Qmin – A machine learning-based application for processing and analysis of mineral chemistry data
Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predispos...
Saved in:
| Published in | Computers & geosciences Vol. 157; p. 104949 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-3004 1873-7803 |
| DOI | 10.1016/j.cageo.2021.104949 |
Cover
| Abstract | Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data.
•Qmin is an open-source tool that helps to automate the processing of EPMA data.•Qmin runs several classifiers to distinguish 17 groups and 100 different minerals.•We used Shannon Uncertainty to verify the quality of the prediction.•Balanced accuracy in a blind test achieved 99.44% for known minerals.•Qmin is written in Python and R and is available at http://apps.cprm.gov.br/qmin/ |
|---|---|
| AbstractList | Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data. Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data. •Qmin is an open-source tool that helps to automate the processing of EPMA data.•Qmin runs several classifiers to distinguish 17 groups and 100 different minerals.•We used Shannon Uncertainty to verify the quality of the prediction.•Balanced accuracy in a blind test achieved 99.44% for known minerals.•Qmin is written in Python and R and is available at http://apps.cprm.gov.br/qmin/ |
| ArticleNumber | 104949 |
| Author | Ferreira, Marcos Vinicius Mota, Carlos Eduardo Miranda da Silva, Guilherme Ferreira Cuadros Jiménez, Federico Alberto Bernardes, Renato Borges Costa, Iago Sousa Lima |
| Author_xml | – sequence: 1 givenname: Guilherme Ferreira orcidid: 0000-0002-3675-7289 surname: da Silva fullname: da Silva, Guilherme Ferreira email: guilherme.ferreira@cprm.gov.br organization: Directory of Geology and Mineral Resources, Geological Survey of Brazil (SGB/CPRM), Brasilia, Brazil – sequence: 2 givenname: Marcos Vinicius orcidid: 0000-0001-5213-0825 surname: Ferreira fullname: Ferreira, Marcos Vinicius email: marcos.ferreira@cprm.gov.br organization: Directory of Geology and Mineral Resources, Geological Survey of Brazil (SGB/CPRM), Brasilia, Brazil – sequence: 3 givenname: Iago Sousa Lima orcidid: 0000-0002-3721-8957 surname: Costa fullname: Costa, Iago Sousa Lima email: iago.costa@cprm.gov.br organization: Directory of Geology and Mineral Resources, Geological Survey of Brazil (SGB/CPRM), Brasilia, Brazil – sequence: 4 givenname: Renato Borges orcidid: 0000-0002-5065-3830 surname: Bernardes fullname: Bernardes, Renato Borges email: renato.bernardes@unb.br organization: Institute of Geosciences, University of Brasilia, Brasilia, Brazil – sequence: 5 givenname: Carlos Eduardo Miranda orcidid: 0000-0002-6652-0493 surname: Mota fullname: Mota, Carlos Eduardo Miranda email: carlos.mota@cprm.gov.br organization: Directory of Geoscience Infrastructure, Geological Survey of Brazil (SGB/CPRM), Rio de Janeiro, Brazil – sequence: 6 givenname: Federico Alberto orcidid: 0000-0002-2297-9964 surname: Cuadros Jiménez fullname: Cuadros Jiménez, Federico Alberto email: facuadros@unb.br organization: Institute of Geosciences, University of Brasilia, Brasilia, Brazil |
| BookMark | eNqFkL9OwzAQhy0EEqXwBCweWVKcOI6dgQEh_klICAlm62JfiqvULnZA6sY78IY8CaZlYoDppLvfd7r7DsiuDx4JOS7ZrGRlc7qYGZhjmFWsKnOnbut2h0xKJXkhFeO7ZMJYqwrOWL1PDlJaMMaqSokJMQ9L5-nn-wc9p0swz84jHRCid35edJDQUlitBmdgdMHTPkS6isFgSjlAweexh2GdXKKhp3kXRhioecalS2NcUwsjHJK9HoaERz91Sp6uLh8vboq7--vbi_O7Arhox0LVDUDXKAV9JzqrWMMBGbe2tx3rjZGtNK2SUrXC2kbKEuu6YbIXQopOVCWfkpPt3nzhyyumUecjDA4DeAyvSVcNb0T-msscbbdRE0NKEXtt3Lh5cYzgBl0y_S1WL_RGrP4Wq7diM8t_savolhDX_1BnWwqzgTeHUSfj0Bu0LqIZtQ3uT_4L_jiWoQ |
| CitedBy_id | crossref_primary_10_1016_j_jsames_2022_103815 crossref_primary_10_1016_j_earscirev_2024_104941 crossref_primary_10_1016_j_eswa_2023_122111 crossref_primary_10_1016_j_oregeorev_2022_104925 |
| Cites_doi | 10.1016/j.isprsjprs.2017.12.002 10.1016/j.mineng.2019.03.008 10.1023/A:1023866030544 10.1007/s11053-019-09483-8 10.1190/geo2019-0461.1 10.1016/j.oregeorev.2020.103611 10.1016/j.orggeochem.2008.02.016 10.1023/A:1010933404324 10.1080/08120099.2014.858081 10.1016/j.oregeorev.2014.08.010 10.1007/s11053-020-09789-y 10.1016/j.oregeorev.2015.01.004 10.1007/s11053-017-9335-6 10.3233/IDA-2002-6504 10.1016/j.bspc.2021.102406 10.1190/geo2017-0590.1 10.1016/j.gca.2006.06.1045 10.1007/s11053-015-9274-z 10.1016/j.petrol.2019.106382 10.1007/s11053-015-9268-x 10.1002/j.1538-7305.1948.tb00917.x 10.29396/jgsb.2019.v2.n1.3 10.1613/jair.953 10.1016/j.oregeorev.2015.01.001 10.1016/j.cosrev.2020.100306 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.cageo.2021.104949 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1873-7803 |
| ExternalDocumentID | 10_1016_j_cageo_2021_104949 S0098300421002351 |
| GeographicLocations | Brazil |
| GeographicLocations_xml | – name: Brazil |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a359t-846aab688afb5bd8063ae03ddfdb0fcc797c9877895dd6771e44607f5575b5213 |
| IEDL.DBID | .~1 |
| ISSN | 0098-3004 |
| IngestDate | Wed Oct 01 14:46:36 EDT 2025 Thu Oct 02 04:24:14 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Fri Feb 23 02:43:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mineral formula calculation Electron probe microanalyzer data processing Random forests classifier Mineral prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a359t-846aab688afb5bd8063ae03ddfdb0fcc797c9877895dd6771e44607f5575b5213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3675-7289 0000-0002-5065-3830 0000-0001-5213-0825 0000-0002-3721-8957 0000-0002-6652-0493 0000-0002-2297-9964 |
| PQID | 2636528537 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636528537 crossref_citationtrail_10_1016_j_cageo_2021_104949 crossref_primary_10_1016_j_cageo_2021_104949 elsevier_sciencedirect_doi_10_1016_j_cageo_2021_104949 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & geosciences |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Martín-Fernández, Barceló-Vidal, Pawlowsky-Glahn (bib24) 2003; 35 Rubo, de Carvalho Carneiro, Michelon, Gioria, dos (bib31) 2019; 183 Carranza, Laborte (bib6) 2015; 71 Kuhn, Cracknell, Reading, Sykora (bib22) 2020; 85 Prado, de Souza Filho, Carranza, Motta (bib28) 2020; 124 Zhang, Carranza, Wei, Xiao, Yang, Xiang, Zhang, Xu (bib39) 2021; 30 Breiman (bib4) 2001; 56 Misra, Osogba, Powers (bib26) 2020 Schramm, Jochum, Sarbas, Nohl (bib33) 2006; 70 Schroeder, Cornford, Farrimond, Cornford (bib34) 2008; 39 Li, Zhang, Behrens, Holtz (bib23) 2020; 362 Hariharan, Tirodkar, Porwal, Bhattacharya, Joly (bib17) 2017; 26 Borges, Aguiar (bib2) 2019 Chawla, Bowyer, Hall, Kegelmeyer (bib7) 2002; 16 Koch, Lund, Rosenkranz (bib20) 2019; 136 Ester, Kriegel, Sander, Xiaowei (bib13) 1996 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib27) 2011; 12 Brandmeier, Cabrera Zamora, Nykänen, Middleton (bib3) 2020; 29 Shannon (bib36) 1948; 27 Gavish, O'Connell, Marsh, Tarantino, Blonda, Tomaselli, Kunin (bib15) 2018; 136 Ford (bib14) 2019 Grinberg (bib16) 2018 McKay, Harris (bib25) 2016; 25 Radford, Cracknell, Roach, Cumming (bib29) 2018 Smiti (bib37) 2020; 38 Vijayvargiya, Prakash, Kumar, Bansal, João (bib38) 2021; 66 Cunha, Cabral Neto, Silveira, Nannini (bib10) 2017 Bergen, Johnson, de Hoop, Beroza (bib1) 2019; 80 Schumacker, Tomek (bib35) 2013 Cracknell, Reading, McNeill (bib9) 2014 Deer, Howie, Zussman (bib11) 2013 Kuhn, Cracknell, Reading (bib21) 2018; 83 Rodriguez-Galiano, Sanchez-Castillo, Chica-Olmo, Chica-Rivas (bib30) 2015; 71 Carranza, Laborte (bib5) 2016; 25 Harris, Grunsky, Behnia, Corrigan (bib18) 2015; 71 Costa, Tavares, Oliveira (bib8) 2019; 2 Japkowicz, Stephen (bib19) 2002; 6 Sarbas (bib32) 2021 Dramsch (bib12) 2020 Schroeder (10.1016/j.cageo.2021.104949_bib34) 2008; 39 Prado (10.1016/j.cageo.2021.104949_bib28) 2020; 124 Schramm (10.1016/j.cageo.2021.104949_bib33) 2006; 70 Misra (10.1016/j.cageo.2021.104949_bib26) 2020 Shannon (10.1016/j.cageo.2021.104949_bib36) 1948; 27 Pedregosa (10.1016/j.cageo.2021.104949_bib27) 2011; 12 Smiti (10.1016/j.cageo.2021.104949_bib37) 2020; 38 Schumacker (10.1016/j.cageo.2021.104949_bib35) 2013 Dramsch (10.1016/j.cageo.2021.104949_bib12) 2020 Rubo (10.1016/j.cageo.2021.104949_bib31) 2019; 183 Li (10.1016/j.cageo.2021.104949_bib23) 2020; 362 Cunha (10.1016/j.cageo.2021.104949_bib10) 2017 Chawla (10.1016/j.cageo.2021.104949_bib7) 2002; 16 Ester (10.1016/j.cageo.2021.104949_bib13) 1996 Cracknell (10.1016/j.cageo.2021.104949_bib9) 2014 Ford (10.1016/j.cageo.2021.104949_bib14) 2019 Grinberg (10.1016/j.cageo.2021.104949_bib16) 2018 Radford (10.1016/j.cageo.2021.104949_bib29) 2018 Sarbas (10.1016/j.cageo.2021.104949_bib32) Martín-Fernández (10.1016/j.cageo.2021.104949_bib24) 2003; 35 Kuhn (10.1016/j.cageo.2021.104949_bib22) 2020; 85 Kuhn (10.1016/j.cageo.2021.104949_bib21) 2018; 83 Breiman (10.1016/j.cageo.2021.104949_bib4) 2001; 56 Borges (10.1016/j.cageo.2021.104949_bib2) 2019 Koch (10.1016/j.cageo.2021.104949_bib20) 2019; 136 Costa (10.1016/j.cageo.2021.104949_bib8) 2019; 2 McKay (10.1016/j.cageo.2021.104949_bib25) 2016; 25 Vijayvargiya (10.1016/j.cageo.2021.104949_bib38) 2021; 66 Zhang (10.1016/j.cageo.2021.104949_bib39) 2021; 30 Japkowicz (10.1016/j.cageo.2021.104949_bib19) 2002; 6 Rodriguez-Galiano (10.1016/j.cageo.2021.104949_bib30) 2015; 71 Carranza (10.1016/j.cageo.2021.104949_bib6) 2015; 71 Bergen (10.1016/j.cageo.2021.104949_bib1) 2019; 80 Brandmeier (10.1016/j.cageo.2021.104949_bib3) 2020; 29 Hariharan (10.1016/j.cageo.2021.104949_bib17) 2017; 26 Carranza (10.1016/j.cageo.2021.104949_bib5) 2016; 25 Deer (10.1016/j.cageo.2021.104949_bib11) 2013 Harris (10.1016/j.cageo.2021.104949_bib18) 2015; 71 Gavish (10.1016/j.cageo.2021.104949_bib15) 2018; 136 |
| References_xml | – volume: 362 year: 2020 ident: bib23 article-title: Lithos Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression publication-title: Lithos – volume: 70 year: 2006 ident: bib33 article-title: GEOROC and GeoReM—linking the information of two geological databases publication-title: Geochem. Cosmochim. Acta – year: 2018 ident: bib16 article-title: Flask Web Development: Developing Web Applications with Python – volume: 6 start-page: 429 year: 2002 end-page: 449 ident: bib19 article-title: The class imbalance problem: a systematic study1 publication-title: Intell. Data Anal. – volume: 2 start-page: 26 year: 2019 end-page: 36 ident: bib8 article-title: Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil publication-title: J. Geol. Surv. Brazil – volume: 183 year: 2019 ident: bib31 article-title: Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images publication-title: J. Petrol. Sci. Eng. – volume: 39 start-page: 1162 year: 2008 end-page: 1169 ident: bib34 article-title: Addressing missing data in geochemistry: a non-linear approach publication-title: Org. Geochem. – volume: 27 start-page: 623 year: 1948 end-page: 656 ident: bib36 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – volume: 85 start-page: B249 year: 2020 end-page: B258 ident: bib22 article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using Random Forests: the value of using a soft classifier publication-title: Geophysics – volume: 35 start-page: 253 year: 2003 end-page: 278 ident: bib24 article-title: Dealing with zeros and missing values in compositional data sets using nonparametric imputation publication-title: Math. Geol. – volume: 136 start-page: 1 year: 2018 end-page: 12 ident: bib15 article-title: Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 26 year: 2017 ident: bib17 article-title: Random Forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the Tanami Region, Western Australia publication-title: Nat. Resour. Res. – volume: 30 start-page: 1011 year: 2021 end-page: 1031 ident: bib39 article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network publication-title: Nat. Resour. Res. – volume: 25 start-page: 125 year: 2016 end-page: 143 ident: bib25 article-title: Comparison of the data-driven Random Forests Model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada publication-title: Nat. Resour. Res. – start-page: 63 year: 2019 end-page: 76 ident: bib2 article-title: Mineral classification using machine learning and images of microscopic rock thin section publication-title: Advances in Soft Computing – year: 2018 ident: bib29 article-title: Geological mapping in western Tasmania using radar and random forests publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – year: 2013 ident: bib11 article-title: An Introduction to the Rock-Forming Minerals – volume: 71 start-page: 788 year: 2015 end-page: 803 ident: bib18 article-title: Data- and knowledge-driven mineral prospectivity maps for ' 'Canada's North publication-title: Ore Geol. Rev. – volume: 83 start-page: B183 year: 2018 end-page: B193 ident: bib21 article-title: Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: a demonstration study from the Eastern Goldfields of Australia publication-title: Geophysics – volume: 66 year: 2021 ident: bib38 article-title: Human knee abnormality detection from imbalanced sEMG data publication-title: Biomed. Signal Process Contr. – volume: 71 start-page: 804 year: 2015 end-page: 818 ident: bib30 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. – year: 2021 ident: bib32 – volume: 25 start-page: 35 year: 2016 end-page: 50 ident: bib5 article-title: Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines) publication-title: Nat. Resour. Res. – start-page: 1 year: 2020 end-page: 55 ident: bib12 article-title: 70 years of machine learning in geoscience in review publication-title: Advances in Geophysics – volume: 80 start-page: 363 year: 2019 ident: bib1 article-title: Machine learning for data-driven discovery in solid Earth geoscience publication-title: Science – volume: 29 start-page: 71 year: 2020 end-page: 88 ident: bib3 article-title: Boosting for mineral prospectivity modeling: a new GIS toolbox publication-title: Nat. Resour. Res. – volume: 124 year: 2020 ident: bib28 article-title: Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: dealing with imbalanced training data publication-title: Ore Geol. Rev. – volume: 56 start-page: 5 year: 2001 end-page: 32 ident: bib4 article-title: Random forests publication-title: Mach. Learn. – volume: 71 start-page: 777 year: 2015 end-page: 787 ident: bib6 article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm publication-title: Ore Geol. Rev. – start-page: 25 year: 2017 ident: bib10 article-title: Apresentação dos resultados do Projeto Diamante Brasil publication-title: Fomentando o Setor Mineral Brasileiro. Ministério de Minas e Energia – year: 2020 ident: bib26 article-title: Unsupervised Outlier Detection Techniques for Well Logs and Geophysical Data, Machine Learning for Subsurface Characterization – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib7 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – start-page: 226 year: 1996 end-page: 231 ident: bib13 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Int. Conf. Knowl. Discov. Data Min. – volume: 38 year: 2020 ident: bib37 article-title: A critical overview of outlier detection methods publication-title: Comput. Sci. Rev. – year: 2019 ident: bib14 article-title: Practical implementation of Random Forest-based mineral potential mapping for porphyry Cu – Au mineralization in the Eastern Lachlan Orogen, NSW, Australia publication-title: Nat. Resour. Res. – year: 2014 ident: bib9 article-title: Mapping geology and volcanic-hosted massive sulfide alteration in the hellyer-Mt charter region, Tasmania, using random forests (TM) and self-organising maps publication-title: Aust. J. Earth Sci. – volume: 136 start-page: 99 year: 2019 end-page: 109 ident: bib20 article-title: Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy publication-title: Miner. Eng. – year: 2013 ident: bib35 article-title: Understanding Statistics Using R – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib27 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2019 ident: 10.1016/j.cageo.2021.104949_bib14 article-title: Practical implementation of Random Forest-based mineral potential mapping for porphyry Cu – Au mineralization in the Eastern Lachlan Orogen, NSW, Australia publication-title: Nat. Resour. Res. – volume: 136 start-page: 1 year: 2018 ident: 10.1016/j.cageo.2021.104949_bib15 article-title: Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2017.12.002 – volume: 136 start-page: 99 year: 2019 ident: 10.1016/j.cageo.2021.104949_bib20 article-title: Automated drill core mineralogical characterization method for texture classification and modal mineralogy estimation for geometallurgy publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.03.008 – start-page: 226 year: 1996 ident: 10.1016/j.cageo.2021.104949_bib13 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Int. Conf. Knowl. Discov. Data Min. – volume: 35 start-page: 253 year: 2003 ident: 10.1016/j.cageo.2021.104949_bib24 article-title: Dealing with zeros and missing values in compositional data sets using nonparametric imputation publication-title: Math. Geol. doi: 10.1023/A:1023866030544 – volume: 29 start-page: 71 year: 2020 ident: 10.1016/j.cageo.2021.104949_bib3 article-title: Boosting for mineral prospectivity modeling: a new GIS toolbox publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09483-8 – year: 2018 ident: 10.1016/j.cageo.2021.104949_bib16 – volume: 85 start-page: B249 year: 2020 ident: 10.1016/j.cageo.2021.104949_bib22 article-title: Identification of intrusive lithologies in volcanic terrains in British Columbia by machine learning using Random Forests: the value of using a soft classifier publication-title: Geophysics doi: 10.1190/geo2019-0461.1 – volume: 124 year: 2020 ident: 10.1016/j.cageo.2021.104949_bib28 article-title: Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: dealing with imbalanced training data publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2020.103611 – year: 2020 ident: 10.1016/j.cageo.2021.104949_bib26 – ident: 10.1016/j.cageo.2021.104949_bib32 – volume: 39 start-page: 1162 year: 2008 ident: 10.1016/j.cageo.2021.104949_bib34 article-title: Addressing missing data in geochemistry: a non-linear approach publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2008.02.016 – year: 2013 ident: 10.1016/j.cageo.2021.104949_bib11 – volume: 56 start-page: 5 year: 2001 ident: 10.1016/j.cageo.2021.104949_bib4 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2014 ident: 10.1016/j.cageo.2021.104949_bib9 article-title: Mapping geology and volcanic-hosted massive sulfide alteration in the hellyer-Mt charter region, Tasmania, using random forests (TM) and self-organising maps publication-title: Aust. J. Earth Sci. doi: 10.1080/08120099.2014.858081 – volume: 71 start-page: 777 year: 2015 ident: 10.1016/j.cageo.2021.104949_bib6 article-title: Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of Random Forests algorithm publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2014.08.010 – volume: 30 start-page: 1011 year: 2021 ident: 10.1016/j.cageo.2021.104949_bib39 article-title: Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09789-y – volume: 362 year: 2020 ident: 10.1016/j.cageo.2021.104949_bib23 article-title: Lithos Calculating amphibole formula from electron microprobe analysis data using a machine learning method based on principal components regression publication-title: Lithos – volume: 71 start-page: 788 year: 2015 ident: 10.1016/j.cageo.2021.104949_bib18 article-title: Data- and knowledge-driven mineral prospectivity maps for ' 'Canada's North publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.01.004 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.cageo.2021.104949_bib27 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 26 year: 2017 ident: 10.1016/j.cageo.2021.104949_bib17 article-title: Random Forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the Tanami Region, Western Australia publication-title: Nat. Resour. Res. doi: 10.1007/s11053-017-9335-6 – volume: 80 start-page: 363 year: 2019 ident: 10.1016/j.cageo.2021.104949_bib1 article-title: Machine learning for data-driven discovery in solid Earth geoscience publication-title: Science – start-page: 25 year: 2017 ident: 10.1016/j.cageo.2021.104949_bib10 article-title: Apresentação dos resultados do Projeto Diamante Brasil – volume: 6 start-page: 429 year: 2002 ident: 10.1016/j.cageo.2021.104949_bib19 article-title: The class imbalance problem: a systematic study1 publication-title: Intell. Data Anal. doi: 10.3233/IDA-2002-6504 – volume: 66 year: 2021 ident: 10.1016/j.cageo.2021.104949_bib38 article-title: Human knee abnormality detection from imbalanced sEMG data publication-title: Biomed. Signal Process Contr. doi: 10.1016/j.bspc.2021.102406 – volume: 83 start-page: B183 year: 2018 ident: 10.1016/j.cageo.2021.104949_bib21 article-title: Lithologic mapping using Random Forests applied to geophysical and remote-sensing data: a demonstration study from the Eastern Goldfields of Australia publication-title: Geophysics doi: 10.1190/geo2017-0590.1 – volume: 70 year: 2006 ident: 10.1016/j.cageo.2021.104949_bib33 article-title: GEOROC and GeoReM—linking the information of two geological databases publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2006.06.1045 – volume: 25 start-page: 125 year: 2016 ident: 10.1016/j.cageo.2021.104949_bib25 article-title: Comparison of the data-driven Random Forests Model and a knowledge-driven method for mineral prospectivity mapping: a case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada publication-title: Nat. Resour. Res. doi: 10.1007/s11053-015-9274-z – volume: 183 year: 2019 ident: 10.1016/j.cageo.2021.104949_bib31 article-title: Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2019.106382 – year: 2018 ident: 10.1016/j.cageo.2021.104949_bib29 article-title: Geological mapping in western Tasmania using radar and random forests – start-page: 63 year: 2019 ident: 10.1016/j.cageo.2021.104949_bib2 article-title: Mineral classification using machine learning and images of microscopic rock thin section – volume: 25 start-page: 35 year: 2016 ident: 10.1016/j.cageo.2021.104949_bib5 article-title: Data-driven predictive modeling of mineral prospectivity using Random Forests: a case study in Catanduanes Island (Philippines) publication-title: Nat. Resour. Res. doi: 10.1007/s11053-015-9268-x – volume: 27 start-page: 623 year: 1948 ident: 10.1016/j.cageo.2021.104949_bib36 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb00917.x – volume: 2 start-page: 26 year: 2019 ident: 10.1016/j.cageo.2021.104949_bib8 article-title: Predictive lithological mapping through machine learning methods: a case study in the Cinzento Lineament, Carajás Province, Brazil publication-title: J. Geol. Surv. Brazil doi: 10.29396/jgsb.2019.v2.n1.3 – start-page: 1 year: 2020 ident: 10.1016/j.cageo.2021.104949_bib12 article-title: 70 years of machine learning in geoscience in review – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.cageo.2021.104949_bib7 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 71 start-page: 804 year: 2015 ident: 10.1016/j.cageo.2021.104949_bib30 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.01.001 – volume: 38 year: 2020 ident: 10.1016/j.cageo.2021.104949_bib37 article-title: A critical overview of outlier detection methods publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100306 – year: 2013 ident: 10.1016/j.cageo.2021.104949_bib35 |
| SSID | ssj0002285 |
| Score | 2.3804166 |
| Snippet | Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104949 |
| SubjectTerms | algorithms Brazil Electron probe microanalyzer data processing geochemistry industry Mineral formula calculation Mineral prediction Random forests classifier surveys |
| Title | Qmin – A machine learning-based application for processing and analysis of mineral chemistry data |
| URI | https://dx.doi.org/10.1016/j.cageo.2021.104949 https://www.proquest.com/docview/2636528537 |
| Volume | 157 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIngRn1gfZQWPRvPaR46lWKtiQbDgbdlXpGLTou3Bi_gf_If-Enc2iS-kB49JdkOY3czMMt_3DUKHbokVpZoEVhMegIZUoGKdBYkBlmVoZRoBwfmqT3uD9OKW3DZQp-bCAKyy8v2lT_feurpzUlnzZDIcAsc346AXFUdetMUz2FMGXQyOX75gHnHMSa2bCaNr5SGP8dLunwUGYBxBrTMDQc2_o9MvP-2DT3cVrVRZI26XH7aGGrZYR0tnvivv8wbS16Nhgd9f33Abjzw60uKqHcRdAHHK4G-FauzyVDwpCQJuAJaFe1xpk-BxjkdDr0SNdd0LDgOMdBMNuqc3nV5QdU8IZEKyaeASCykV5VzmiijDXS4ibZgYkxsV5lqzjOmMM8YzYgxlLLLuZBiynLgETrmgnmyhhWJc2G2E3RGNKxbJlMR5ag3jOU9tpFSolaGE6CaKa6sJXUmLQ4eLB1FjyO6FN7UAU4vS1E109DlpUiprzB9O6-UQPzaIcL5__sSDevGEsxrUQ2Rhx7MnEdOEErc9Erbz35fvomW4KvEte2hh-jiz-y5LmaqW34YttNg-v-z1PwBUhub- |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1VqVDZVIUW0RcMEktM_JqHl1HVECCJhJRI2Y3mZRREnKhNFt1U_Yf-Yb-k945tCghlwdYzY1lnxvehOfdcQt7DFhvOLYu8ZTJCDanIpLaIModVlrHXeYIFzqMxH0zzLzM22yEXbS0M0iob21_b9GCtmyfdBs3uaj7HGt9Col5UmgTRFkiBdnOWCszAPt4-8TzSVLJWOBOnt9JDgeRl4afFEsA0wcvOAhU1_-2e_jLUwfv0D8h-EzbSXv1lL8iOr16SZ59CW96bQ2K_LeYVfbi7pz26CPRIT5t-EN8jdFSO_nZTTSFQpau6QgAmUF3BcCNOQpclXcyDFDW1bTM4ijzSIzLtX04uBlHTPiHSGSvWEUQWWhsupS4NM05CMKJ9nDlXOhOX1opC2EIKIQvmHBci8ZAaxqJkEMEZ8OrZK9KplpV_TSjkaNKIRAO-Ze6dkKXMfWJMbI3jjNljkraoKdtoi2OLi5-qJZH9UAFqhVCrGupj8uHXolUtrbF9Om-3Q_1xQhQY_-0L37WbpwA1vBDRlV9urlXKM87geGTi5H9f_pbsDSajoRp-Hn89Jc9xpCa7nJHO-mrjzyFkWZs34Ug-Ar5E6JM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qmin+%E2%80%93+A+machine+learning-based+application+for+processing+and+analysis+of+mineral+chemistry+data&rft.jtitle=Computers+%26+geosciences&rft.au=da+Silva%2C+Guilherme+Ferreira&rft.au=Ferreira%2C+Marcos+Vinicius&rft.au=Costa%2C+Iago+Sousa+Lima&rft.au=Bernardes%2C+Renato+Borges&rft.date=2021-12-01&rft.issn=0098-3004&rft.volume=157&rft.spage=104949&rft_id=info:doi/10.1016%2Fj.cageo.2021.104949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2021_104949 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |