitan area using multitemporal high resolution remote sensing data publication-title: Sensors – volume: 144 start-page: 184 year: 2016 end-page: 193 ident: bb0055 article-title: Catena qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China publication-title: A Hazard Index Approach – volume: 85 start-page: 1 year: 2001 end-page: 6 ident: bb0170 article-title: Predicting land-use change publication-title: Agric. Ecosyst. Environ. – volume: 88 start-page: 112 year: 2016 end-page: 121 ident: bb0065 article-title: Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: a case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration publication-title: Ecol. Eng. – volume: 5 start-page: 350 year: 2008 end-page: 357 ident: bb0095 article-title: Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China publication-title: J. Mt. Sci. – volume: 535 start-page: 173 year: 2016 end-page: 180 ident: bb0190 article-title: Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective publication-title: J. Hydrol. – year: 2011 ident: bb0045 article-title: 全国巩固退耕还林成果部际联席会议在广西召开 – volume: 103 start-page: 17574 year: 2006 end-page: 17579 ident: bb0070 article-title: Returning forests analyzed with the forest identity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 start-page: 339 year: 2014 end-page: 348 ident: bb0105 article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - a case study of Guiyang publication-title: Habitat Int. – volume: 41 start-page: 368 year: 2014 end-page: 377 ident: bb0120 article-title: Modeling the effects of tourism and land regulation on land-use change in tourist regions: a case study of the Lijiang River basin in Guilin, China publication-title: L. Use Policy. – volume: 8 start-page: 201 year: 2016 ident: bb0225 article-title: Identification of factors influencing locations of tree cover loss and gain and their spatio-temporally-variant importance in the Li River Basin, China publication-title: Remote Sens. – volume: 38 start-page: 184 year: 2010 end-page: 186 ident: bb0020 article-title: Applied logistic regression analysis publication-title: Technometrics – volume: 11 start-page: 1606 year: 2014 end-page: 1619 ident: bb0115 article-title: Tourism and land transformation: a case study of the Li River Basin, Guilin, China publication-title: J. Mt. Sci. – start-page: 185 year: 2013 end-page: 190 ident: bb0220 article-title: https. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-2/W1(2) – start-page: 185 year: 2013 ident: 10.1016/j.catena.2017.07.003_bb0220 – volume: 254 start-page: 308 year: 2008 ident: 10.1016/j.catena.2017.07.003_bb0060 article-title: Analysis of land-cover/use change dynamics in Manica Province in Mozambique in a period of transition (1990–2004) publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2007.08.017 – volume: 32 start-page: 175 year: 2003 ident: 10.1016/j.catena.2017.07.003_bb0005 article-title: Human impact on Hungarian karst terrains, with special regard to sylviculture publication-title: Acta Carsologica – volume: 509 start-page: 354 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0130 article-title: Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.11.053 – volume: 41 start-page: 368 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0120 article-title: Modeling the effects of tourism and land regulation on land-use change in tourist regions: a case study of the Lijiang River basin in Guilin, China publication-title: L. Use Policy. doi: 10.1016/j.landusepol.2014.06.018 – volume: 36 start-page: 1059 year: 2002 ident: 10.1016/j.catena.2017.07.003_bb0025 article-title: Cellular automata modelling and spreadability publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(02)00259-5 – volume: 17 start-page: 3223 year: 2008 ident: 10.1016/j.catena.2017.07.003_bb0030 article-title: Effectiveness of natural protected areas to prevent land use and land cover change in Mexico publication-title: Biodivers. Conserv. doi: 10.1007/s10531-008-9423-3 – year: 2011 ident: 10.1016/j.catena.2017.07.003_bb0045 – volume: 144 start-page: 184 year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0055 article-title: Catena qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China – start-page: 442 year: 2011 ident: 10.1016/j.catena.2017.07.003_bb0185 article-title: Lijiang River ecological interpretation of remote sensing of environmental change – volume: 66 start-page: 1011 year: 2000 ident: 10.1016/j.catena.2017.07.003_bb0150 article-title: Quantification error versus location error in comparison of categorical maps publication-title: Photogramm. Eng. Remote Sens. – volume: 23 start-page: 195 year: 2008 ident: 10.1016/j.catena.2017.07.003_bb0145 article-title: Predicting land use change: comparison of models based on landowner surveys and historical land cover trends publication-title: Landsc. Ecol. doi: 10.1007/s10980-007-9159-6 – volume: 15 start-page: 3490 year: 2013 ident: 10.1016/j.catena.2017.07.003_bb0210 article-title: Land-use planning for urban sprawl based on the CLUE-S model: a case study of Guangzhou, China publication-title: Entropy doi: 10.3390/e15093490 – volume: 64 start-page: 1411 year: 2009 ident: 10.1016/j.catena.2017.07.003_bb0100 article-title: Spatial patterns and driving forces of land use change in China in the early 21st century publication-title: Acta Geograph. Sin. – volume: 11 start-page: 1606 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0115 article-title: Tourism and land transformation: a case study of the Li River Basin, Guilin, China publication-title: J. Mt. Sci. doi: 10.1007/s11629-013-2871-6 – volume: 8 start-page: 201 year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0225 article-title: Identification of factors influencing locations of tree cover loss and gain and their spatio-temporally-variant importance in the Li River Basin, China publication-title: Remote Sens. doi: 10.3390/rs8030201 – year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0040 – volume: 44 start-page: 339 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0105 article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - a case study of Guiyang publication-title: Habitat Int. doi: 10.1016/j.habitatint.2014.07.009 – volume: 9 start-page: 151 year: 1994 ident: 10.1016/j.catena.2017.07.003_bb0135 article-title: A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada publication-title: Landsc. Ecol. doi: 10.1007/BF00124382 – volume: 75 start-page: 1 year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0180 article-title: Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model publication-title: Environ. Earth Sci. doi: 10.1007/s12665-016-5322-1 – volume: 30 start-page: 391 year: 2002 ident: 10.1016/j.catena.2017.07.003_bb0175 article-title: Modeling the spatial dynamics of regional land use: the CLUE-S model publication-title: Environ. Manag. doi: 10.1007/s00267-002-2630-x – volume: 5 start-page: 350 year: 2008 ident: 10.1016/j.catena.2017.07.003_bb0095 article-title: Rocky land desertification and its driving forces in the karst areas of rural Guangxi, Southwest China publication-title: J. Mt. Sci. doi: 10.1007/s11629-008-0217-6 – volume: 15 start-page: 37 year: 2004 ident: 10.1016/j.catena.2017.07.003_bb0010 article-title: Seasonal migration and land-use change in Ghana publication-title: L. Degrad. Dev. doi: 10.1002/ldr.588 – volume: 5 start-page: 438 year: 2013 ident: 10.1016/j.catena.2017.07.003_bb0125 article-title: Globalization of land use: distant drivers of land change and geographic displacement of land use publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2013.04.003 – volume: 25 start-page: 65 year: 2011 ident: 10.1016/j.catena.2017.07.003_bb0090 article-title: Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling - a case study publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658811003752332 – volume: 53 start-page: 11 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0155 article-title: Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2014.05.020 – volume: 24 start-page: 323 year: 1997 ident: 10.1016/j.catena.2017.07.003_bb0200 article-title: The use of constrained cellular automata for high-resolution modelling of urban land-use dynamics publication-title: Environ. Plan. B Plan. Des. doi: 10.1068/b240323 – volume: 164 start-page: 133 year: 2010 ident: 10.1016/j.catena.2017.07.003_bb0235 article-title: Land-use change simulation and assessment of driving factors in the loess hilly region-a case study as Pengyang County publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-009-0880-2 – volume: 83 start-page: 46 year: 2010 ident: 10.1016/j.catena.2017.07.003_bb0240 article-title: Soil degradation by land use change in an agropastoral area in Sardinia (Italy) publication-title: Catena doi: 10.1016/j.catena.2010.07.003 – volume: 88 start-page: 112 year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0065 article-title: Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: a case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2015.12.014 – start-page: 1 year: 2004 ident: 10.1016/j.catena.2017.07.003_bb0215 article-title: Growth management policy and land use change – volume: 28 start-page: 208 year: 2012 ident: 10.1016/j.catena.2017.07.003_bb0035 article-title: Land use change in China and analysis of its driving forces using CLUE-S and Dinamica EGO model publication-title: Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. – volume: 26 start-page: 171 year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0205 article-title: Model-based analysis of spatio-temporal changes in land use in Northeast China publication-title: J. Geogr. Sci. doi: 10.1007/s11442-016-1261-8 – volume: 15 start-page: 350 year: 2013 ident: 10.1016/j.catena.2017.07.003_bb0165 article-title: Is the returning farmland to forest program a success? Three case studies from Sichuan publication-title: Environ. Pract. doi: 10.1017/S1466046613000355 – volume: 64 start-page: 2107 year: 2011 ident: 10.1016/j.catena.2017.07.003_bb0140 article-title: Climatic and anthropogenic drivers of land use/cover change in fragile karst areas of southwest China since the early 1970s: a case study on the Maotiaohe watershed publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-1037-5 – volume: 28 start-page: 817 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0080 article-title: Modeling urban land use conversion of Daqing City, China: a comparative analysis of “top-down” and “bottom-up” approaches publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-012-0671-0 – volume: 7 start-page: 198 year: 2010 ident: 10.1016/j.catena.2017.07.003_bb0110 article-title: Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: a case study of Sangong watershed in Xinjiang, China publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2010.02.001 – volume: 8 start-page: 1613 year: 2008 ident: 10.1016/j.catena.2017.07.003_bb0230 article-title: Object-based land cover classification and change analysis in the Baltimore Metropolitan area using multitemporal high resolution remote sensing data publication-title: Sensors doi: 10.3390/s8031613 – volume: 11 start-page: 431 year: 2009 ident: 10.1016/j.catena.2017.07.003_bb0160 article-title: Assessment of changes in urban green spaces of Mashad city using satellite data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 3215 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0015 article-title: Spatial pattern of land use change and its driving force in Jiangsu province publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph110303215 – volume: 535 start-page: 173 year: 2016 ident: 10.1016/j.catena.2017.07.003_bb0190 article-title: Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.01.033 – volume: 38 start-page: 184 year: 2010 ident: 10.1016/j.catena.2017.07.003_bb0020 article-title: Applied logistic regression analysis publication-title: Technometrics – volume: 15 start-page: 115 year: 2004 ident: 10.1016/j.catena.2017.07.003_bb0195 article-title: Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation publication-title: L. Degrad. Dev. doi: 10.1002/ldr.592 – volume: 103 start-page: 17574 year: 2006 ident: 10.1016/j.catena.2017.07.003_bb0070 article-title: Returning forests analyzed with the forest identity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0608343103 – volume: 9 start-page: 153 year: 2015 ident: 10.1016/j.catena.2017.07.003_bb0050 article-title: The spatiotemporal variation of ecological risk in the Lijiang River Basin based on land use change publication-title: J. Bionanoscience. doi: 10.1166/jbns.2015.1287 – volume: 85 start-page: 1 year: 2001 ident: 10.1016/j.catena.2017.07.003_bb0170 article-title: Predicting land-use change publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00199-2 – volume: 111 start-page: 7492 year: 2014 ident: 10.1016/j.catena.2017.07.003_bb0075 article-title: Projected land-use change impacts on ecosystem services in the United States publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1405557111 – volume: 76 start-page: 75 year: 2015 ident: 10.1016/j.catena.2017.07.003_bb0085 article-title: Effects of upstream reservoir regulation on the hydrological regime and fish habitats of the Lijiang River, China publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2014.04.021 |
SSID | ssj0004751 |
Score | 2.4913647 |
Snippet | Land use change is affected by many driving factors such as the economy, population, and government policy. This study investigated the relationship between... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 286 |
SubjectTerms | agricultural land China CLUE-S forests issues and policy Land use change Landsat Lijiang River Basin mathematical models regression analysis remote sensing Returning Farmland to Forest Program Scenarios shrublands spatial data watersheds woodlands |
Title | Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China |
URI | https://dx.doi.org/10.1016/j.catena.2017.07.003 https://www.proquest.com/docview/2000312829 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ74ZwYOCcROb7eOoi7o-8KAueCvpJllXpCu768GLv92ZNFXUg-CtDUlpM8nMpPnyfYztaswBjDWOZ5gNc5U2NS-My7hwXXUkjDSJ9Sjfm7jdUZcPzYcJ1qrPwhCsMvj-yqd7bx1KGqE3Gy_9fuNOoANOZYw5dYSBKCbabWL_wjF9-P4F81CJl2Ckypxq18fnPMaLQEclsQ_JxFN41tJZv8PTD0fto8_ZPJsLaSMcV2-2wCZsuchmgoL549simz73Er14tRCm6wj2Aqf0_hIbVvy_EOR1oDocCTpQkgAFMwODEoYWbWdhRLj2sgcEIMVaBjBPhNZ155TfgRfPgX7py677TzjAenBL-A440djqALwo9zLrnJ3et9o8yC1wjVFszONM6gSXXxjLMO22qTBCOFt0RapNrGXXFcKSNrmkn5_SHllntJCuMEnistSqaIVNloPSrjKwuA7SmKplqpkpEr2KEumkiLRSJo0jvcaiupfzbuAiJ0mM57wGnT3llW1ysk0uaJM8WmP8s9VLxcXxR_2kNmD-bUzlGC7-aLlT2zvH6UZ7KLq0g9cRqXbix9P28_q_n77BZumuOtG4ySbHw1e7hanNuNj2Y3ebTR1fXLVvPgCqCvYz |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVKhcKlpALc9B4gASVuyus49jiVpSGnKgjdSb5Y3tkgptqiQ98O874_WCSg-VuK28ntWux54Zr7-ZD-CDpRjAeRdERdGw0OXAitqFSsgw0wfSKVf4iPKd5KOp_nYxuNiAYZcLw7DKZPtbmx6tdWrpp9HsX8_n_TNJBrhUOcXUGTmiPH8Em3pANrkHm4cnp6PJ3_TIIrIwcn_BAl0GXYR5Me6o4QJEqohVPDv2rPse6h9bHR3Q8VPYTpEjHrYvtwMbvtmFrURi_vP3Ljz-Gll66WonrdgVfkxlpT89g2VbAhgTww62-ZFoU1USZH_mcNHg0pP6PK4Y2t5cImNIqZdDChVxOJ4eiTOM_Dk4b2LbeH5Fc-wSfzDEA79YkvqMkZf7OUyPj86HI5EYF4QlR7YWeaVsQTswcmcUeftSOimDr2eytC63ahZq6ZmeXPH_T-UPfHBWqlC7oghV6XX2AnrNovF7gJ62QpaitUoPKs28V1mhgpKZ1dqVeWb3IetG2cxSOXJmxfhlOtzZlWl1Y1g3RvI5ebYP4o_UdVuO44H-RadAc2daGfIYD0i-7_RtaMXxMYpt_OJmxcSd9PF8Av3yv5_-DrZG59_HZnwyOX0FT_hOm-D4Gnrr5Y1_Q5HOun6bZvItDsv43g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Policy+factors+impact+analysis+based+on+remote+sensing+data+and+the+CLUE-S+model+in+the+Lijiang+River+Basin%2C+China&rft.jtitle=Catena+%28Giessen%29&rft.au=Liu%2C+Guang&rft.au=Jin%2C+Qingwen&rft.au=Li%2C+Jingyi&rft.au=Li%2C+Lei&rft.date=2017-11-01&rft.issn=0341-8162&rft.volume=158&rft.spage=286&rft.epage=297&rft_id=info:doi/10.1016%2Fj.catena.2017.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_catena_2017_07_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |