Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts
Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for electrochemical water splitting. Herein, NiFe-based catalysts with appropriate electronic conductivity and catalytic activity have been obtained through...
Saved in:
Published in | ACS energy letters Vol. 3; no. 7; pp. 1515 - 1520 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.07.2018
|
Online Access | Get full text |
ISSN | 2380-8195 2380-8195 |
DOI | 10.1021/acsenergylett.8b00696 |
Cover
Abstract | Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for electrochemical water splitting. Herein, NiFe-based catalysts with appropriate electronic conductivity and catalytic activity have been obtained through introduction of oxygen vacancies by a facile and economic NaBH4 reduction approach. The combined density functional theory calculations, physical characterization, and electrochemical studies disclose that the reductive treatment creates a high amount of oxygen vacancies, high active sites, and a low energy barrier for OER. The oxygen vacancy-rich catalyst yields a more than 2-fold increased current density (from 100 to 240 mA cm–2) at a low overpotential of 270 mV, accompanied by good stability under OER conditions. The approach is also broadly applicable for NiFe compounds synthesized via different methods or substrates. |
---|---|
AbstractList | Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for electrochemical water splitting. Herein, NiFe-based catalysts with appropriate electronic conductivity and catalytic activity have been obtained through introduction of oxygen vacancies by a facile and economic NaBH4 reduction approach. The combined density functional theory calculations, physical characterization, and electrochemical studies disclose that the reductive treatment creates a high amount of oxygen vacancies, high active sites, and a low energy barrier for OER. The oxygen vacancy-rich catalyst yields a more than 2-fold increased current density (from 100 to 240 mA cm–2) at a low overpotential of 270 mV, accompanied by good stability under OER conditions. The approach is also broadly applicable for NiFe compounds synthesized via different methods or substrates. |
Author | Asnavandi, Majid Yin, Yichun Zhao, Chuan Li, Yibing Sun, Chenghua |
AuthorAffiliation | Faculty of Science, Engineering & Technology School of Chemistry, Faculty of Science Swinburne University of Technology School of Chemistry |
AuthorAffiliation_xml | – name: Swinburne University of Technology – name: Faculty of Science, Engineering & Technology – name: School of Chemistry, Faculty of Science – name: School of Chemistry |
Author_xml | – sequence: 1 givenname: Majid orcidid: 0000-0001-5442-7294 surname: Asnavandi fullname: Asnavandi, Majid organization: School of Chemistry – sequence: 2 givenname: Yichun surname: Yin fullname: Yin, Yichun organization: School of Chemistry, Faculty of Science – sequence: 3 givenname: Yibing orcidid: 0000-0002-1729-5963 surname: Li fullname: Li, Yibing organization: School of Chemistry – sequence: 4 givenname: Chenghua surname: Sun fullname: Sun, Chenghua email: chenghuasun@swin.edu.au organization: Swinburne University of Technology – sequence: 5 givenname: Chuan orcidid: 0000-0001-7007-5946 surname: Zhao fullname: Zhao, Chuan email: chuan.zhao@unsw.edu.au organization: School of Chemistry |
BookMark | eNqFkMFOwzAMhiM0JMbYIyDlBTqStslacYJpY5MmihBwrbw07Tq6BCUpojfegTfkSWjZkIDL5IMt25_l_z9FPaWVROickhElPr0AYaWSpmgq6dwoWhHCY36E-n4QES-iMev9qk_Q0NoNIYTyiLXRR_rO6K12pSpw8tYUUuHpq65qV2qF7yWIrrDYrY2uizVeKGd0Vn93sc5_kCcQoEQp20WNr6US6y2YZ3xbzuTn-0eSzPEEHFSNdfYMHedQWTnc5wF6nE0fJnNvmdwsJldLDwJOnScCOqaCMD-HHHweMu7HRPgk5DGELMhyvqIrImkYEtnO4ywcC0Z5KMZ-BgGTwQBd7u4Ko601Mk9F6aD72xkoq5SStLMv_WNfurevpdk_-sWUrabmIEd3XDtON7o2qtV4gPkCoz6QBQ |
CitedBy_id | crossref_primary_10_1021_acsnano_0c09217 crossref_primary_10_1021_acsenergylett_2c01493 crossref_primary_10_1016_j_ijhydene_2025_02_102 crossref_primary_10_1016_j_jcis_2024_02_195 crossref_primary_10_1016_S1872_2067_20_63638_5 crossref_primary_10_1021_acssuschemeng_4c00318 crossref_primary_10_1016_j_ijhydene_2022_04_226 crossref_primary_10_1016_j_jcis_2023_04_086 crossref_primary_10_1016_j_jechem_2022_11_041 crossref_primary_10_1002_adma_202205814 crossref_primary_10_1016_j_jechem_2022_03_048 crossref_primary_10_1103_PhysRevApplied_21_054066 crossref_primary_10_1016_j_mcat_2024_114164 crossref_primary_10_1021_acsami_4c01872 crossref_primary_10_1039_D0RA08223F crossref_primary_10_1021_acssuschemeng_0c04542 crossref_primary_10_1016_j_apcatb_2019_118154 crossref_primary_10_1021_acs_jpcc_0c03930 crossref_primary_10_1002_celc_202200148 crossref_primary_10_1021_acscatal_1c01447 crossref_primary_10_3390_colloids7010014 crossref_primary_10_1016_j_ijhydene_2021_08_080 crossref_primary_10_1016_j_cclet_2020_09_030 crossref_primary_10_1038_s41467_024_51951_0 crossref_primary_10_1002_aenm_202401449 crossref_primary_10_1021_acsmaterialslett_0c00434 crossref_primary_10_1016_j_apsusc_2023_158831 crossref_primary_10_1002_adma_202110696 crossref_primary_10_1002_chem_202302251 crossref_primary_10_1021_acsami_3c01877 crossref_primary_10_1039_C9TA02349F crossref_primary_10_1016_j_coco_2021_100780 crossref_primary_10_1016_j_electacta_2021_137817 crossref_primary_10_1016_j_ijhydene_2023_05_333 crossref_primary_10_1021_acscatal_2c05426 crossref_primary_10_1002_smll_202300959 crossref_primary_10_1016_j_jcis_2020_06_065 crossref_primary_10_1021_acscatal_2c05783 crossref_primary_10_1039_D2TA04833G crossref_primary_10_1002_smll_202407564 crossref_primary_10_1016_j_jcis_2024_07_118 crossref_primary_10_1002_smll_202001752 crossref_primary_10_1016_j_cej_2024_152860 crossref_primary_10_1002_aenm_202400029 crossref_primary_10_3866_PKU_WHXB202303059 crossref_primary_10_1002_chem_202403863 crossref_primary_10_1016_j_mtchem_2023_101632 crossref_primary_10_1007_s12274_020_3202_1 crossref_primary_10_1016_j_jpowsour_2020_228748 crossref_primary_10_1002_adma_202411134 crossref_primary_10_1002_cssc_201901020 crossref_primary_10_1039_D2TA09817B crossref_primary_10_1021_acscatal_0c01906 crossref_primary_10_1016_j_apcatb_2023_122808 crossref_primary_10_1039_D2EE00951J crossref_primary_10_1021_acscatal_2c03351 crossref_primary_10_1021_acsmaterialslett_9b00414 crossref_primary_10_1021_acssuschemeng_9b01178 crossref_primary_10_3390_ma16083280 crossref_primary_10_1016_j_jcat_2022_04_009 crossref_primary_10_1016_j_electacta_2019_06_089 crossref_primary_10_1016_j_ijhydene_2023_07_029 crossref_primary_10_1007_s40145_022_0604_4 crossref_primary_10_1016_j_cep_2023_109608 crossref_primary_10_1007_s40843_022_2415_8 crossref_primary_10_1039_C9TA12713E crossref_primary_10_1016_j_apcatb_2021_120314 crossref_primary_10_1016_j_jiec_2022_05_043 crossref_primary_10_1039_D0EE00877J crossref_primary_10_1016_j_molliq_2021_116186 crossref_primary_10_1021_acsanm_4c01840 crossref_primary_10_1016_j_cej_2020_125738 crossref_primary_10_1039_D1CC06314F crossref_primary_10_1016_j_electacta_2022_140455 crossref_primary_10_1016_j_jcis_2022_04_160 crossref_primary_10_1039_C9NR07465A crossref_primary_10_1039_D0TA09788H crossref_primary_10_1002_cssc_202000884 crossref_primary_10_1016_j_ijhydene_2023_01_184 crossref_primary_10_1039_D0TA08089F crossref_primary_10_1007_s40843_020_1566_6 crossref_primary_10_1016_j_synthmet_2021_116894 crossref_primary_10_1021_acsaem_0c01040 crossref_primary_10_1021_acsanm_3c00537 crossref_primary_10_1002_ente_202100264 crossref_primary_10_1039_C9TA12768B crossref_primary_10_1149_1945_7111_ab6a80 crossref_primary_10_1016_j_jcis_2022_08_068 crossref_primary_10_1016_j_jmat_2024_100976 crossref_primary_10_1021_acsaem_3c02631 crossref_primary_10_1039_D0TA10740A crossref_primary_10_1002_smll_202103501 crossref_primary_10_1016_j_ijhydene_2020_11_072 crossref_primary_10_1021_acs_chemrev_1c01003 crossref_primary_10_1039_C8TA11273H crossref_primary_10_20517_microstructures_2023_93 crossref_primary_10_1002_gch2_202300199 crossref_primary_10_1039_D3QM00472D crossref_primary_10_1016_j_apcatb_2019_117911 crossref_primary_10_1021_acscatal_0c02501 crossref_primary_10_1016_j_apcatb_2023_123448 crossref_primary_10_1039_D4TA01706D crossref_primary_10_1002_adma_202311698 crossref_primary_10_1021_acscatal_4c06095 crossref_primary_10_1016_j_jelechem_2022_116650 crossref_primary_10_1039_D0TA06485H crossref_primary_10_1039_D4TA05017G crossref_primary_10_1002_smll_202107739 crossref_primary_10_1016_j_ijhydene_2021_06_054 crossref_primary_10_1039_D0TA03272G crossref_primary_10_1021_acsenergylett_9b01922 crossref_primary_10_1021_acscatal_0c03272 crossref_primary_10_1021_acs_langmuir_0c02943 crossref_primary_10_1002_smll_201805435 crossref_primary_10_1016_j_nanoen_2021_106030 crossref_primary_10_3740_MRSK_2022_32_8_339 crossref_primary_10_1016_j_apcatb_2020_119740 crossref_primary_10_1016_j_cej_2023_142855 crossref_primary_10_1021_acsenergylett_8b01974 crossref_primary_10_1021_acsami_0c11847 crossref_primary_10_1016_j_ijhydene_2024_11_482 crossref_primary_10_1016_j_jssc_2023_124048 crossref_primary_10_1021_acs_inorgchem_2c02947 crossref_primary_10_1039_C9CY02328C crossref_primary_10_1039_D2CY00148A crossref_primary_10_1039_D1TA09627C crossref_primary_10_1021_acsami_1c00484 crossref_primary_10_1002_anie_202215256 crossref_primary_10_1021_acsenergylett_9b00867 crossref_primary_10_1002_cphc_201900507 crossref_primary_10_1016_j_jpcs_2024_112219 crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1021_acsanm_1c00581 crossref_primary_10_1016_j_jallcom_2021_162038 crossref_primary_10_1039_D0RA03856C crossref_primary_10_1002_celc_202100030 crossref_primary_10_1016_j_jechem_2022_08_011 crossref_primary_10_1039_D1TA05332A crossref_primary_10_1002_smll_202002412 crossref_primary_10_1021_acs_inorgchem_1c03236 crossref_primary_10_1016_j_ijhydene_2021_12_189 crossref_primary_10_1021_acs_jpcc_2c05666 crossref_primary_10_1002_adfm_202009070 crossref_primary_10_1016_j_gee_2022_12_003 crossref_primary_10_1002_smll_202100203 crossref_primary_10_1039_C9CE01883B crossref_primary_10_1016_j_jmst_2023_08_051 crossref_primary_10_1016_j_electacta_2023_143641 crossref_primary_10_1063_5_0139102 crossref_primary_10_1021_acscatal_0c01862 crossref_primary_10_1002_adma_202209338 crossref_primary_10_1021_acs_chemmater_1c00008 crossref_primary_10_2351_7_0000056 crossref_primary_10_1021_acsaem_3c00139 crossref_primary_10_3365_KJMM_2024_62_6_472 crossref_primary_10_1021_acsaem_9b02022 crossref_primary_10_1016_j_apsusc_2023_156945 crossref_primary_10_1039_C9NR09027D crossref_primary_10_1016_j_jcis_2024_03_044 crossref_primary_10_1016_j_ccr_2023_215274 crossref_primary_10_1021_acsanm_3c05983 crossref_primary_10_1039_D1CP01291F crossref_primary_10_1002_ange_202215256 crossref_primary_10_1039_D2TA05356J crossref_primary_10_1021_acs_jpcc_8b11509 crossref_primary_10_1002_admi_202102154 crossref_primary_10_1007_s40242_020_0107_1 crossref_primary_10_1002_adma_202211884 crossref_primary_10_1039_D0TA05594H crossref_primary_10_1016_j_fuel_2024_131214 crossref_primary_10_1002_slct_202201844 crossref_primary_10_1039_D2QM00964A crossref_primary_10_1007_s11467_020_0999_8 crossref_primary_10_1002_aenm_202001377 crossref_primary_10_1002_adfm_202209543 crossref_primary_10_1016_j_xcrp_2022_100870 crossref_primary_10_1039_C9SE01208G crossref_primary_10_1016_j_eng_2022_03_023 crossref_primary_10_1016_j_fuel_2025_134415 crossref_primary_10_1002_aenm_202002228 crossref_primary_10_20964_2019_12_61 crossref_primary_10_1016_S1872_2067_21_63855_X crossref_primary_10_1002_adfm_202409559 crossref_primary_10_1016_j_cej_2022_136693 crossref_primary_10_1016_j_cej_2022_137540 crossref_primary_10_1038_s41467_021_24828_9 crossref_primary_10_1016_S1872_2067_19_63514_X crossref_primary_10_1002_adfm_202200726 crossref_primary_10_1016_j_apcatb_2022_121150 crossref_primary_10_1016_j_jcis_2024_12_172 crossref_primary_10_1016_j_cjsc_2023_100210 crossref_primary_10_1016_j_apcatb_2022_121713 crossref_primary_10_1016_j_jhazmat_2022_130444 crossref_primary_10_1016_j_jelechem_2022_116047 crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_3390_nano11092237 crossref_primary_10_1016_j_ijhydene_2024_10_366 crossref_primary_10_1016_j_cej_2022_140030 crossref_primary_10_1016_j_colsurfa_2021_127142 crossref_primary_10_1002_aenm_202002215 crossref_primary_10_1007_s12598_022_02003_3 crossref_primary_10_1021_acsenergylett_0c01584 crossref_primary_10_1016_j_apsusc_2020_146755 crossref_primary_10_1016_j_apsusc_2020_148813 crossref_primary_10_1021_acs_energyfuels_0c02550 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1002_adfm_202211273 crossref_primary_10_1007_s11426_023_1649_y crossref_primary_10_1039_D2CC01602H crossref_primary_10_1039_D2DT00749E crossref_primary_10_1021_acsaem_0c00872 crossref_primary_10_1021_acs_inorgchem_3c00541 crossref_primary_10_1016_j_jiec_2018_12_028 crossref_primary_10_1016_j_jmst_2024_02_068 crossref_primary_10_1039_C8NR08104B crossref_primary_10_1039_D0EE01609H crossref_primary_10_1039_D0TA00422G crossref_primary_10_1016_j_trechm_2019_03_006 crossref_primary_10_1021_acs_chemrev_2c00515 crossref_primary_10_1016_j_fuproc_2021_106945 crossref_primary_10_1016_j_jhazmat_2022_129212 crossref_primary_10_1002_smll_202002210 crossref_primary_10_1002_smll_202310064 crossref_primary_10_1021_jacs_3c05898 crossref_primary_10_1002_cctc_201900718 crossref_primary_10_1016_j_apcatb_2023_122617 crossref_primary_10_1039_D0GC00168F crossref_primary_10_1016_j_jechem_2020_02_031 crossref_primary_10_1016_j_mssp_2024_108870 crossref_primary_10_1007_s11581_025_06113_7 crossref_primary_10_1021_acs_inorgchem_0c03514 crossref_primary_10_1016_j_cej_2024_156124 crossref_primary_10_1016_j_jcis_2024_04_169 crossref_primary_10_1007_s40843_022_2061_x crossref_primary_10_1016_j_jpowsour_2021_230097 crossref_primary_10_1002_advs_202500896 crossref_primary_10_1016_j_solidstatesciences_2020_106314 crossref_primary_10_1002_cey2_79 crossref_primary_10_1002_cssc_202400961 crossref_primary_10_1002_bte2_20240069 crossref_primary_10_1016_S1872_2067_23_64557_7 crossref_primary_10_1002_smll_202500687 crossref_primary_10_1021_acsnano_0c03380 crossref_primary_10_1002_celc_202200746 crossref_primary_10_1016_j_ijhydene_2019_11_156 crossref_primary_10_1002_smll_202408266 crossref_primary_10_1021_acsami_1c12053 crossref_primary_10_1007_s10800_025_02295_0 crossref_primary_10_1039_D4RE00539B crossref_primary_10_1039_D3CY00789H crossref_primary_10_1016_j_cej_2021_133115 crossref_primary_10_1016_j_cej_2023_145293 crossref_primary_10_1016_j_ijhydene_2024_01_338 crossref_primary_10_1021_acs_inorgchem_3c01666 crossref_primary_10_1016_j_apcatb_2023_123490 crossref_primary_10_1016_j_electacta_2022_140071 crossref_primary_10_1016_j_jcis_2023_08_194 crossref_primary_10_1016_j_cej_2023_144639 crossref_primary_10_1016_j_cej_2022_140507 crossref_primary_10_1021_acssuschemeng_9b02296 crossref_primary_10_1016_j_ijhydene_2022_04_255 crossref_primary_10_1016_j_cej_2022_137226 crossref_primary_10_1016_j_chemosphere_2023_137825 crossref_primary_10_1016_j_renene_2024_121307 crossref_primary_10_1016_j_apcato_2024_206930 crossref_primary_10_1021_acsaem_1c00776 crossref_primary_10_1016_j_jhazmat_2021_126650 crossref_primary_10_1016_j_jcis_2022_03_095 crossref_primary_10_1002_asia_202001033 crossref_primary_10_1016_j_apsusc_2021_151999 crossref_primary_10_1021_acssuschemeng_0c00060 crossref_primary_10_1039_D4TA07846B crossref_primary_10_1016_j_electacta_2022_140183 crossref_primary_10_1021_acsami_1c18739 crossref_primary_10_1016_j_cej_2024_151216 crossref_primary_10_1016_j_apsusc_2022_155079 crossref_primary_10_3390_catal13010148 crossref_primary_10_1016_j_nanoen_2020_105606 crossref_primary_10_1016_j_cclet_2023_109222 crossref_primary_10_1002_cssc_202002544 crossref_primary_10_1021_acs_iecr_3c03755 crossref_primary_10_1002_cnma_201900231 crossref_primary_10_1016_j_colsurfa_2024_134374 crossref_primary_10_1007_s12598_023_02536_1 crossref_primary_10_1039_D0TA08123J crossref_primary_10_1002_aenm_202400975 crossref_primary_10_1016_j_jallcom_2024_176366 crossref_primary_10_1016_j_apsusc_2022_155624 crossref_primary_10_1039_D2QI01764D crossref_primary_10_1039_D4NJ00357H crossref_primary_10_1016_j_isci_2022_105360 crossref_primary_10_1016_j_nanoen_2020_104761 |
Cites_doi | 10.1021/ja501866r 10.1021/ja405997s 10.1021/cs401245q 10.1002/aenm.201600621 10.1021/acs.jpcc.5b00105 10.1021/ja407115p 10.1039/f19837901769 10.1021/ja405351s 10.1021/acscatal.5b01551 10.1038/srep02902 10.1016/j.susc.2006.01.041 10.1021/jz2016507 10.1039/C3DT52260A 10.1039/c3nr02678g 10.1038/srep04596 10.1002/aenm.201500245 10.1002/aenm.201400696 10.1016/j.apsusc.2007.09.063 10.1021/ja5082553 10.1002/aenm.201500412 10.1002/anie.201502226 10.1039/c3ta10689f 10.1021/ja4027715 10.1126/science.aaf5039 10.1016/S0378-7753(99)00437-1 10.1038/nmat3087 10.1038/ncomms12876 10.1021/ja502379c 10.1002/cssc.201301019 10.2138/am-2004-11-1208 10.1002/adma.201602270 10.1016/j.electacta.2010.11.062 10.1038/srep08460 10.1021/cs3003098 10.1039/C4CC01625D 10.1002/anie.201600687 10.1002/sia.1984 10.1016/j.apsusc.2004.05.112 10.1039/C5TA07586F 10.1021/am300835p 10.1016/S1452-3981(23)15531-3 10.1021/jacs.5b06814 10.1021/ja511559d 10.1155/2014/416765 10.1021/jacs.6b00332 10.1038/ncomms7616 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsenergylett.8b00696 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2380-8195 |
EndPage | 1520 |
ExternalDocumentID | 10_1021_acsenergylett_8b00696 c728776735 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a361t-c3171c052fafa26456290c20469a453df6b1b0e1440ea269d47c5164c72da35e3 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Thu Apr 24 23:01:52 EDT 2025 Tue Jul 01 01:58:15 EDT 2025 Thu Aug 27 13:41:54 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a361t-c3171c052fafa26456290c20469a453df6b1b0e1440ea269d47c5164c72da35e3 |
ORCID | 0000-0002-1729-5963 0000-0001-7007-5946 0000-0001-5442-7294 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1021_acsenergylett_8b00696 crossref_primary_10_1021_acsenergylett_8b00696 acs_journals_10_1021_acsenergylett_8b00696 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-13 |
PublicationDateYYYYMMDD | 2018-07-13 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-13 day: 13 |
PublicationDecade | 2010 |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Lyons M. E. G. (ref15/cit15) 2008; 3 Colomban P. (ref32/cit32) 2011 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref35/cit35 doi: 10.1021/ja501866r – ident: ref13/cit13 doi: 10.1021/ja405997s – ident: ref16/cit16 doi: 10.1021/cs401245q – ident: ref7/cit7 doi: 10.1002/aenm.201600621 – ident: ref5/cit5 doi: 10.1021/acs.jpcc.5b00105 – ident: ref1/cit1 doi: 10.1021/ja407115p – ident: ref18/cit18 doi: 10.1039/f19837901769 – ident: ref33/cit33 doi: 10.1021/ja405351s – ident: ref43/cit43 doi: 10.1021/acscatal.5b01551 – ident: ref20/cit20 doi: 10.1038/srep02902 – ident: ref21/cit21 doi: 10.1016/j.susc.2006.01.041 – ident: ref44/cit44 doi: 10.1021/jz2016507 – ident: ref23/cit23 doi: 10.1039/C3DT52260A – ident: ref37/cit37 doi: 10.1039/c3nr02678g – ident: ref29/cit29 doi: 10.1038/srep04596 – ident: ref40/cit40 doi: 10.1002/aenm.201500245 – ident: ref39/cit39 doi: 10.1002/aenm.201400696 – ident: ref24/cit24 doi: 10.1016/j.apsusc.2007.09.063 – ident: ref46/cit46 doi: 10.1021/ja5082553 – ident: ref3/cit3 doi: 10.1002/aenm.201500412 – ident: ref11/cit11 doi: 10.1002/anie.201502226 – ident: ref36/cit36 doi: 10.1039/c3ta10689f – ident: ref47/cit47 doi: 10.1021/ja4027715 – ident: ref4/cit4 doi: 10.1126/science.aaf5039 – ident: ref34/cit34 doi: 10.1016/S0378-7753(99)00437-1 – ident: ref2/cit2 doi: 10.1038/nmat3087 – ident: ref9/cit9 doi: 10.1038/ncomms12876 – ident: ref6/cit6 doi: 10.1021/ja502379c – ident: ref41/cit41 doi: 10.1002/cssc.201301019 – ident: ref26/cit26 doi: 10.2138/am-2004-11-1208 – ident: ref8/cit8 doi: 10.1002/adma.201602270 – ident: ref45/cit45 doi: 10.1016/j.electacta.2010.11.062 – ident: ref19/cit19 doi: 10.1038/srep08460 – ident: ref12/cit12 doi: 10.1021/cs3003098 – ident: ref30/cit30 doi: 10.1039/C4CC01625D – ident: ref10/cit10 doi: 10.1002/anie.201600687 – ident: ref22/cit22 doi: 10.1002/sia.1984 – ident: ref25/cit25 doi: 10.1016/j.apsusc.2004.05.112 – ident: ref42/cit42 doi: 10.1039/C5TA07586F – ident: ref31/cit31 doi: 10.1021/am300835p – volume: 3 start-page: 1386 issue: 12 year: 2008 ident: ref15/cit15 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15531-3 – ident: ref27/cit27 doi: 10.1021/jacs.5b06814 – ident: ref14/cit14 doi: 10.1021/ja511559d – ident: ref38/cit38 doi: 10.1155/2014/416765 – start-page: 567 volume-title: New Trends and Developments in Automotive System Engineering year: 2011 ident: ref32/cit32 – ident: ref28/cit28 doi: 10.1021/jacs.6b00332 – ident: ref17/cit17 doi: 10.1038/ncomms7616 |
SSID | ssj0001685858 |
Score | 2.5413296 |
Snippet | Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1515 |
Title | Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts |
URI | http://dx.doi.org/10.1021/acsenergylett.8b00696 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2380-8195 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001685858 issn: 2380-8195 databaseCode: ACS dateStart: 20160708 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFJ4gXvTgbsQtc_BkUqDTTpcjEgiaCEbFcGtmqxq0GFqMePI_-A_9Jb5pi2IMLuf2NdOZN3nf276H0IEgYEeoDA3bZsKwKVcGA1xgCO4R7noK7phuTj5tO62ufdKjvQKqzMjgE7PCRKzSNjj4j6TsaTXxnTk0TxzP1N5WrX7xGVRJ2dTTKXSWVzV0jmjStTPrS9oqiXjKKk2Zl-YyOps06WRVJf3yKOFl8fyds_GvK19BSznUxLVMN1ZRQUVraHGKgHAdDc6yarzoGneexqBLuPGY6yI-V1nPQ4zzWT74WFe1y4xuFg_CicgVE-mIX3hxgI9A62_u2bCP27dN9fby2um0cF3HiMZxEm-gbrNxWW8Z-QgGg1mOmRgC4IUpqpSELGSAnQAt-VVBtFPNbGrJ0OEmryqdIVbw3Je2Kyh4YMIlkllUWZuoGA0itYUwdzzpuBKsn1S264c-GM2QSp_7ppLUJyV0CBsW5FcoDtLsODGDL7sY5LtYQvbkvAKRk5nrmRp3v4mVP8QeMjaPnwW2_7OoHbQAcMrTkV_T2kXFZDhSewBZEr6fquk7HqTtbQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05IKc3iLEeoWpWtRey3yFsAFVpEAqKc-Af-kC9h7KRQkABxTTLW2JnRPHs8bwDWhYNxhMrE8jwmLI9yZTHEBZbgocODUKGP6eLkg4ZfP_V2L-jFAPi9WhhUIsWRUpPE_2QXsDfxmTLVcDidrBRqa4n8QRg2bCgaElWOP89WDKm6aUbnhmVLp4p6xTs_jaSDk0j7glNflKlNwPmHfuZySav0kPGSeP5G3fj_CUzCeAE8yVZuKVMwoNrTMNZHRzgDncP8bl77kjSfumhZpPpYWCY5UnkFREqKzj5kR99xlzn5LOkkPZEzJkzDX_ywQ7bRB65u2X2LNK5r6u3ltdmsk4o-MeqmWToLp7XqSaVuFQ0ZLOb6dmYJBBu2KFMnYQlDJIXYKSoLR2-xmUddmfjc5mWl88UK30fSCwTF_ZgIHMlcqtw5GGp32moeCPdD6QcSY6FUXhAlEYbQhMqIR7aSNHIWYAMXLC4cKo1Nrtyx4y-rGBeruABe77fFoqA21x02bv4SK32I3eXcHr8LLP5HqTUYqZ8c7Mf7O429JRhFoBXqM2HbXYah7P5BrSCYyfiqsdx3w9X12A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgSAgO7IgdHzghJTSLsxyhEJWtRWxC4hB5C6BCi5oUUU78A3_IlzBOXChIgOCaZCzbmdE8e2beILTGbfAjRCSG61JuuIRJgwIuMDgLbOYHEmxMFScf1rzqmbt3QS50VqWqhYFJpDBSmgfxlVXfi0QzDFgb8FzmFXGwpMwMlMaE3iAaIooGTsGiysnH_UpOrJ43pHOCsqHCRb0Cnu9GUg6Kp30Oqs_TROPo8n2OeYJJw-xkzORPX-gb_7eICTSmASjeLDRmEg3I5hQa7aMlnEatoyJHr3mF649d0DC886A1FB_LohIixbrDD95Vue6iIKHFraQnck553vgXPmzhLbCF6zvabuDaTSRfn1_q9SquqJujbpqlM-gs2jmtVA3dmMGgjmdlBgfQYfEysROaUEBUgKHCMrfVUZu6xBGJxyxWlipuLOF9KFyfEziXcd8W1CHSmUWlZqsp5xBmXiA8X4BPFNL1wyQEV5oQEbLQkoKE9jxahw2LtWGlcR4zt6340y7Gehfnkdv7dTHXFOeq08btb2Lmu9h9wfHxs8DCXya1ioaPtqP4YLe2v4hGAG8F6mrYcpZQKWt35DJgmoyt5Mr7BncF-FI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+Oxygen+Evolution+Reactions+through+Introduction+of+Oxygen+Vacancies+to+Benchmark+NiFe%E2%80%93OOH+Catalysts&rft.jtitle=ACS+energy+letters&rft.au=Asnavandi%2C+Majid&rft.au=Yin%2C+Yichun&rft.au=Li%2C+Yibing&rft.au=Sun%2C+Chenghua&rft.date=2018-07-13&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=3&rft.issue=7&rft.spage=1515&rft.epage=1520&rft_id=info:doi/10.1021%2Facsenergylett.8b00696&rft.externalDocID=c728776735 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |