Improved Rate Capability for Dry Thick Electrodes through Finite Elements Method and Machine Learning Coupling
A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm and 8 mAh/cm2). An ML model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 particles and their average st...
        Saved in:
      
    
          | Published in | ACS energy letters Vol. 9; no. 4; pp. 1480 - 1486 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            American Chemical Society
    
        12.04.2024
     | 
| Online Access | Get full text | 
| ISSN | 2380-8195 2380-8195  | 
| DOI | 10.1021/acsenergylett.4c00203 | 
Cover
| Abstract | A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm and 8 mAh/cm2). An ML model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 particles and their average state of discharge (SOD) predicted from FEM modeling. This model not only bypasses lengthy FEM simulations but also provides deeper insights on the importance of pore tortuosity and the active particle size, identified as the limiting phenomenon during the discharge. Based on these findings, a bilayer configuration is proposed to tackle the identified limiting factors for the rate capability. The benefits of this structured electrode are validated through FEM by comparing its performance to a pristine monolayer electrode. Finally, experimental validation using dry processing demonstrates a 40% higher volumetric capacity of the bilayer electrode when compared to the previously reported thick NMC electrodes. | 
    
|---|---|
| AbstractList | A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm and 8 mAh/cm2). An ML model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 particles and their average state of discharge (SOD) predicted from FEM modeling. This model not only bypasses lengthy FEM simulations but also provides deeper insights on the importance of pore tortuosity and the active particle size, identified as the limiting phenomenon during the discharge. Based on these findings, a bilayer configuration is proposed to tackle the identified limiting factors for the rate capability. The benefits of this structured electrode are validated through FEM by comparing its performance to a pristine monolayer electrode. Finally, experimental validation using dry processing demonstrates a 40% higher volumetric capacity of the bilayer electrode when compared to the previously reported thick NMC electrodes. | 
    
| Author | Meng, Ying Shirley Zhang, Minghao Yao, Weiliang Chouchane, Mehdi Cronk, Ashley  | 
    
| AuthorAffiliation | Pritzker School of Molecular Engineering University of Chicago University of California San Diego Materials Science and Engineering Department of NanoEngineering  | 
    
| AuthorAffiliation_xml | – name: Materials Science and Engineering – name: University of California San Diego – name: Pritzker School of Molecular Engineering – name: Department of NanoEngineering – name: University of Chicago  | 
    
| Author_xml | – sequence: 1 givenname: Mehdi surname: Chouchane fullname: Chouchane, Mehdi organization: University of Chicago – sequence: 2 givenname: Weiliang surname: Yao fullname: Yao, Weiliang organization: Materials Science and Engineering – sequence: 3 givenname: Ashley orcidid: 0000-0001-6147-4662 surname: Cronk fullname: Cronk, Ashley organization: Materials Science and Engineering – sequence: 4 givenname: Minghao surname: Zhang fullname: Zhang, Minghao email: miz016@eng.ucsd.edu organization: University of California San Diego – sequence: 5 givenname: Ying Shirley orcidid: 0000-0001-8936-8845 surname: Meng fullname: Meng, Ying Shirley email: shirleymeng@uchicago.edu organization: University of California San Diego  | 
    
| BookMark | eNqFkNFKwzAUhoNMcM49gpAX6EzStE3xSuamgw1B5nVJ05M1s0tKmgl9eyvbhXozzsX54ec7cL5bNLLOAkL3lMwoYfRBqg4s-F3fQAgzrghhJL5CYxYLEgmaJ6Nf-QZNu25PCKGpSIYZI7s6tN59QYXfZQA8l60sTWNCj7Xz-Nn3eFsb9YkXDajgXQUdDrV3x12Nl8aaARmaA9jQ4Q2E2lVY2gpvpKqNBbwG6a2xOzx3x7YZwh261rLpYHreE_SxXGznr9H67WU1f1pHMk5piBKeZywvacZSkBoSoiiveAppnrJM5JnkpVIp11IzXsWlLmWiGVNclFwIykU8QY-nu8q7rvOgC2WCDMbZ4KVpCkqKH3vFH3vF2d5AJ__o1puD9P1Fjp64oS727ujt8OMF5hsXfI5A | 
    
| CitedBy_id | crossref_primary_10_1039_D4TA07377K crossref_primary_10_1016_j_cej_2025_161888 crossref_primary_10_2109_jcersj2_24116 crossref_primary_10_1016_j_matlet_2025_138184 crossref_primary_10_1002_batt_202400301 crossref_primary_10_1016_S1872_2067_24_60053_7 crossref_primary_10_1021_acsenergylett_4c01690  | 
    
| Cites_doi | 10.1039/D2EE03840D 10.1039/D1EE01388B 10.1038/s41560-019-0398-y 10.1149/1945-7111/aba096 10.1016/j.jpowsour.2020.227966 10.1016/j.ensm.2023.102927 10.1016/j.ensm.2019.03.017 10.1515/nanoph-2017-0044 10.1002/aenm.201901457 10.1016/j.ensm.2022.02.016 10.1088/2631-7990/abca84 10.1002/aenm.202002655 10.1016/j.jelechem.2016.10.040 10.1038/s41467-020-15811-x 10.1103/PhysRevLett.98.218302 10.1016/j.xcrp.2021.100683 10.1002/aenm.202000808 10.1038/s41560-019-0356-8 10.1111/j.1151-2916.1993.tb07762.x 10.3390/en16155725 10.3390/nano11112962 10.1016/j.partic.2021.05.006 10.1016/j.jpowsour.2018.04.097 10.1016/j.electacta.2012.03.161 10.1002/ente.202100985 10.1016/j.jpowsour.2016.09.143 10.1016/j.eswa.2022.116817 10.1016/j.ensm.2022.01.058 10.1149/2.0571803jes 10.1039/D1SE01077H 10.1016/j.softx.2016.09.002 10.3390/batteries2040035 10.1016/j.ensm.2023.01.050 10.1109/DSAA.2018.00018 10.1016/j.jpowsour.2022.232478 10.1016/j.jpowsour.2017.04.030 10.1016/j.electacta.2022.141649  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 American Chemical Society | 
    
| Copyright_xml | – notice: 2024 American Chemical Society | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1021/acsenergylett.4c00203 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2380-8195 | 
    
| EndPage | 1486 | 
    
| ExternalDocumentID | 10_1021_acsenergylett_4c00203 a712704108  | 
    
| GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH EBS GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ  | 
    
| ID | FETCH-LOGICAL-a361t-549729b1726eafe50c14d46e69627897a4bcc64faf24d3bfba5f22c48b4881483 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 2380-8195 | 
    
| IngestDate | Thu Apr 24 22:58:52 EDT 2025 Tue Jul 01 01:58:31 EDT 2025 Mon Apr 15 04:53:05 EDT 2024  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a361t-549729b1726eafe50c14d46e69627897a4bcc64faf24d3bfba5f22c48b4881483 | 
    
| ORCID | 0000-0001-6147-4662 0000-0001-8936-8845  | 
    
| PageCount | 7 | 
    
| ParticipantIDs | crossref_citationtrail_10_1021_acsenergylett_4c00203 crossref_primary_10_1021_acsenergylett_4c00203 acs_journals_10_1021_acsenergylett_4c00203  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-04-12 | 
    
| PublicationDateYYYYMMDD | 2024-04-12 | 
    
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-12 day: 12  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | ACS energy letters | 
    
| PublicationTitleAlternate | ACS Energy Lett | 
    
| PublicationYear | 2024 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 Lundberg S. M. (ref16/cit16) 2017; 30 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7  | 
    
| References_xml | – ident: ref17/cit17 doi: 10.1039/D2EE03840D – ident: ref28/cit28 doi: 10.1039/D1EE01388B – ident: ref39/cit39 doi: 10.1038/s41560-019-0398-y – ident: ref14/cit14 doi: 10.1149/1945-7111/aba096 – ident: ref38/cit38 doi: 10.1016/j.jpowsour.2020.227966 – ident: ref12/cit12 doi: 10.1016/j.ensm.2023.102927 – ident: ref6/cit6 doi: 10.1016/j.ensm.2019.03.017 – ident: ref23/cit23 doi: 10.1515/nanoph-2017-0044 – ident: ref7/cit7 doi: 10.1002/aenm.201901457 – ident: ref8/cit8 doi: 10.1016/j.ensm.2022.02.016 – ident: ref25/cit25 doi: 10.1088/2631-7990/abca84 – ident: ref34/cit34 doi: 10.1002/aenm.202002655 – ident: ref35/cit35 doi: 10.1016/j.jelechem.2016.10.040 – ident: ref10/cit10 doi: 10.1038/s41467-020-15811-x – ident: ref4/cit4 doi: 10.1103/PhysRevLett.98.218302 – ident: ref33/cit33 – ident: ref15/cit15 doi: 10.1016/j.xcrp.2021.100683 – ident: ref2/cit2 doi: 10.1002/aenm.202000808 – ident: ref11/cit11 doi: 10.1038/s41560-019-0356-8 – ident: ref3/cit3 doi: 10.1111/j.1151-2916.1993.tb07762.x – volume: 30 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: ref16/cit16 – ident: ref20/cit20 doi: 10.3390/en16155725 – ident: ref30/cit30 doi: 10.3390/nano11112962 – ident: ref22/cit22 doi: 10.1016/j.partic.2021.05.006 – ident: ref32/cit32 doi: 10.1016/j.jpowsour.2018.04.097 – ident: ref1/cit1 doi: 10.1016/j.electacta.2012.03.161 – ident: ref31/cit31 doi: 10.1002/ente.202100985 – ident: ref9/cit9 doi: 10.1016/j.jpowsour.2016.09.143 – ident: ref21/cit21 doi: 10.1016/j.eswa.2022.116817 – ident: ref26/cit26 doi: 10.1016/j.ensm.2022.01.058 – ident: ref5/cit5 doi: 10.1149/2.0571803jes – ident: ref29/cit29 doi: 10.1039/D1SE01077H – ident: ref18/cit18 doi: 10.1016/j.softx.2016.09.002 – ident: ref36/cit36 doi: 10.3390/batteries2040035 – ident: ref13/cit13 doi: 10.1016/j.ensm.2023.01.050 – ident: ref19/cit19 doi: 10.1109/DSAA.2018.00018 – ident: ref24/cit24 doi: 10.1016/j.jpowsour.2022.232478 – ident: ref37/cit37 doi: 10.1016/j.jpowsour.2017.04.030 – ident: ref27/cit27 doi: 10.1016/j.electacta.2022.141649  | 
    
| SSID | ssj0001685858 | 
    
| Score | 2.3360782 | 
    
| Snippet | A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm... | 
    
| SourceID | crossref acs  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1480 | 
    
| Title | Improved Rate Capability for Dry Thick Electrodes through Finite Elements Method and Machine Learning Coupling | 
    
| URI | http://dx.doi.org/10.1021/acsenergylett.4c00203 | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2380-8195 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001685858 issn: 2380-8195 databaseCode: ACS dateStart: 20160708 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKucCBHVE2-cAJyWkSu05yrEIrhFSEoJV6i7ylVEUpatJD-XpsJ4UiVJazNZHj2Jk3npn3ALiKXKpRgUhRxKhAhLgY8dQPkItlwI3EMeEmUOzd09sBuRu2hjXQXJPB970mE7mybXD6PQqHCJs72wCbPg0CU8PXjp8-L1Usm7pVocOhi0yOaNm1s-5JxiuJfMUrrbiX7i54WDbplFUlE2decEe8feds_OvM98BOBTVhu9wb-6CmsgOwvUJAeAiy8k5BSfioMSeMtee0xbILqLEsvJktYP95LCawU4rlSJXDStgHdscGrZoR2yQHe1aKGrJMwp4t0FSw4m4dwXg6N42_oyMw6Hb68S2qFBgQw9QrkA4eNfjmGuRQxVLVcoVHJKGKGsmeMAoY4UJQkrLUJxLzlLNW6vuChFz_F3SghY9BPZtm6gRAxlqEu3oUU6ljuoh5irtKShlizxOKNcC1Xq-kOkF5YpPjvpd8WcSkWsQGIMvPlYiKy9xIarz8ZuZ8mL2WZB4_G5z-Z1JnYMvXiAdZIshzUC9mc3WhEUvBL-0ufQeFkusi | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05ILlkctz2i0qpAywGK4BZ5S6lAKSLpAb6esZsuIAHqNZYt23Eybzwz7wGcVj2OqEAltCq4oox5IZVJUKZeqMvSShwzaR3F9i1vPrDrp-hpDvioFgYnkeFImQviT9gF_HN8Zlw1HC4nLzHlQmjzsBhx5lun66J2P7lbcaTqTowurHjUhopGxTu_jWSNk8qmjNOUlWmsweN4fi655KU0yGVJff6gbpx9AeuwWgBPcjE8KRswZ9JNWJmiI9yCdHjDYDS5QwRKamhHXersB0FkSy7fP0jnuadeSH0onaNNRgqZH9LoWexqW1zJHGk7YWoiUk3aLl3TkILJtUtq_YEtA-5uw0Oj3qk1aaHHQEXI_ZyiK4lQXCLk4UYkJvKUzzTjhlsBn0q1LJhUirNEJAHToUykiJIgUKwi8S-Bble4AwtpPzW7QISImPSwNeQaPbyq8I30jNa6Evq-MmIPznC_4uJ7ymIXKg_8-NsmxsUm7gEbvbVYFczmVmDj9b9upXG3tyG1x98d9meZ1AksNTvtVty6ur05gOUAsRB1FJGHsJC_D8wRYplcHruD-wXlgfOE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aQfTgLtY1B09C6iyZtHOULrhVxAUED0O2qaJMpTM91F_vSybWKqjodUJCkknmfW_ee9-H0H7sMUAFMiUxZ5JQ6oVEpEGdeKGqCyNxTIVxFLsX7PiWnt5Fdy6r0tTCwCRyGCm3QXxzq19U6hgG_EN4rm1FHCypqFFpw2jTaCZicN0NLGpef_xfscTqVpAubHjEhIveC3i-G8kYKJlPGKgJS9NZRPfjOdoEk6fasBA1-fqFvvF_i1hCCw6A4qPyxCyjKZ2toPkJWsJVlJV_GrTCV4BEcRPsqU2hHWFAuLg1GOGbh0f5hNulhI7SOXZyP7jzaDCsabGlc7hrBaoxzxTu2rRNjR2jaw83-0NTDtxbQ7ed9k3zmDhdBsJD5hcEXEqA5AKgD9M81ZEnfaoo08wI-TTiOqdCSkZTngZUhSIVPEqDQNKGgK8FuF_hOqpk_UxvIMx5RIUHrSFT4OnF3NfC00qpRuj7UvMqOoD9Sty9yhMbMg_85NMmJm4Tq4i-v7lEOoZzI7Tx_Fu32rjbS0nx8XOHzb9Mag_NXrY6yfnJxdkWmgsAEhHLFLmNKsVgqHcA0hRi157dN6or9gc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Rate+Capability+for+Dry+Thick+Electrodes+through+Finite+Elements+Method+and+Machine+Learning+Coupling&rft.jtitle=ACS+energy+letters&rft.au=Chouchane%2C+Mehdi&rft.au=Yao%2C+Weiliang&rft.au=Cronk%2C+Ashley&rft.au=Zhang%2C+Minghao&rft.date=2024-04-12&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=9&rft.issue=4&rft.spage=1480&rft.epage=1486&rft_id=info:doi/10.1021%2Facsenergylett.4c00203&rft.externalDocID=a712704108 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |