Efficient Model Learning from Joint-Action Demonstrations for Human-Robot Collaborative Tasks
We present a framework for automatically learning human user models from joint-action demonstrations that enables a robot to compute a robust policy for a collaborative task with a human. First, the demonstrated action sequences are clustered into different human types using an unsupervised learning...
Saved in:
Published in | Hri '15: ACM/IEEE International Conference on Human-Robot Interaction USB Stick pp. 189 - 196 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
ACM
02.03.2015
|
Subjects | |
Online Access | Get full text |
DOI | 10.1145/2696454.2696455 |
Cover
Abstract | We present a framework for automatically learning human user models from joint-action demonstrations that enables a robot to compute a robust policy for a collaborative task with a human. First, the demonstrated action sequences are clustered into different human types using an unsupervised learning algorithm. A reward function is then learned for each type through the employment of an inverse reinforcement learning algorithm. The learned model is then incorporated into a mixed-observability Markov decision process (MOMDP) formulation, wherein the human type is a partially observable variable. With this framework, we can infer online the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this user. In a human subject experiment (n=30), participants agreed more strongly that the robot anticipated their actions when working with a robot incorporating the proposed framework (p<;0.01), compared to manually annotating robot actions. In trials where participants faced difficulty annotating the robot actions to complete the task, the proposed framework significantly improved team efficiency (p <;0.01). The robot incorporating the framework was also found to be more responsive to human actions compared to policies computed using a hand-coded reward function by a domain expert (p<;0.01). These results indicate that learning human user models from joint-action demonstrations and encoding them in a MOMDP formalism can support effective teaming in human-robot collaborative tasks. |
---|---|
AbstractList | We present a framework for automatically learning human user models from joint-action demonstrations that enables a robot to compute a robust policy for a collaborative task with a human. First, the demonstrated action sequences are clustered into different human types using an unsupervised learning algorithm. A reward function is then learned for each type through the employment of an inverse reinforcement learning algorithm. The learned model is then incorporated into a mixed-observability Markov decision process (MOMDP) formulation, wherein the human type is a partially observable variable. With this framework, we can infer online the human type of a new user that was not included in the training set, and can compute a policy for the robot that will be aligned to the preference of this user. In a human subject experiment (n=30), participants agreed more strongly that the robot anticipated their actions when working with a robot incorporating the proposed framework (p<;0.01), compared to manually annotating robot actions. In trials where participants faced difficulty annotating the robot actions to complete the task, the proposed framework significantly improved team efficiency (p <;0.01). The robot incorporating the framework was also found to be more responsive to human actions compared to policies computed using a hand-coded reward function by a domain expert (p<;0.01). These results indicate that learning human user models from joint-action demonstrations and encoding them in a MOMDP formalism can support effective teaming in human-robot collaborative tasks. |
Author | Ramakrishnan, Ramya Keren Gu Nikolaidis, Stefanos Shah, Julie |
Author_xml | – sequence: 1 givenname: Stefanos surname: Nikolaidis fullname: Nikolaidis, Stefanos email: snikol@alum.mit.edu organization: Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 2 givenname: Ramya surname: Ramakrishnan fullname: Ramakrishnan, Ramya email: ramyaram@mit.edu organization: Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 3 surname: Keren Gu fullname: Keren Gu email: kgu@mit.edu organization: Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA – sequence: 4 givenname: Julie surname: Shah fullname: Shah, Julie email: julie_a_shah@csail.mit.edu organization: Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA |
BookMark | eNotjE9LwzAcQCMoqLNnD17yBTrzv8lxzLkpFUHmUUaa_irRNpEkCn57N-bp8XjwLtFpiAEQuqZkTqmQt0wZJaSYHylPUGUavQ-EM60ZPUdVzh-EEKa0lMxcoLfVMHjnIRT8FHsYcQs2BR_e8ZDihB-jD6VeuOJjwHcwxZBLsgfLeIgJb74nG-qX2MWCl3EcbRcP-Qfw1ubPfIXOBjtmqP45Q6_3q-1yU7fP64floq0tV7TUWjJGnG4EgGDO6I6S3hpJOwdag3HS9ES7BjrCB-WscZQ6K43hjVKCG8tn6Ob49QCw-0p-sul3t98SxRr-BwGRU_M |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1145/2696454.2696455 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781450328821 1450328822 |
EndPage | 196 |
ExternalDocumentID | 8520627 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-a361t-85220c874ee42c98b10da951bce88e9c59d08c7eb03f6ca9c11ca5993766439a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 03:02:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a361t-85220c874ee42c98b10da951bce88e9c59d08c7eb03f6ca9c11ca5993766439a3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8520627 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-02 |
PublicationDateYYYYMMDD | 2015-03-02 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-02 day: 02 |
PublicationDecade | 2010 |
PublicationTitle | Hri '15: ACM/IEEE International Conference on Human-Robot Interaction USB Stick |
PublicationTitleAbbrev | HRI |
PublicationYear | 2015 |
Publisher | ACM |
Publisher_xml | – name: ACM |
SSID | ssj0002685529 |
Score | 2.0661583 |
Snippet | We present a framework for automatically learning human user models from joint-action demonstrations that enables a robot to compute a robust policy for a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 189 |
SubjectTerms | Clustering algorithms Collaboration Computational modeling Data models Markov processes Robots Task analysis |
Title | Efficient Model Learning from Joint-Action Demonstrations for Human-Robot Collaborative Tasks |
URI | https://ieeexplore.ieee.org/document/8520627 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXg0XZo2aXKUuTEERWSDXWQk6avIdBXXefCvN0nrhuLBU0JIaHgJvC-v7_seQhdMGEO1oEQaWbgHCnBiEioJN8YmhjEvYuezLe7EeJrezPishS43XBgACMlnEPlu-Jefl3btQ2V9yZlX1W2jdpapmqu1iacwITlnqlHviVPeZ0J5uaqobvmP8inBe4x20e33d-ukkUW0rkxkP39JMv53Y3uot-Xp4fuNB9pHLVh20eMwqEK4BdgXOnvBjYTqE_ZUEnxTPi8rchXoDPgaXj0-rG_BCjsAi0NUnzyUpqzwYHtJPgBP9Gqx6qHpaDgZjElTRIHoRMQVcVtj1MosBUiZVdLENNcOVhkLUoKyXOVU2gwMTQphtbJxbDX3qEV4sKKTA9RZlks4RFgUzvenuYDC2VdlRmmTaE7dzFRrwdMj1PWmmb_VOhnzxirHfw-foB0HPnjI52KnqFO9r-HMOfjKnIeT_QLZm6ZH |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCZzHvSkZjP-loNHqZQWCkczt8y5LcZsyS5mAcqMmbbGdR786wVat2g8eIKQEsgryft4vO97AFwQphSWDCOu-MxeUAxFKsIcUaV0pAhxInYu22LIuuO4N6GTGrhccWGMMT75zASu69_y01wvXajsilPiVHU3wCa1t4qkZGutIiqEcUqJqPR7wpheESacYFVQtvRHARXvPzo7YPC9cpk2Mg-WhQr05y9Rxv9ubRc010w9eL_yQXugZrIGeGx7XQg7AbpSZy-wElF9go5MAnv5c1aga09ogDfm1SHE8hwsoIWw0Mf10UOu8gK21sfkw8CRXMwXTTDutEetLqrKKCAZsbBAdmsEa57ExsREC65CnEoLrJQ2nBuhqUgx14lROJoxLYUOQy2pwy3MwRUZ7YN6lmfmAEA2s94_TpmZWfuKRAmpIkmx_TKWktH4EDScaaZvpVLGtLLK0d_D52CrOxr0p_3b4d0x2LZQhPrsLnIC6sX70pxad1-oM_-XvwDFpqmY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Hri+%2715%3A+ACM%2FIEEE+International+Conference+on+Human-Robot+Interaction+USB+Stick&rft.atitle=Efficient+Model+Learning+from+Joint-Action+Demonstrations+for+Human-Robot+Collaborative+Tasks&rft.au=Nikolaidis%2C+Stefanos&rft.au=Ramakrishnan%2C+Ramya&rft.au=Keren+Gu&rft.au=Shah%2C+Julie&rft.date=2015-03-02&rft.pub=ACM&rft.spage=189&rft.epage=196&rft_id=info:doi/10.1145%2F2696454.2696455&rft.externalDocID=8520627 |