Improved Rate Capability for Dry Thick Electrodes through Finite Elements Method and Machine Learning Coupling

A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm and 8 mAh/cm2). An ML model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 particles and their average st...

Full description

Saved in:
Bibliographic Details
Published inACS energy letters Vol. 9; no. 4; pp. 1480 - 1486
Main Authors Chouchane, Mehdi, Yao, Weiliang, Cronk, Ashley, Zhang, Minghao, Meng, Ying Shirley
Format Journal Article
LanguageEnglish
Published American Chemical Society 12.04.2024
Online AccessGet full text
ISSN2380-8195
2380-8195
DOI10.1021/acsenergylett.4c00203

Cover

Abstract A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm and 8 mAh/cm2). An ML model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 particles and their average state of discharge (SOD) predicted from FEM modeling. This model not only bypasses lengthy FEM simulations but also provides deeper insights on the importance of pore tortuosity and the active particle size, identified as the limiting phenomenon during the discharge. Based on these findings, a bilayer configuration is proposed to tackle the identified limiting factors for the rate capability. The benefits of this structured electrode are validated through FEM by comparing its performance to a pristine monolayer electrode. Finally, experimental validation using dry processing demonstrates a 40% higher volumetric capacity of the bilayer electrode when compared to the previously reported thick NMC electrodes.
AbstractList A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm and 8 mAh/cm2). An ML model is trained based on the geometrical observables of individual LiNi0.8Mn0.1Co0.1O2 particles and their average state of discharge (SOD) predicted from FEM modeling. This model not only bypasses lengthy FEM simulations but also provides deeper insights on the importance of pore tortuosity and the active particle size, identified as the limiting phenomenon during the discharge. Based on these findings, a bilayer configuration is proposed to tackle the identified limiting factors for the rate capability. The benefits of this structured electrode are validated through FEM by comparing its performance to a pristine monolayer electrode. Finally, experimental validation using dry processing demonstrates a 40% higher volumetric capacity of the bilayer electrode when compared to the previously reported thick NMC electrodes.
Author Meng, Ying Shirley
Zhang, Minghao
Yao, Weiliang
Chouchane, Mehdi
Cronk, Ashley
AuthorAffiliation Pritzker School of Molecular Engineering
University of Chicago
University of California San Diego
Materials Science and Engineering
Department of NanoEngineering
AuthorAffiliation_xml – name: Materials Science and Engineering
– name: University of California San Diego
– name: Pritzker School of Molecular Engineering
– name: Department of NanoEngineering
– name: University of Chicago
Author_xml – sequence: 1
  givenname: Mehdi
  surname: Chouchane
  fullname: Chouchane, Mehdi
  organization: University of Chicago
– sequence: 2
  givenname: Weiliang
  surname: Yao
  fullname: Yao, Weiliang
  organization: Materials Science and Engineering
– sequence: 3
  givenname: Ashley
  orcidid: 0000-0001-6147-4662
  surname: Cronk
  fullname: Cronk, Ashley
  organization: Materials Science and Engineering
– sequence: 4
  givenname: Minghao
  surname: Zhang
  fullname: Zhang, Minghao
  email: miz016@eng.ucsd.edu
  organization: University of California San Diego
– sequence: 5
  givenname: Ying Shirley
  orcidid: 0000-0001-8936-8845
  surname: Meng
  fullname: Meng, Ying Shirley
  email: shirleymeng@uchicago.edu
  organization: University of California San Diego
BookMark eNqFkNFKwzAUhoNMcM49gpAX6EzStE3xSuamgw1B5nVJ05M1s0tKmgl9eyvbhXozzsX54ec7cL5bNLLOAkL3lMwoYfRBqg4s-F3fQAgzrghhJL5CYxYLEgmaJ6Nf-QZNu25PCKGpSIYZI7s6tN59QYXfZQA8l60sTWNCj7Xz-Nn3eFsb9YkXDajgXQUdDrV3x12Nl8aaARmaA9jQ4Q2E2lVY2gpvpKqNBbwG6a2xOzx3x7YZwh261rLpYHreE_SxXGznr9H67WU1f1pHMk5piBKeZywvacZSkBoSoiiveAppnrJM5JnkpVIp11IzXsWlLmWiGVNclFwIykU8QY-nu8q7rvOgC2WCDMbZ4KVpCkqKH3vFH3vF2d5AJ__o1puD9P1Fjp64oS727ujt8OMF5hsXfI5A
CitedBy_id crossref_primary_10_1039_D4TA07377K
crossref_primary_10_1016_j_cej_2025_161888
crossref_primary_10_2109_jcersj2_24116
crossref_primary_10_1016_j_matlet_2025_138184
crossref_primary_10_1002_batt_202400301
crossref_primary_10_1016_S1872_2067_24_60053_7
crossref_primary_10_1021_acsenergylett_4c01690
Cites_doi 10.1039/D2EE03840D
10.1039/D1EE01388B
10.1038/s41560-019-0398-y
10.1149/1945-7111/aba096
10.1016/j.jpowsour.2020.227966
10.1016/j.ensm.2023.102927
10.1016/j.ensm.2019.03.017
10.1515/nanoph-2017-0044
10.1002/aenm.201901457
10.1016/j.ensm.2022.02.016
10.1088/2631-7990/abca84
10.1002/aenm.202002655
10.1016/j.jelechem.2016.10.040
10.1038/s41467-020-15811-x
10.1103/PhysRevLett.98.218302
10.1016/j.xcrp.2021.100683
10.1002/aenm.202000808
10.1038/s41560-019-0356-8
10.1111/j.1151-2916.1993.tb07762.x
10.3390/en16155725
10.3390/nano11112962
10.1016/j.partic.2021.05.006
10.1016/j.jpowsour.2018.04.097
10.1016/j.electacta.2012.03.161
10.1002/ente.202100985
10.1016/j.jpowsour.2016.09.143
10.1016/j.eswa.2022.116817
10.1016/j.ensm.2022.01.058
10.1149/2.0571803jes
10.1039/D1SE01077H
10.1016/j.softx.2016.09.002
10.3390/batteries2040035
10.1016/j.ensm.2023.01.050
10.1109/DSAA.2018.00018
10.1016/j.jpowsour.2022.232478
10.1016/j.jpowsour.2017.04.030
10.1016/j.electacta.2022.141649
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsenergylett.4c00203
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2380-8195
EndPage 1486
ExternalDocumentID 10_1021_acsenergylett_4c00203
a712704108
GroupedDBID ABFRP
ABQRX
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
CUPRZ
ID FETCH-LOGICAL-a361t-549729b1726eafe50c14d46e69627897a4bcc64faf24d3bfba5f22c48b4881483
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Thu Apr 24 22:58:52 EDT 2025
Tue Jul 01 01:58:31 EDT 2025
Mon Apr 15 04:53:05 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a361t-549729b1726eafe50c14d46e69627897a4bcc64faf24d3bfba5f22c48b4881483
ORCID 0000-0001-6147-4662
0000-0001-8936-8845
PageCount 7
ParticipantIDs crossref_citationtrail_10_1021_acsenergylett_4c00203
crossref_primary_10_1021_acsenergylett_4c00203
acs_journals_10_1021_acsenergylett_4c00203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-12
PublicationDateYYYYMMDD 2024-04-12
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-12
  day: 12
PublicationDecade 2020
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
Lundberg S. M. (ref16/cit16) 2017; 30
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref17/cit17
  doi: 10.1039/D2EE03840D
– ident: ref28/cit28
  doi: 10.1039/D1EE01388B
– ident: ref39/cit39
  doi: 10.1038/s41560-019-0398-y
– ident: ref14/cit14
  doi: 10.1149/1945-7111/aba096
– ident: ref38/cit38
  doi: 10.1016/j.jpowsour.2020.227966
– ident: ref12/cit12
  doi: 10.1016/j.ensm.2023.102927
– ident: ref6/cit6
  doi: 10.1016/j.ensm.2019.03.017
– ident: ref23/cit23
  doi: 10.1515/nanoph-2017-0044
– ident: ref7/cit7
  doi: 10.1002/aenm.201901457
– ident: ref8/cit8
  doi: 10.1016/j.ensm.2022.02.016
– ident: ref25/cit25
  doi: 10.1088/2631-7990/abca84
– ident: ref34/cit34
  doi: 10.1002/aenm.202002655
– ident: ref35/cit35
  doi: 10.1016/j.jelechem.2016.10.040
– ident: ref10/cit10
  doi: 10.1038/s41467-020-15811-x
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.98.218302
– ident: ref33/cit33
– ident: ref15/cit15
  doi: 10.1016/j.xcrp.2021.100683
– ident: ref2/cit2
  doi: 10.1002/aenm.202000808
– ident: ref11/cit11
  doi: 10.1038/s41560-019-0356-8
– ident: ref3/cit3
  doi: 10.1111/j.1151-2916.1993.tb07762.x
– volume: 30
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: ref16/cit16
– ident: ref20/cit20
  doi: 10.3390/en16155725
– ident: ref30/cit30
  doi: 10.3390/nano11112962
– ident: ref22/cit22
  doi: 10.1016/j.partic.2021.05.006
– ident: ref32/cit32
  doi: 10.1016/j.jpowsour.2018.04.097
– ident: ref1/cit1
  doi: 10.1016/j.electacta.2012.03.161
– ident: ref31/cit31
  doi: 10.1002/ente.202100985
– ident: ref9/cit9
  doi: 10.1016/j.jpowsour.2016.09.143
– ident: ref21/cit21
  doi: 10.1016/j.eswa.2022.116817
– ident: ref26/cit26
  doi: 10.1016/j.ensm.2022.01.058
– ident: ref5/cit5
  doi: 10.1149/2.0571803jes
– ident: ref29/cit29
  doi: 10.1039/D1SE01077H
– ident: ref18/cit18
  doi: 10.1016/j.softx.2016.09.002
– ident: ref36/cit36
  doi: 10.3390/batteries2040035
– ident: ref13/cit13
  doi: 10.1016/j.ensm.2023.01.050
– ident: ref19/cit19
  doi: 10.1109/DSAA.2018.00018
– ident: ref24/cit24
  doi: 10.1016/j.jpowsour.2022.232478
– ident: ref37/cit37
  doi: 10.1016/j.jpowsour.2017.04.030
– ident: ref27/cit27
  doi: 10.1016/j.electacta.2022.141649
SSID ssj0001685858
Score 2.3360782
Snippet A coupled finite elements method (FEM) and machine learning (ML) workflow is presented to optimize the rate capability of thick positive electrodes (ca. 150 μm...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1480
Title Improved Rate Capability for Dry Thick Electrodes through Finite Elements Method and Machine Learning Coupling
URI http://dx.doi.org/10.1021/acsenergylett.4c00203
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2380-8195
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001685858
  issn: 2380-8195
  databaseCode: ACS
  dateStart: 20160708
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVKucCBHVE2-cAJyWkSu05yrEIrhFSEoJV6i7ylVEUpatJD-XpsJ4UiVJazNZHj2Jk3npn3ALiKXKpRgUhRxKhAhLgY8dQPkItlwI3EMeEmUOzd09sBuRu2hjXQXJPB970mE7mybXD6PQqHCJs72wCbPg0CU8PXjp8-L1Usm7pVocOhi0yOaNm1s-5JxiuJfMUrrbiX7i54WDbplFUlE2decEe8feds_OvM98BOBTVhu9wb-6CmsgOwvUJAeAiy8k5BSfioMSeMtee0xbILqLEsvJktYP95LCawU4rlSJXDStgHdscGrZoR2yQHe1aKGrJMwp4t0FSw4m4dwXg6N42_oyMw6Hb68S2qFBgQw9QrkA4eNfjmGuRQxVLVcoVHJKGKGsmeMAoY4UJQkrLUJxLzlLNW6vuChFz_F3SghY9BPZtm6gRAxlqEu3oUU6ljuoh5irtKShlizxOKNcC1Xq-kOkF5YpPjvpd8WcSkWsQGIMvPlYiKy9xIarz8ZuZ8mL2WZB4_G5z-Z1JnYMvXiAdZIshzUC9mc3WhEUvBL-0ufQeFkusi
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2LHB05ILlkctz2i0qpAywGK4BZ5S6lAKSLpAb6esZsuIAHqNZYt23Eybzwz7wGcVj2OqEAltCq4oox5IZVJUKZeqMvSShwzaR3F9i1vPrDrp-hpDvioFgYnkeFImQviT9gF_HN8Zlw1HC4nLzHlQmjzsBhx5lun66J2P7lbcaTqTowurHjUhopGxTu_jWSNk8qmjNOUlWmsweN4fi655KU0yGVJff6gbpx9AeuwWgBPcjE8KRswZ9JNWJmiI9yCdHjDYDS5QwRKamhHXersB0FkSy7fP0jnuadeSH0onaNNRgqZH9LoWexqW1zJHGk7YWoiUk3aLl3TkILJtUtq_YEtA-5uw0Oj3qk1aaHHQEXI_ZyiK4lQXCLk4UYkJvKUzzTjhlsBn0q1LJhUirNEJAHToUykiJIgUKwi8S-Bble4AwtpPzW7QISImPSwNeQaPbyq8I30jNa6Evq-MmIPznC_4uJ7ymIXKg_8-NsmxsUm7gEbvbVYFczmVmDj9b9upXG3tyG1x98d9meZ1AksNTvtVty6ur05gOUAsRB1FJGHsJC_D8wRYplcHruD-wXlgfOE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5aQfTgLtY1B09C6iyZtHOULrhVxAUED0O2qaJMpTM91F_vSybWKqjodUJCkknmfW_ee9-H0H7sMUAFMiUxZ5JQ6oVEpEGdeKGqCyNxTIVxFLsX7PiWnt5Fdy6r0tTCwCRyGCm3QXxzq19U6hgG_EN4rm1FHCypqFFpw2jTaCZicN0NLGpef_xfscTqVpAubHjEhIveC3i-G8kYKJlPGKgJS9NZRPfjOdoEk6fasBA1-fqFvvF_i1hCCw6A4qPyxCyjKZ2toPkJWsJVlJV_GrTCV4BEcRPsqU2hHWFAuLg1GOGbh0f5hNulhI7SOXZyP7jzaDCsabGlc7hrBaoxzxTu2rRNjR2jaw83-0NTDtxbQ7ed9k3zmDhdBsJD5hcEXEqA5AKgD9M81ZEnfaoo08wI-TTiOqdCSkZTngZUhSIVPEqDQNKGgK8FuF_hOqpk_UxvIMx5RIUHrSFT4OnF3NfC00qpRuj7UvMqOoD9Sty9yhMbMg_85NMmJm4Tq4i-v7lEOoZzI7Tx_Fu32rjbS0nx8XOHzb9Mag_NXrY6yfnJxdkWmgsAEhHLFLmNKsVgqHcA0hRi157dN6or9gc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Rate+Capability+for+Dry+Thick+Electrodes+through+Finite+Elements+Method+and+Machine+Learning+Coupling&rft.jtitle=ACS+energy+letters&rft.au=Chouchane%2C+Mehdi&rft.au=Yao%2C+Weiliang&rft.au=Cronk%2C+Ashley&rft.au=Zhang%2C+Minghao&rft.date=2024-04-12&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=9&rft.issue=4&rft.spage=1480&rft.epage=1486&rft_id=info:doi/10.1021%2Facsenergylett.4c00203&rft.externalDocID=a712704108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon