Qmin – A machine learning-based application for processing and analysis of mineral chemistry data

Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predispos...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 157; p. 104949
Main Authors da Silva, Guilherme Ferreira, Ferreira, Marcos Vinicius, Costa, Iago Sousa Lima, Bernardes, Renato Borges, Mota, Carlos Eduardo Miranda, Cuadros Jiménez, Federico Alberto
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text
ISSN0098-3004
1873-7803
DOI10.1016/j.cageo.2021.104949

Cover

Abstract Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data. •Qmin is an open-source tool that helps to automate the processing of EPMA data.•Qmin runs several classifiers to distinguish 17 groups and 100 different minerals.•We used Shannon Uncertainty to verify the quality of the prediction.•Balanced accuracy in a blind test achieved 99.44% for known minerals.•Qmin is written in Python and R and is available at http://apps.cprm.gov.br/qmin/
AbstractList Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data.
Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data. •Qmin is an open-source tool that helps to automate the processing of EPMA data.•Qmin runs several classifiers to distinguish 17 groups and 100 different minerals.•We used Shannon Uncertainty to verify the quality of the prediction.•Balanced accuracy in a blind test achieved 99.44% for known minerals.•Qmin is written in Python and R and is available at http://apps.cprm.gov.br/qmin/
ArticleNumber 104949
Author Ferreira, Marcos Vinicius
Mota, Carlos Eduardo Miranda
da Silva, Guilherme Ferreira
Cuadros Jiménez, Federico Alberto
Bernardes, Renato Borges
Costa, Iago Sousa Lima
Author_xml – sequence: 1
  givenname: Guilherme Ferreira
  orcidid: 0000-0002-3675-7289
  surname: da Silva
  fullname: da Silva, Guilherme Ferreira
  email: guilherme.ferreira@cprm.gov.br
  organization: Directory of Geology and Mineral Resources, Geological Survey of Brazil (SGB/CPRM), Brasilia, Brazil
– sequence: 2
  givenname: Marcos Vinicius
  orcidid: 0000-0001-5213-0825
  surname: Ferreira
  fullname: Ferreira, Marcos Vinicius
  email: marcos.ferreira@cprm.gov.br
  organization: Directory of Geology and Mineral Resources, Geological Survey of Brazil (SGB/CPRM), Brasilia, Brazil
– sequence: 3
  givenname: Iago Sousa Lima
  orcidid: 0000-0002-3721-8957
  surname: Costa
  fullname: Costa, Iago Sousa Lima
  email: iago.costa@cprm.gov.br
  organization: Directory of Geology and Mineral Resources, Geological Survey of Brazil (SGB/CPRM), Brasilia, Brazil
– sequence: 4
  givenname: Renato Borges
  orcidid: 0000-0002-5065-3830
  surname: Bernardes
  fullname: Bernardes, Renato Borges
  email: renato.bernardes@unb.br
  organization: Institute of Geosciences, University of Brasilia, Brasilia, Brazil
– sequence: 5
  givenname: Carlos Eduardo Miranda
  orcidid: 0000-0002-6652-0493
  surname: Mota
  fullname: Mota, Carlos Eduardo Miranda
  email: carlos.mota@cprm.gov.br
  organization: Directory of Geoscience Infrastructure, Geological Survey of Brazil (SGB/CPRM), Rio de Janeiro, Brazil
– sequence: 6
  givenname: Federico Alberto
  orcidid: 0000-0002-2297-9964
  surname: Cuadros Jiménez
  fullname: Cuadros Jiménez, Federico Alberto
  email: facuadros@unb.br
  organization: Institute of Geosciences, University of Brasilia, Brasilia, Brazil
BookMark eNqFkL9OwzAQhy0EEqXwBCweWVKcOI6dgQEh_klICAlm62JfiqvULnZA6sY78IY8CaZlYoDppLvfd7r7DsiuDx4JOS7ZrGRlc7qYGZhjmFWsKnOnbut2h0xKJXkhFeO7ZMJYqwrOWL1PDlJaMMaqSokJMQ9L5-nn-wc9p0swz84jHRCid35edJDQUlitBmdgdMHTPkS6isFgSjlAweexh2GdXKKhp3kXRhioecalS2NcUwsjHJK9HoaERz91Sp6uLh8vboq7--vbi_O7Arhox0LVDUDXKAV9JzqrWMMBGbe2tx3rjZGtNK2SUrXC2kbKEuu6YbIXQopOVCWfkpPt3nzhyyumUecjDA4DeAyvSVcNb0T-msscbbdRE0NKEXtt3Lh5cYzgBl0y_S1WL_RGrP4Wq7diM8t_savolhDX_1BnWwqzgTeHUSfj0Bu0LqIZtQ3uT_4L_jiWoQ
CitedBy_id crossref_primary_10_1016_j_jsames_2022_103815
crossref_primary_10_1016_j_earscirev_2024_104941
crossref_primary_10_1016_j_eswa_2023_122111
crossref_primary_10_1016_j_oregeorev_2022_104925
Cites_doi 10.1016/j.isprsjprs.2017.12.002
10.1016/j.mineng.2019.03.008
10.1023/A:1023866030544
10.1007/s11053-019-09483-8
10.1190/geo2019-0461.1
10.1016/j.oregeorev.2020.103611
10.1016/j.orggeochem.2008.02.016
10.1023/A:1010933404324
10.1080/08120099.2014.858081
10.1016/j.oregeorev.2014.08.010
10.1007/s11053-020-09789-y
10.1016/j.oregeorev.2015.01.004
10.1007/s11053-017-9335-6
10.3233/IDA-2002-6504
10.1016/j.bspc.2021.102406
10.1190/geo2017-0590.1
10.1016/j.gca.2006.06.1045
10.1007/s11053-015-9274-z
10.1016/j.petrol.2019.106382
10.1007/s11053-015-9268-x
10.1002/j.1538-7305.1948.tb00917.x
10.29396/jgsb.2019.v2.n1.3
10.1613/jair.953
10.1016/j.oregeorev.2015.01.001
10.1016/j.cosrev.2020.100306
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.cageo.2021.104949
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 10_1016_j_cageo_2021_104949
S0098300421002351
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a359t-846aab688afb5bd8063ae03ddfdb0fcc797c9877895dd6771e44607f5575b5213
IEDL.DBID .~1
ISSN 0098-3004
IngestDate Wed Oct 01 14:46:36 EDT 2025
Thu Oct 02 04:24:14 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Fri Feb 23 02:43:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mineral formula calculation
Electron probe microanalyzer data processing
Random forests classifier
Mineral prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a359t-846aab688afb5bd8063ae03ddfdb0fcc797c9877895dd6771e44607f5575b5213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3675-7289
0000-0002-5065-3830
0000-0001-5213-0825
0000-0002-3721-8957
0000-0002-6652-0493
0000-0002-2297-9964
PQID 2636528537
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636528537
crossref_citationtrail_10_1016_j_cageo_2021_104949
crossref_primary_10_1016_j_cageo_2021_104949
elsevier_sciencedirect_doi_10_1016_j_cageo_2021_104949
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Computers & geosciences
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Martín-Fernández, Barceló-Vidal, Pawlowsky-Glahn (bib24) 2003; 35
Rubo, de Carvalho Carneiro, Michelon, Gioria, dos (bib31) 2019; 183
Carranza, Laborte (bib6) 2015; 71
Kuhn, Cracknell, Reading, Sykora (bib22) 2020; 85
Prado, de Souza Filho, Carranza, Motta (bib28) 2020; 124
Zhang, Carranza, Wei, Xiao, Yang, Xiang, Zhang, Xu (bib39) 2021; 30
Breiman (bib4) 2001; 56
Misra, Osogba, Powers (bib26) 2020
Schramm, Jochum, Sarbas, Nohl (bib33) 2006; 70
Schroeder, Cornford, Farrimond, Cornford (bib34) 2008; 39
Li, Zhang, Behrens, Holtz (bib23) 2020; 362
Hariharan, Tirodkar, Porwal, Bhattacharya, Joly (bib17) 2017; 26
Borges, Aguiar (bib2) 2019
Chawla, Bowyer, Hall, Kegelmeyer (bib7) 2002; 16
Koch, Lund, Rosenkranz (bib20) 2019; 136
Ester, Kriegel, Sander, Xiaowei (bib13) 1996
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib27) 2011; 12
Brandmeier, Cabrera Zamora, Nykänen, Middleton (bib3) 2020; 29
Shannon (bib36) 1948; 27
Gavish, O'Connell, Marsh, Tarantino, Blonda, Tomaselli, Kunin (bib15) 2018; 136
Ford (bib14) 2019
Grinberg (bib16) 2018
McKay, Harris (bib25) 2016; 25
Radford, Cracknell, Roach, Cumming (bib29) 2018
Smiti (bib37) 2020; 38
Vijayvargiya, Prakash, Kumar, Bansal, João (bib38) 2021; 66
Cunha, Cabral Neto, Silveira, Nannini (bib10) 2017
Bergen, Johnson, de Hoop, Beroza (bib1) 2019; 80
Schumacker, Tomek (bib35) 2013
Cracknell, Reading, McNeill (bib9) 2014
Deer, Howie, Zussman (bib11) 2013
Kuhn, Cracknell, Reading (bib21) 2018; 83
Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (bib30) 2015; 71
Carranza, Laborte (bib5) 2016; 25
Harris, Grunsky, Behnia, Corrigan (bib18) 2015; 71
Costa, Tavares, Oliveira (bib8) 2019; 2
Japkowicz, Stephen (bib19) 2002; 6
Sarbas (bib32) 2021
Dramsch (bib12) 2020
Schroeder (10.1016/j.cageo.2021.104949_bib34) 2008; 39
Prado (10.1016/j.cageo.2021.104949_bib28) 2020; 124
Schramm (10.1016/j.cageo.2021.104949_bib33) 2006; 70
Misra (10.1016/j.cageo.2021.104949_bib26) 2020
Shannon (10.1016/j.cageo.2021.104949_bib36) 1948; 27
Pedregosa (10.1016/j.cageo.2021.104949_bib27) 2011; 12
Smiti (10.1016/j.cageo.2021.104949_bib37) 2020; 38
Schumacker (10.1016/j.cageo.2021.104949_bib35) 2013
Dramsch (10.1016/j.cageo.2021.104949_bib12) 2020
Rubo (10.1016/j.cageo.2021.104949_bib31) 2019; 183
Li (10.1016/j.cageo.2021.104949_bib23) 2020; 362
Cunha (10.1016/j.cageo.2021.104949_bib10) 2017
Chawla (10.1016/j.cageo.2021.104949_bib7) 2002; 16
Ester (10.1016/j.cageo.2021.104949_bib13) 1996
Cracknell (10.1016/j.cageo.2021.104949_bib9) 2014
Ford (10.1016/j.cageo.2021.104949_bib14) 2019
Grinberg (10.1016/j.cageo.2021.104949_bib16) 2018
Radford (10.1016/j.cageo.2021.104949_bib29) 2018
Sarbas (10.1016/j.cageo.2021.104949_bib32)
Martín-Fernández (10.1016/j.cageo.2021.104949_bib24) 2003; 35
Kuhn (10.1016/j.cageo.2021.104949_bib22) 2020; 85
Kuhn (10.1016/j.cageo.2021.104949_bib21) 2018; 83
Breiman (10.1016/j.cageo.2021.104949_bib4) 2001; 56
Borges (10.1016/j.cageo.2021.104949_bib2) 2019
Koch (10.1016/j.cageo.2021.104949_bib20) 2019; 136
Costa (10.1016/j.cageo.2021.104949_bib8) 2019; 2
McKay (10.1016/j.cageo.2021.104949_bib25) 2016; 25
Vijayvargiya (10.1016/j.cageo.2021.104949_bib38) 2021; 66
Zhang (10.1016/j.cageo.2021.104949_bib39) 2021; 30
Japkowicz (10.1016/j.cageo.2021.104949_bib19) 2002; 6
Rodriguez-Galiano (10.1016/j.cageo.2021.104949_bib30) 2015; 71
Carranza (10.1016/j.cageo.2021.104949_bib6) 2015; 71
Bergen (10.1016/j.cageo.2021.104949_bib1) 2019; 80
Brandmeier (10.1016/j.cageo.2021.104949_bib3) 2020; 29
Hariharan (10.1016/j.cageo.2021.104949_bib17) 2017; 26
Carranza (10.1016/j.cageo.2021.104949_bib5) 2016; 25
Deer (10.1016/j.cageo.2021.104949_bib11) 2013
Harris (10.1016/j.cageo.2021.104949_bib18) 2015; 71
Gavish (10.1016/j.cageo.2021.104949_bib15) 2018; 136
References_xml – volume: 362
  year: 2020
  ident: bib23
  article-title: Lithos Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression
  publication-title: Lithos
– volume: 70
  year: 2006
  ident: bib33
  article-title: GEOROC and GeoReM—linking the information of two geological databases
  publication-title: Geochem. Cosmochim. Acta
– year: 2018
  ident: bib16
  article-title: Flask Web Development: Developing Web Applications with Python
– volume: 6
  start-page: 429
  year: 2002
  end-page: 449
  ident: bib19
  article-title: The class imbalance problem: a systematic study1
  publication-title: Intell. Data Anal.
– volume: 2
  start-page: 26
  year: 2019
  end-page: 36
  ident: bib8
  article-title: Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil
  publication-title: J. Geol. Surv. Brazil
– volume: 183
  year: 2019
  ident: bib31
  article-title: Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images
  publication-title: J. Petrol. Sci. Eng.
– volume: 39
  start-page: 1162
  year: 2008
  end-page: 1169
  ident: bib34
  article-title: Addressing missing data in geochemistry: a non-linear approach
  publication-title: Org. Geochem.
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  ident: bib36
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 85
  start-page: B249
  year: 2020
  end-page: B258
  ident: bib22
  article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using Random Forests: the value of using a soft classifier
  publication-title: Geophysics
– volume: 35
  start-page: 253
  year: 2003
  end-page: 278
  ident: bib24
  article-title: Dealing with zeros and missing values in compositional data sets using nonparametric imputation
  publication-title: Math. Geol.
– volume: 136
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib15
  article-title: Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 26
  year: 2017
  ident: bib17
  article-title: Random Forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the Tanami Region, Western Australia
  publication-title: Nat. Resour. Res.
– volume: 30
  start-page: 1011
  year: 2021
  end-page: 1031
  ident: bib39
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network
  publication-title: Nat. Resour. Res.
– volume: 25
  start-page: 125
  year: 2016
  end-page: 143
  ident: bib25
  article-title: Comparison of the data-driven Random Forests Model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada
  publication-title: Nat. Resour. Res.
– start-page: 63
  year: 2019
  end-page: 76
  ident: bib2
  article-title: Mineral classification using machine learning and images of microscopic rock thin section
  publication-title: Advances in Soft Computing
– year: 2018
  ident: bib29
  article-title: Geological mapping in western Tasmania using radar and random forests
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– year: 2013
  ident: bib11
  article-title: An Introduction to the Rock-Forming Minerals
– volume: 71
  start-page: 788
  year: 2015
  end-page: 803
  ident: bib18
  article-title: Data- and knowledge-driven mineral prospectivity maps for ' 'Canada's North
  publication-title: Ore Geol. Rev.
– volume: 83
  start-page: B183
  year: 2018
  end-page: B193
  ident: bib21
  article-title: Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: a demonstration study from the Eastern Goldfields of Australia
  publication-title: Geophysics
– volume: 66
  year: 2021
  ident: bib38
  article-title: Human knee abnormality detection from imbalanced sEMG data
  publication-title: Biomed. Signal Process Contr.
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: bib30
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
– year: 2021
  ident: bib32
– volume: 25
  start-page: 35
  year: 2016
  end-page: 50
  ident: bib5
  article-title: Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
– start-page: 1
  year: 2020
  end-page: 55
  ident: bib12
  article-title: 70 years of machine learning in geoscience in review
  publication-title: Advances in Geophysics
– volume: 80
  start-page: 363
  year: 2019
  ident: bib1
  article-title: Machine learning for data-driven discovery in solid Earth geoscience
  publication-title: Science
– volume: 29
  start-page: 71
  year: 2020
  end-page: 88
  ident: bib3
  article-title: Boosting for mineral prospectivity modeling: a new GIS toolbox
  publication-title: Nat. Resour. Res.
– volume: 124
  year: 2020
  ident: bib28
  article-title: Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: dealing with imbalanced training data
  publication-title: Ore Geol. Rev.
– volume: 56
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib4
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 71
  start-page: 777
  year: 2015
  end-page: 787
  ident: bib6
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm
  publication-title: Ore Geol. Rev.
– start-page: 25
  year: 2017
  ident: bib10
  article-title: Apresentação dos resultados do Projeto Diamante Brasil
  publication-title: Fomentando o Setor Mineral Brasileiro. Ministério de Minas e Energia
– year: 2020
  ident: bib26
  article-title: Unsupervised Outlier Detection Techniques for Well Logs and Geophysical Data, Machine Learning for Subsurface Characterization
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib7
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib13
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Int. Conf. Knowl. Discov. Data Min.
– volume: 38
  year: 2020
  ident: bib37
  article-title: A critical overview of outlier detection methods
  publication-title: Comput. Sci. Rev.
– year: 2019
  ident: bib14
  article-title: Practical implementation of Random Forest-based mineral potential mapping for porphyry Cu – Au mineralization in the Eastern Lachlan Orogen, NSW, Australia
  publication-title: Nat. Resour. Res.
– year: 2014
  ident: bib9
  article-title: Mapping geology and volcanic-hosted massive sulfide alteration in the hellyer-Mt charter region, Tasmania, using random forests (TM) and self-organising maps
  publication-title: Aust. J. Earth Sci.
– volume: 136
  start-page: 99
  year: 2019
  end-page: 109
  ident: bib20
  article-title: Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy
  publication-title: Miner. Eng.
– year: 2013
  ident: bib35
  article-title: Understanding Statistics Using R
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib27
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: 10.1016/j.cageo.2021.104949_bib14
  article-title: Practical implementation of Random Forest-based mineral potential mapping for porphyry Cu – Au mineralization in the Eastern Lachlan Orogen, NSW, Australia
  publication-title: Nat. Resour. Res.
– volume: 136
  start-page: 1
  year: 2018
  ident: 10.1016/j.cageo.2021.104949_bib15
  article-title: Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.12.002
– volume: 136
  start-page: 99
  year: 2019
  ident: 10.1016/j.cageo.2021.104949_bib20
  article-title: Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.03.008
– start-page: 226
  year: 1996
  ident: 10.1016/j.cageo.2021.104949_bib13
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Int. Conf. Knowl. Discov. Data Min.
– volume: 35
  start-page: 253
  year: 2003
  ident: 10.1016/j.cageo.2021.104949_bib24
  article-title: Dealing with zeros and missing values in compositional data sets using nonparametric imputation
  publication-title: Math. Geol.
  doi: 10.1023/A:1023866030544
– volume: 29
  start-page: 71
  year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib3
  article-title: Boosting for mineral prospectivity modeling: a new GIS toolbox
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09483-8
– year: 2018
  ident: 10.1016/j.cageo.2021.104949_bib16
– volume: 85
  start-page: B249
  year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib22
  article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using Random Forests: the value of using a soft classifier
  publication-title: Geophysics
  doi: 10.1190/geo2019-0461.1
– volume: 124
  year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib28
  article-title: Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: dealing with imbalanced training data
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2020.103611
– year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib26
– ident: 10.1016/j.cageo.2021.104949_bib32
– volume: 39
  start-page: 1162
  year: 2008
  ident: 10.1016/j.cageo.2021.104949_bib34
  article-title: Addressing missing data in geochemistry: a non-linear approach
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2008.02.016
– year: 2013
  ident: 10.1016/j.cageo.2021.104949_bib11
– volume: 56
  start-page: 5
  year: 2001
  ident: 10.1016/j.cageo.2021.104949_bib4
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2014
  ident: 10.1016/j.cageo.2021.104949_bib9
  article-title: Mapping geology and volcanic-hosted massive sulfide alteration in the hellyer-Mt charter region, Tasmania, using random forests (TM) and self-organising maps
  publication-title: Aust. J. Earth Sci.
  doi: 10.1080/08120099.2014.858081
– volume: 71
  start-page: 777
  year: 2015
  ident: 10.1016/j.cageo.2021.104949_bib6
  article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2014.08.010
– volume: 30
  start-page: 1011
  year: 2021
  ident: 10.1016/j.cageo.2021.104949_bib39
  article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09789-y
– volume: 362
  year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib23
  article-title: Lithos Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression
  publication-title: Lithos
– volume: 71
  start-page: 788
  year: 2015
  ident: 10.1016/j.cageo.2021.104949_bib18
  article-title: Data- and knowledge-driven mineral prospectivity maps for ' 'Canada's North
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.01.004
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cageo.2021.104949_bib27
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 26
  year: 2017
  ident: 10.1016/j.cageo.2021.104949_bib17
  article-title: Random Forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the Tanami Region, Western Australia
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-017-9335-6
– volume: 80
  start-page: 363
  year: 2019
  ident: 10.1016/j.cageo.2021.104949_bib1
  article-title: Machine learning for data-driven discovery in solid Earth geoscience
  publication-title: Science
– start-page: 25
  year: 2017
  ident: 10.1016/j.cageo.2021.104949_bib10
  article-title: Apresentação dos resultados do Projeto Diamante Brasil
– volume: 6
  start-page: 429
  year: 2002
  ident: 10.1016/j.cageo.2021.104949_bib19
  article-title: The class imbalance problem: a systematic study1
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2002-6504
– volume: 66
  year: 2021
  ident: 10.1016/j.cageo.2021.104949_bib38
  article-title: Human knee abnormality detection from imbalanced sEMG data
  publication-title: Biomed. Signal Process Contr.
  doi: 10.1016/j.bspc.2021.102406
– volume: 83
  start-page: B183
  year: 2018
  ident: 10.1016/j.cageo.2021.104949_bib21
  article-title: Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: a demonstration study from the Eastern Goldfields of Australia
  publication-title: Geophysics
  doi: 10.1190/geo2017-0590.1
– volume: 70
  year: 2006
  ident: 10.1016/j.cageo.2021.104949_bib33
  article-title: GEOROC and GeoReM—linking the information of two geological databases
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.06.1045
– volume: 25
  start-page: 125
  year: 2016
  ident: 10.1016/j.cageo.2021.104949_bib25
  article-title: Comparison of the data-driven Random Forests Model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-015-9274-z
– volume: 183
  year: 2019
  ident: 10.1016/j.cageo.2021.104949_bib31
  article-title: Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2019.106382
– year: 2018
  ident: 10.1016/j.cageo.2021.104949_bib29
  article-title: Geological mapping in western Tasmania using radar and random forests
– start-page: 63
  year: 2019
  ident: 10.1016/j.cageo.2021.104949_bib2
  article-title: Mineral classification using machine learning and images of microscopic rock thin section
– volume: 25
  start-page: 35
  year: 2016
  ident: 10.1016/j.cageo.2021.104949_bib5
  article-title: Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines)
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-015-9268-x
– volume: 27
  start-page: 623
  year: 1948
  ident: 10.1016/j.cageo.2021.104949_bib36
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 2
  start-page: 26
  year: 2019
  ident: 10.1016/j.cageo.2021.104949_bib8
  article-title: Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil
  publication-title: J. Geol. Surv. Brazil
  doi: 10.29396/jgsb.2019.v2.n1.3
– start-page: 1
  year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib12
  article-title: 70 years of machine learning in geoscience in review
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.cageo.2021.104949_bib7
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.cageo.2021.104949_bib30
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 38
  year: 2020
  ident: 10.1016/j.cageo.2021.104949_bib37
  article-title: A critical overview of outlier detection methods
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100306
– year: 2013
  ident: 10.1016/j.cageo.2021.104949_bib35
SSID ssj0002285
Score 2.3804166
Snippet Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104949
SubjectTerms algorithms
Brazil
Electron probe microanalyzer data processing
geochemistry
industry
Mineral formula calculation
Mineral prediction
Random forests classifier
surveys
Title Qmin – A machine learning-based application for processing and analysis of mineral chemistry data
URI https://dx.doi.org/10.1016/j.cageo.2021.104949
https://www.proquest.com/docview/2636528537
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIngRn1gfZQWPRvPaR46lWKtiQbDgbdlXpGLTou3Bi_gf_If-Enc2iS-kB49JdkOY3czMMt_3DUKHbokVpZoEVhMegIZUoGKdBYkBlmVoZRoBwfmqT3uD9OKW3DZQp-bCAKyy8v2lT_feurpzUlnzZDIcAsc346AXFUdetMUz2FMGXQyOX75gHnHMSa2bCaNr5SGP8dLunwUGYBxBrTMDQc2_o9MvP-2DT3cVrVRZI26XH7aGGrZYR0tnvivv8wbS16Nhgd9f33Abjzw60uKqHcRdAHHK4G-FauzyVDwpCQJuAJaFe1xpk-BxjkdDr0SNdd0LDgOMdBMNuqc3nV5QdU8IZEKyaeASCykV5VzmiijDXS4ibZgYkxsV5lqzjOmMM8YzYgxlLLLuZBiynLgETrmgnmyhhWJc2G2E3RGNKxbJlMR5ag3jOU9tpFSolaGE6CaKa6sJXUmLQ4eLB1FjyO6FN7UAU4vS1E109DlpUiprzB9O6-UQPzaIcL5__sSDevGEsxrUQ2Rhx7MnEdOEErc9Erbz35fvomW4KvEte2hh-jiz-y5LmaqW34YttNg-v-z1PwBUhub-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1VqVDZVIUW0RcMEktM_JqHl1HVECCJhJRI2Y3mZRREnKhNFt1U_Yf-Yb-k945tCghlwdYzY1lnxvehOfdcQt7DFhvOLYu8ZTJCDanIpLaIModVlrHXeYIFzqMxH0zzLzM22yEXbS0M0iob21_b9GCtmyfdBs3uaj7HGt9Col5UmgTRFkiBdnOWCszAPt4-8TzSVLJWOBOnt9JDgeRl4afFEsA0wcvOAhU1_-2e_jLUwfv0D8h-EzbSXv1lL8iOr16SZ59CW96bQ2K_LeYVfbi7pz26CPRIT5t-EN8jdFSO_nZTTSFQpau6QgAmUF3BcCNOQpclXcyDFDW1bTM4ijzSIzLtX04uBlHTPiHSGSvWEUQWWhsupS4NM05CMKJ9nDlXOhOX1opC2EIKIQvmHBci8ZAaxqJkEMEZ8OrZK9KplpV_TSjkaNKIRAO-Ze6dkKXMfWJMbI3jjNljkraoKdtoi2OLi5-qJZH9UAFqhVCrGupj8uHXolUtrbF9Om-3Q_1xQhQY_-0L37WbpwA1vBDRlV9urlXKM87geGTi5H9f_pbsDSajoRp-Hn89Jc9xpCa7nJHO-mrjzyFkWZs34Ug-Ar5E6JM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qmin+%E2%80%93+A+machine+learning-based+application+for+processing+and+analysis+of+mineral+chemistry+data&rft.jtitle=Computers+%26+geosciences&rft.au=da+Silva%2C+Guilherme+Ferreira&rft.au=Ferreira%2C+Marcos+Vinicius&rft.au=Costa%2C+Iago+Sousa+Lima&rft.au=Bernardes%2C+Renato+Borges&rft.date=2021-12-01&rft.issn=0098-3004&rft.volume=157&rft.spage=104949&rft_id=info:doi/10.1016%2Fj.cageo.2021.104949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2021_104949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon