Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts

Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for electrochemical water splitting. Herein, NiFe-based catalysts with appropriate electronic conductivity and catalytic activity have been obtained through...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 3; no. 7; pp. 1515 - 1520
Main Authors Asnavandi, Majid, Yin, Yichun, Li, Yibing, Sun, Chenghua, Zhao, Chuan
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.07.2018
Online AccessGet full text
ISSN2380-8195
2380-8195
DOI10.1021/acsenergylett.8b00696

Cover

Abstract Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for electrochemical water splitting. Herein, NiFe-based catalysts with appropriate electronic conductivity and catalytic activity have been obtained through introduction of oxygen vacancies by a facile and economic NaBH4 reduction approach. The combined density functional theory calculations, physical characterization, and electrochemical studies disclose that the reductive treatment creates a high amount of oxygen vacancies, high active sites, and a low energy barrier for OER. The oxygen vacancy-rich catalyst yields a more than 2-fold increased current density (from 100 to 240 mA cm–2) at a low overpotential of 270 mV, accompanied by good stability under OER conditions. The approach is also broadly applicable for NiFe compounds synthesized via different methods or substrates.
AbstractList Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for electrochemical water splitting. Herein, NiFe-based catalysts with appropriate electronic conductivity and catalytic activity have been obtained through introduction of oxygen vacancies by a facile and economic NaBH4 reduction approach. The combined density functional theory calculations, physical characterization, and electrochemical studies disclose that the reductive treatment creates a high amount of oxygen vacancies, high active sites, and a low energy barrier for OER. The oxygen vacancy-rich catalyst yields a more than 2-fold increased current density (from 100 to 240 mA cm–2) at a low overpotential of 270 mV, accompanied by good stability under OER conditions. The approach is also broadly applicable for NiFe compounds synthesized via different methods or substrates.
Author Asnavandi, Majid
Yin, Yichun
Zhao, Chuan
Li, Yibing
Sun, Chenghua
AuthorAffiliation Faculty of Science, Engineering & Technology
School of Chemistry, Faculty of Science
Swinburne University of Technology
School of Chemistry
AuthorAffiliation_xml – name: Swinburne University of Technology
– name: Faculty of Science, Engineering & Technology
– name: School of Chemistry, Faculty of Science
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Majid
  orcidid: 0000-0001-5442-7294
  surname: Asnavandi
  fullname: Asnavandi, Majid
  organization: School of Chemistry
– sequence: 2
  givenname: Yichun
  surname: Yin
  fullname: Yin, Yichun
  organization: School of Chemistry, Faculty of Science
– sequence: 3
  givenname: Yibing
  orcidid: 0000-0002-1729-5963
  surname: Li
  fullname: Li, Yibing
  organization: School of Chemistry
– sequence: 4
  givenname: Chenghua
  surname: Sun
  fullname: Sun, Chenghua
  email: chenghuasun@swin.edu.au
  organization: Swinburne University of Technology
– sequence: 5
  givenname: Chuan
  orcidid: 0000-0001-7007-5946
  surname: Zhao
  fullname: Zhao, Chuan
  email: chuan.zhao@unsw.edu.au
  organization: School of Chemistry
BookMark eNqFkMFOwzAMhiM0JMbYIyDlBTqStslacYJpY5MmihBwrbw07Tq6BCUpojfegTfkSWjZkIDL5IMt25_l_z9FPaWVROickhElPr0AYaWSpmgq6dwoWhHCY36E-n4QES-iMev9qk_Q0NoNIYTyiLXRR_rO6K12pSpw8tYUUuHpq65qV2qF7yWIrrDYrY2uizVeKGd0Vn93sc5_kCcQoEQp20WNr6US6y2YZ3xbzuTn-0eSzPEEHFSNdfYMHedQWTnc5wF6nE0fJnNvmdwsJldLDwJOnScCOqaCMD-HHHweMu7HRPgk5DGELMhyvqIrImkYEtnO4ywcC0Z5KMZ-BgGTwQBd7u4Ko601Mk9F6aD72xkoq5SStLMv_WNfurevpdk_-sWUrabmIEd3XDtON7o2qtV4gPkCoz6QBQ
CitedBy_id crossref_primary_10_1021_acsnano_0c09217
crossref_primary_10_1021_acsenergylett_2c01493
crossref_primary_10_1016_j_ijhydene_2025_02_102
crossref_primary_10_1016_j_jcis_2024_02_195
crossref_primary_10_1016_S1872_2067_20_63638_5
crossref_primary_10_1021_acssuschemeng_4c00318
crossref_primary_10_1016_j_ijhydene_2022_04_226
crossref_primary_10_1016_j_jcis_2023_04_086
crossref_primary_10_1016_j_jechem_2022_11_041
crossref_primary_10_1002_adma_202205814
crossref_primary_10_1016_j_jechem_2022_03_048
crossref_primary_10_1103_PhysRevApplied_21_054066
crossref_primary_10_1016_j_mcat_2024_114164
crossref_primary_10_1021_acsami_4c01872
crossref_primary_10_1039_D0RA08223F
crossref_primary_10_1021_acssuschemeng_0c04542
crossref_primary_10_1016_j_apcatb_2019_118154
crossref_primary_10_1021_acs_jpcc_0c03930
crossref_primary_10_1002_celc_202200148
crossref_primary_10_1021_acscatal_1c01447
crossref_primary_10_3390_colloids7010014
crossref_primary_10_1016_j_ijhydene_2021_08_080
crossref_primary_10_1016_j_cclet_2020_09_030
crossref_primary_10_1038_s41467_024_51951_0
crossref_primary_10_1002_aenm_202401449
crossref_primary_10_1021_acsmaterialslett_0c00434
crossref_primary_10_1016_j_apsusc_2023_158831
crossref_primary_10_1002_adma_202110696
crossref_primary_10_1002_chem_202302251
crossref_primary_10_1021_acsami_3c01877
crossref_primary_10_1039_C9TA02349F
crossref_primary_10_1016_j_coco_2021_100780
crossref_primary_10_1016_j_electacta_2021_137817
crossref_primary_10_1016_j_ijhydene_2023_05_333
crossref_primary_10_1021_acscatal_2c05426
crossref_primary_10_1002_smll_202300959
crossref_primary_10_1016_j_jcis_2020_06_065
crossref_primary_10_1021_acscatal_2c05783
crossref_primary_10_1039_D2TA04833G
crossref_primary_10_1002_smll_202407564
crossref_primary_10_1016_j_jcis_2024_07_118
crossref_primary_10_1002_smll_202001752
crossref_primary_10_1016_j_cej_2024_152860
crossref_primary_10_1002_aenm_202400029
crossref_primary_10_3866_PKU_WHXB202303059
crossref_primary_10_1002_chem_202403863
crossref_primary_10_1016_j_mtchem_2023_101632
crossref_primary_10_1007_s12274_020_3202_1
crossref_primary_10_1016_j_jpowsour_2020_228748
crossref_primary_10_1002_adma_202411134
crossref_primary_10_1002_cssc_201901020
crossref_primary_10_1039_D2TA09817B
crossref_primary_10_1021_acscatal_0c01906
crossref_primary_10_1016_j_apcatb_2023_122808
crossref_primary_10_1039_D2EE00951J
crossref_primary_10_1021_acscatal_2c03351
crossref_primary_10_1021_acsmaterialslett_9b00414
crossref_primary_10_1021_acssuschemeng_9b01178
crossref_primary_10_3390_ma16083280
crossref_primary_10_1016_j_jcat_2022_04_009
crossref_primary_10_1016_j_electacta_2019_06_089
crossref_primary_10_1016_j_ijhydene_2023_07_029
crossref_primary_10_1007_s40145_022_0604_4
crossref_primary_10_1016_j_cep_2023_109608
crossref_primary_10_1007_s40843_022_2415_8
crossref_primary_10_1039_C9TA12713E
crossref_primary_10_1016_j_apcatb_2021_120314
crossref_primary_10_1016_j_jiec_2022_05_043
crossref_primary_10_1039_D0EE00877J
crossref_primary_10_1016_j_molliq_2021_116186
crossref_primary_10_1021_acsanm_4c01840
crossref_primary_10_1016_j_cej_2020_125738
crossref_primary_10_1039_D1CC06314F
crossref_primary_10_1016_j_electacta_2022_140455
crossref_primary_10_1016_j_jcis_2022_04_160
crossref_primary_10_1039_C9NR07465A
crossref_primary_10_1039_D0TA09788H
crossref_primary_10_1002_cssc_202000884
crossref_primary_10_1016_j_ijhydene_2023_01_184
crossref_primary_10_1039_D0TA08089F
crossref_primary_10_1007_s40843_020_1566_6
crossref_primary_10_1016_j_synthmet_2021_116894
crossref_primary_10_1021_acsaem_0c01040
crossref_primary_10_1021_acsanm_3c00537
crossref_primary_10_1002_ente_202100264
crossref_primary_10_1039_C9TA12768B
crossref_primary_10_1149_1945_7111_ab6a80
crossref_primary_10_1016_j_jcis_2022_08_068
crossref_primary_10_1016_j_jmat_2024_100976
crossref_primary_10_1021_acsaem_3c02631
crossref_primary_10_1039_D0TA10740A
crossref_primary_10_1002_smll_202103501
crossref_primary_10_1016_j_ijhydene_2020_11_072
crossref_primary_10_1021_acs_chemrev_1c01003
crossref_primary_10_1039_C8TA11273H
crossref_primary_10_20517_microstructures_2023_93
crossref_primary_10_1002_gch2_202300199
crossref_primary_10_1039_D3QM00472D
crossref_primary_10_1016_j_apcatb_2019_117911
crossref_primary_10_1021_acscatal_0c02501
crossref_primary_10_1016_j_apcatb_2023_123448
crossref_primary_10_1039_D4TA01706D
crossref_primary_10_1002_adma_202311698
crossref_primary_10_1021_acscatal_4c06095
crossref_primary_10_1016_j_jelechem_2022_116650
crossref_primary_10_1039_D0TA06485H
crossref_primary_10_1039_D4TA05017G
crossref_primary_10_1002_smll_202107739
crossref_primary_10_1016_j_ijhydene_2021_06_054
crossref_primary_10_1039_D0TA03272G
crossref_primary_10_1021_acsenergylett_9b01922
crossref_primary_10_1021_acscatal_0c03272
crossref_primary_10_1021_acs_langmuir_0c02943
crossref_primary_10_1002_smll_201805435
crossref_primary_10_1016_j_nanoen_2021_106030
crossref_primary_10_3740_MRSK_2022_32_8_339
crossref_primary_10_1016_j_apcatb_2020_119740
crossref_primary_10_1016_j_cej_2023_142855
crossref_primary_10_1021_acsenergylett_8b01974
crossref_primary_10_1021_acsami_0c11847
crossref_primary_10_1016_j_ijhydene_2024_11_482
crossref_primary_10_1016_j_jssc_2023_124048
crossref_primary_10_1021_acs_inorgchem_2c02947
crossref_primary_10_1039_C9CY02328C
crossref_primary_10_1039_D2CY00148A
crossref_primary_10_1039_D1TA09627C
crossref_primary_10_1021_acsami_1c00484
crossref_primary_10_1002_anie_202215256
crossref_primary_10_1021_acsenergylett_9b00867
crossref_primary_10_1002_cphc_201900507
crossref_primary_10_1016_j_jpcs_2024_112219
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1021_acsanm_1c00581
crossref_primary_10_1016_j_jallcom_2021_162038
crossref_primary_10_1039_D0RA03856C
crossref_primary_10_1002_celc_202100030
crossref_primary_10_1016_j_jechem_2022_08_011
crossref_primary_10_1039_D1TA05332A
crossref_primary_10_1002_smll_202002412
crossref_primary_10_1021_acs_inorgchem_1c03236
crossref_primary_10_1016_j_ijhydene_2021_12_189
crossref_primary_10_1021_acs_jpcc_2c05666
crossref_primary_10_1002_adfm_202009070
crossref_primary_10_1016_j_gee_2022_12_003
crossref_primary_10_1002_smll_202100203
crossref_primary_10_1039_C9CE01883B
crossref_primary_10_1016_j_jmst_2023_08_051
crossref_primary_10_1016_j_electacta_2023_143641
crossref_primary_10_1063_5_0139102
crossref_primary_10_1021_acscatal_0c01862
crossref_primary_10_1002_adma_202209338
crossref_primary_10_1021_acs_chemmater_1c00008
crossref_primary_10_2351_7_0000056
crossref_primary_10_1021_acsaem_3c00139
crossref_primary_10_3365_KJMM_2024_62_6_472
crossref_primary_10_1021_acsaem_9b02022
crossref_primary_10_1016_j_apsusc_2023_156945
crossref_primary_10_1039_C9NR09027D
crossref_primary_10_1016_j_jcis_2024_03_044
crossref_primary_10_1016_j_ccr_2023_215274
crossref_primary_10_1021_acsanm_3c05983
crossref_primary_10_1039_D1CP01291F
crossref_primary_10_1002_ange_202215256
crossref_primary_10_1039_D2TA05356J
crossref_primary_10_1021_acs_jpcc_8b11509
crossref_primary_10_1002_admi_202102154
crossref_primary_10_1007_s40242_020_0107_1
crossref_primary_10_1002_adma_202211884
crossref_primary_10_1039_D0TA05594H
crossref_primary_10_1016_j_fuel_2024_131214
crossref_primary_10_1002_slct_202201844
crossref_primary_10_1039_D2QM00964A
crossref_primary_10_1007_s11467_020_0999_8
crossref_primary_10_1002_aenm_202001377
crossref_primary_10_1002_adfm_202209543
crossref_primary_10_1016_j_xcrp_2022_100870
crossref_primary_10_1039_C9SE01208G
crossref_primary_10_1016_j_eng_2022_03_023
crossref_primary_10_1016_j_fuel_2025_134415
crossref_primary_10_1002_aenm_202002228
crossref_primary_10_20964_2019_12_61
crossref_primary_10_1016_S1872_2067_21_63855_X
crossref_primary_10_1002_adfm_202409559
crossref_primary_10_1016_j_cej_2022_136693
crossref_primary_10_1016_j_cej_2022_137540
crossref_primary_10_1038_s41467_021_24828_9
crossref_primary_10_1016_S1872_2067_19_63514_X
crossref_primary_10_1002_adfm_202200726
crossref_primary_10_1016_j_apcatb_2022_121150
crossref_primary_10_1016_j_jcis_2024_12_172
crossref_primary_10_1016_j_cjsc_2023_100210
crossref_primary_10_1016_j_apcatb_2022_121713
crossref_primary_10_1016_j_jhazmat_2022_130444
crossref_primary_10_1016_j_jelechem_2022_116047
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_3390_nano11092237
crossref_primary_10_1016_j_ijhydene_2024_10_366
crossref_primary_10_1016_j_cej_2022_140030
crossref_primary_10_1016_j_colsurfa_2021_127142
crossref_primary_10_1002_aenm_202002215
crossref_primary_10_1007_s12598_022_02003_3
crossref_primary_10_1021_acsenergylett_0c01584
crossref_primary_10_1016_j_apsusc_2020_146755
crossref_primary_10_1016_j_apsusc_2020_148813
crossref_primary_10_1021_acs_energyfuels_0c02550
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1002_adfm_202211273
crossref_primary_10_1007_s11426_023_1649_y
crossref_primary_10_1039_D2CC01602H
crossref_primary_10_1039_D2DT00749E
crossref_primary_10_1021_acsaem_0c00872
crossref_primary_10_1021_acs_inorgchem_3c00541
crossref_primary_10_1016_j_jiec_2018_12_028
crossref_primary_10_1016_j_jmst_2024_02_068
crossref_primary_10_1039_C8NR08104B
crossref_primary_10_1039_D0EE01609H
crossref_primary_10_1039_D0TA00422G
crossref_primary_10_1016_j_trechm_2019_03_006
crossref_primary_10_1021_acs_chemrev_2c00515
crossref_primary_10_1016_j_fuproc_2021_106945
crossref_primary_10_1016_j_jhazmat_2022_129212
crossref_primary_10_1002_smll_202002210
crossref_primary_10_1002_smll_202310064
crossref_primary_10_1021_jacs_3c05898
crossref_primary_10_1002_cctc_201900718
crossref_primary_10_1016_j_apcatb_2023_122617
crossref_primary_10_1039_D0GC00168F
crossref_primary_10_1016_j_jechem_2020_02_031
crossref_primary_10_1016_j_mssp_2024_108870
crossref_primary_10_1007_s11581_025_06113_7
crossref_primary_10_1021_acs_inorgchem_0c03514
crossref_primary_10_1016_j_cej_2024_156124
crossref_primary_10_1016_j_jcis_2024_04_169
crossref_primary_10_1007_s40843_022_2061_x
crossref_primary_10_1016_j_jpowsour_2021_230097
crossref_primary_10_1002_advs_202500896
crossref_primary_10_1016_j_solidstatesciences_2020_106314
crossref_primary_10_1002_cey2_79
crossref_primary_10_1002_cssc_202400961
crossref_primary_10_1002_bte2_20240069
crossref_primary_10_1016_S1872_2067_23_64557_7
crossref_primary_10_1002_smll_202500687
crossref_primary_10_1021_acsnano_0c03380
crossref_primary_10_1002_celc_202200746
crossref_primary_10_1016_j_ijhydene_2019_11_156
crossref_primary_10_1002_smll_202408266
crossref_primary_10_1021_acsami_1c12053
crossref_primary_10_1007_s10800_025_02295_0
crossref_primary_10_1039_D4RE00539B
crossref_primary_10_1039_D3CY00789H
crossref_primary_10_1016_j_cej_2021_133115
crossref_primary_10_1016_j_cej_2023_145293
crossref_primary_10_1016_j_ijhydene_2024_01_338
crossref_primary_10_1021_acs_inorgchem_3c01666
crossref_primary_10_1016_j_apcatb_2023_123490
crossref_primary_10_1016_j_electacta_2022_140071
crossref_primary_10_1016_j_jcis_2023_08_194
crossref_primary_10_1016_j_cej_2023_144639
crossref_primary_10_1016_j_cej_2022_140507
crossref_primary_10_1021_acssuschemeng_9b02296
crossref_primary_10_1016_j_ijhydene_2022_04_255
crossref_primary_10_1016_j_cej_2022_137226
crossref_primary_10_1016_j_chemosphere_2023_137825
crossref_primary_10_1016_j_renene_2024_121307
crossref_primary_10_1016_j_apcato_2024_206930
crossref_primary_10_1021_acsaem_1c00776
crossref_primary_10_1016_j_jhazmat_2021_126650
crossref_primary_10_1016_j_jcis_2022_03_095
crossref_primary_10_1002_asia_202001033
crossref_primary_10_1016_j_apsusc_2021_151999
crossref_primary_10_1021_acssuschemeng_0c00060
crossref_primary_10_1039_D4TA07846B
crossref_primary_10_1016_j_electacta_2022_140183
crossref_primary_10_1021_acsami_1c18739
crossref_primary_10_1016_j_cej_2024_151216
crossref_primary_10_1016_j_apsusc_2022_155079
crossref_primary_10_3390_catal13010148
crossref_primary_10_1016_j_nanoen_2020_105606
crossref_primary_10_1016_j_cclet_2023_109222
crossref_primary_10_1002_cssc_202002544
crossref_primary_10_1021_acs_iecr_3c03755
crossref_primary_10_1002_cnma_201900231
crossref_primary_10_1016_j_colsurfa_2024_134374
crossref_primary_10_1007_s12598_023_02536_1
crossref_primary_10_1039_D0TA08123J
crossref_primary_10_1002_aenm_202400975
crossref_primary_10_1016_j_jallcom_2024_176366
crossref_primary_10_1016_j_apsusc_2022_155624
crossref_primary_10_1039_D2QI01764D
crossref_primary_10_1039_D4NJ00357H
crossref_primary_10_1016_j_isci_2022_105360
crossref_primary_10_1016_j_nanoen_2020_104761
Cites_doi 10.1021/ja501866r
10.1021/ja405997s
10.1021/cs401245q
10.1002/aenm.201600621
10.1021/acs.jpcc.5b00105
10.1021/ja407115p
10.1039/f19837901769
10.1021/ja405351s
10.1021/acscatal.5b01551
10.1038/srep02902
10.1016/j.susc.2006.01.041
10.1021/jz2016507
10.1039/C3DT52260A
10.1039/c3nr02678g
10.1038/srep04596
10.1002/aenm.201500245
10.1002/aenm.201400696
10.1016/j.apsusc.2007.09.063
10.1021/ja5082553
10.1002/aenm.201500412
10.1002/anie.201502226
10.1039/c3ta10689f
10.1021/ja4027715
10.1126/science.aaf5039
10.1016/S0378-7753(99)00437-1
10.1038/nmat3087
10.1038/ncomms12876
10.1021/ja502379c
10.1002/cssc.201301019
10.2138/am-2004-11-1208
10.1002/adma.201602270
10.1016/j.electacta.2010.11.062
10.1038/srep08460
10.1021/cs3003098
10.1039/C4CC01625D
10.1002/anie.201600687
10.1002/sia.1984
10.1016/j.apsusc.2004.05.112
10.1039/C5TA07586F
10.1021/am300835p
10.1016/S1452-3981(23)15531-3
10.1021/jacs.5b06814
10.1021/ja511559d
10.1155/2014/416765
10.1021/jacs.6b00332
10.1038/ncomms7616
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsenergylett.8b00696
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 1520
ExternalDocumentID 10_1021_acsenergylett_8b00696
c728776735
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a361t-c3171c052fafa26456290c20469a453df6b1b0e1440ea269d47c5164c72da35e3
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Thu Apr 24 23:01:52 EDT 2025
Tue Jul 01 01:58:15 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-c3171c052fafa26456290c20469a453df6b1b0e1440ea269d47c5164c72da35e3
ORCID 0000-0002-1729-5963
0000-0001-7007-5946
0000-0001-5442-7294
PageCount 6
ParticipantIDs crossref_citationtrail_10_1021_acsenergylett_8b00696
crossref_primary_10_1021_acsenergylett_8b00696
acs_journals_10_1021_acsenergylett_8b00696
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-13
PublicationDateYYYYMMDD 2018-07-13
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-13
  day: 13
PublicationDecade 2010
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Lyons M. E. G. (ref15/cit15) 2008; 3
Colomban P. (ref32/cit32) 2011
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref35/cit35
  doi: 10.1021/ja501866r
– ident: ref13/cit13
  doi: 10.1021/ja405997s
– ident: ref16/cit16
  doi: 10.1021/cs401245q
– ident: ref7/cit7
  doi: 10.1002/aenm.201600621
– ident: ref5/cit5
  doi: 10.1021/acs.jpcc.5b00105
– ident: ref1/cit1
  doi: 10.1021/ja407115p
– ident: ref18/cit18
  doi: 10.1039/f19837901769
– ident: ref33/cit33
  doi: 10.1021/ja405351s
– ident: ref43/cit43
  doi: 10.1021/acscatal.5b01551
– ident: ref20/cit20
  doi: 10.1038/srep02902
– ident: ref21/cit21
  doi: 10.1016/j.susc.2006.01.041
– ident: ref44/cit44
  doi: 10.1021/jz2016507
– ident: ref23/cit23
  doi: 10.1039/C3DT52260A
– ident: ref37/cit37
  doi: 10.1039/c3nr02678g
– ident: ref29/cit29
  doi: 10.1038/srep04596
– ident: ref40/cit40
  doi: 10.1002/aenm.201500245
– ident: ref39/cit39
  doi: 10.1002/aenm.201400696
– ident: ref24/cit24
  doi: 10.1016/j.apsusc.2007.09.063
– ident: ref46/cit46
  doi: 10.1021/ja5082553
– ident: ref3/cit3
  doi: 10.1002/aenm.201500412
– ident: ref11/cit11
  doi: 10.1002/anie.201502226
– ident: ref36/cit36
  doi: 10.1039/c3ta10689f
– ident: ref47/cit47
  doi: 10.1021/ja4027715
– ident: ref4/cit4
  doi: 10.1126/science.aaf5039
– ident: ref34/cit34
  doi: 10.1016/S0378-7753(99)00437-1
– ident: ref2/cit2
  doi: 10.1038/nmat3087
– ident: ref9/cit9
  doi: 10.1038/ncomms12876
– ident: ref6/cit6
  doi: 10.1021/ja502379c
– ident: ref41/cit41
  doi: 10.1002/cssc.201301019
– ident: ref26/cit26
  doi: 10.2138/am-2004-11-1208
– ident: ref8/cit8
  doi: 10.1002/adma.201602270
– ident: ref45/cit45
  doi: 10.1016/j.electacta.2010.11.062
– ident: ref19/cit19
  doi: 10.1038/srep08460
– ident: ref12/cit12
  doi: 10.1021/cs3003098
– ident: ref30/cit30
  doi: 10.1039/C4CC01625D
– ident: ref10/cit10
  doi: 10.1002/anie.201600687
– ident: ref22/cit22
  doi: 10.1002/sia.1984
– ident: ref25/cit25
  doi: 10.1016/j.apsusc.2004.05.112
– ident: ref42/cit42
  doi: 10.1039/C5TA07586F
– ident: ref31/cit31
  doi: 10.1021/am300835p
– volume: 3
  start-page: 1386
  issue: 12
  year: 2008
  ident: ref15/cit15
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15531-3
– ident: ref27/cit27
  doi: 10.1021/jacs.5b06814
– ident: ref14/cit14
  doi: 10.1021/ja511559d
– ident: ref38/cit38
  doi: 10.1155/2014/416765
– start-page: 567
  volume-title: New Trends and Developments in Automotive System Engineering
  year: 2011
  ident: ref32/cit32
– ident: ref28/cit28
  doi: 10.1021/jacs.6b00332
– ident: ref17/cit17
  doi: 10.1038/ncomms7616
SSID ssj0001685858
Score 2.5413296
Snippet Advanced electrocatalysts toward oxygen evolution reaction (OER) at high current density with low overpotential remain a significant challenge for...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1515
Title Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts
URI http://dx.doi.org/10.1021/acsenergylett.8b00696
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2380-8195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001685858
  issn: 2380-8195
  databaseCode: ACS
  dateStart: 20160708
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFJ4gXvTgbsQtc_BkUqDTTpcjEgiaCEbFcGtmqxq0GFqMePI_-A_9Jb5pi2IMLuf2NdOZN3nf276H0IEgYEeoDA3bZsKwKVcGA1xgCO4R7noK7phuTj5tO62ufdKjvQKqzMjgE7PCRKzSNjj4j6TsaTXxnTk0TxzP1N5WrX7xGVRJ2dTTKXSWVzV0jmjStTPrS9oqiXjKKk2Zl-YyOps06WRVJf3yKOFl8fyds_GvK19BSznUxLVMN1ZRQUVraHGKgHAdDc6yarzoGneexqBLuPGY6yI-V1nPQ4zzWT74WFe1y4xuFg_CicgVE-mIX3hxgI9A62_u2bCP27dN9fby2um0cF3HiMZxEm-gbrNxWW8Z-QgGg1mOmRgC4IUpqpSELGSAnQAt-VVBtFPNbGrJ0OEmryqdIVbw3Je2Kyh4YMIlkllUWZuoGA0itYUwdzzpuBKsn1S264c-GM2QSp_7ppLUJyV0CBsW5FcoDtLsODGDL7sY5LtYQvbkvAKRk5nrmRp3v4mVP8QeMjaPnwW2_7OoHbQAcMrTkV_T2kXFZDhSewBZEr6fquk7HqTtbQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05IKc3iLEeoWpWtRey3yFsAFVpEAqKc-Af-kC9h7KRQkABxTTLW2JnRPHs8bwDWhYNxhMrE8jwmLI9yZTHEBZbgocODUKGP6eLkg4ZfP_V2L-jFAPi9WhhUIsWRUpPE_2QXsDfxmTLVcDidrBRqa4n8QRg2bCgaElWOP89WDKm6aUbnhmVLp4p6xTs_jaSDk0j7glNflKlNwPmHfuZySav0kPGSeP5G3fj_CUzCeAE8yVZuKVMwoNrTMNZHRzgDncP8bl77kjSfumhZpPpYWCY5UnkFREqKzj5kR99xlzn5LOkkPZEzJkzDX_ywQ7bRB65u2X2LNK5r6u3ltdmsk4o-MeqmWToLp7XqSaVuFQ0ZLOb6dmYJBBu2KFMnYQlDJIXYKSoLR2-xmUddmfjc5mWl88UK30fSCwTF_ZgIHMlcqtw5GGp32moeCPdD6QcSY6FUXhAlEYbQhMqIR7aSNHIWYAMXLC4cKo1Nrtyx4y-rGBeruABe77fFoqA21x02bv4SK32I3eXcHr8LLP5HqTUYqZ8c7Mf7O429JRhFoBXqM2HbXYah7P5BrSCYyfiqsdx3w9X12A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgSAgO7IgdHzghJTSLsxyhEJWtRWxC4hB5C6BCi5oUUU78A3_IlzBOXChIgOCaZCzbmdE8e2beILTGbfAjRCSG61JuuIRJgwIuMDgLbOYHEmxMFScf1rzqmbt3QS50VqWqhYFJpDBSmgfxlVXfi0QzDFgb8FzmFXGwpMwMlMaE3iAaIooGTsGiysnH_UpOrJ43pHOCsqHCRb0Cnu9GUg6Kp30Oqs_TROPo8n2OeYJJw-xkzORPX-gb_7eICTSmASjeLDRmEg3I5hQa7aMlnEatoyJHr3mF649d0DC886A1FB_LohIixbrDD95Vue6iIKHFraQnck553vgXPmzhLbCF6zvabuDaTSRfn1_q9SquqJujbpqlM-gs2jmtVA3dmMGgjmdlBgfQYfEysROaUEBUgKHCMrfVUZu6xBGJxyxWlipuLOF9KFyfEziXcd8W1CHSmUWlZqsp5xBmXiA8X4BPFNL1wyQEV5oQEbLQkoKE9jxahw2LtWGlcR4zt6340y7Gehfnkdv7dTHXFOeq08btb2Lmu9h9wfHxs8DCXya1ioaPtqP4YLe2v4hGAG8F6mrYcpZQKWt35DJgmoyt5Mr7BncF-FI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Promoting+Oxygen+Evolution+Reactions+through+Introduction+of+Oxygen+Vacancies+to+Benchmark+NiFe%E2%80%93OOH+Catalysts&rft.jtitle=ACS+energy+letters&rft.au=Asnavandi%2C+Majid&rft.au=Yin%2C+Yichun&rft.au=Li%2C+Yibing&rft.au=Sun%2C+Chenghua&rft.date=2018-07-13&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=3&rft.issue=7&rft.spage=1515&rft.epage=1520&rft_id=info:doi/10.1021%2Facsenergylett.8b00696&rft.externalDocID=c728776735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon