Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method
SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the p...
Saved in:
| Published in | Geophysical journal international Vol. 224; no. 2; pp. 1056 - 1078 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford University Press
01.02.2021
Oxford University Press (OUP) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0956-540X 1365-246X 1365-246X |
| DOI | 10.1093/gji/ggaa505 |
Cover
| Abstract | SUMMARY
Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals. |
|---|---|
| AbstractList | SUMMARY
Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals. Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity-depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity-depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s-1 in the lower crust to 8 km s-1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals. Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals. |
| Author | Grevemeyer, Ingo Visser, Gerhard Saygin, Erdinc Vaddineni, Venkata A Guo, Peng Singh, Satish C |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0003-1248-5650 surname: Guo fullname: Guo, Peng email: peng.guo@csiro.au – sequence: 2 givenname: Satish C surname: Singh fullname: Singh, Satish C – sequence: 3 givenname: Venkata A surname: Vaddineni fullname: Vaddineni, Venkata A – sequence: 4 givenname: Gerhard orcidid: 0000-0001-8752-9828 surname: Visser fullname: Visser, Gerhard – sequence: 5 givenname: Ingo orcidid: 0000-0002-6807-604X surname: Grevemeyer fullname: Grevemeyer, Ingo – sequence: 6 givenname: Erdinc surname: Saygin fullname: Saygin, Erdinc |
| BackLink | https://insu.hal.science/insu-03584389$$DView record in HAL |
| BookMark | eNp9kEFP4zAQhS3EShSWE3_AJw5AwI7jxD5CxdKVuvQASNysIRm3Rqld2Um7_feELRIS0nKaw3zz3rx3SPZ98EjICWeXnGlxNX91V_M5gGRyj4y4KGWWF-XzPhkxLctMFuz5gBym9MoYL3ihRuTvffCt8wiR2r5t6QbWaENcUufXGJMLngZLN67BDFYYuz4ind080AY6oANI_4RFoKmLff1v1yfn5xRoF8GnrHFL9O8i0NIb2GJy4OkSu0VofpIfFtqExx_ziDz9un0cT7Lp7O73-HqagZC6yypVy0bzsmJa13md66pRFl-UQMt4XbCq1KhzJUSJDQrBhGzkiwBlpaqsYLk4Ihc73d6vYLuBtjWr6JYQt4Yz896aGVozH60N-NkOX8AnGMCZyfXUOJ96M1ioQii95gPMd3AdQ0oRraldB92Qd4jv2v8YnH-5-f6d0x0d-tW34BtjS6Cg |
| CitedBy_id | crossref_primary_10_1016_j_softx_2022_101298 crossref_primary_10_1016_j_epsl_2025_119309 crossref_primary_10_1029_2023JB027953 crossref_primary_10_5194_se_15_683_2024 crossref_primary_10_1016_j_tecto_2021_229030 crossref_primary_10_1029_2021JB021883 crossref_primary_10_1093_gji_ggae112 crossref_primary_10_1038_s41561_022_00963_w crossref_primary_10_1785_0220230010 crossref_primary_10_1029_2024JB029776 crossref_primary_10_1007_s10712_021_09644_6 |
| Cites_doi | 10.1190/1.3238367 10.1029/2018GL080931 10.1046/j.1365-246X.2003.01919.x 10.1093/gji/ggw286 10.1093/gji/ggw014 10.1111/j.1365-246X.2008.03919.x 10.1093/gji/ggw061 10.1093/gji/ggx091 10.1111/j.1365-246X.2004.02453.x 10.1029/2019JB018589 10.1111/j.1365-246X.1992.tb00100.x 10.1111/j.1365-246X.2009.04278.x 10.1111/j.1365-246X.1988.tb03879.x 10.1111/j.1365-246X.1986.tb04514.x 10.1093/gji/ggx428 10.1029/94JB03097 10.1190/geo2018-0785.1 10.1093/gji/ggu199 10.1190/1.1442836 10.1190/segam2017-17680416.1 10.1046/j.1365-246X.2002.01645.x 10.1111/j.1365-246X.2008.03897.x 10.1111/j.1365-246X.2011.04970.x 10.1046/j.1365-246X.2002.01847.x 10.1111/j.1365-246X.1978.tb05491.x 10.1029/2012JB009360 10.1093/gji/ggaa201 10.1093/gji/ggv466 10.1130/0091-7613(1985)13<62:SSOTOM>2.0.CO;2 10.1002/2016JB013891 10.1029/2018GC008000 10.1093/biomet/82.4.711 10.1029/2003GC000664 10.1093/gji/ggu057 10.1002/2017JB014833 10.1190/geo2016-0594.1 10.1190/geo2018-0747.1 10.1029/2000RG000089 10.1002/2016JB013265 10.1029/2018GC008022 10.1111/j.1365-246X.2006.03155.x 10.1130/G38356.1 10.1111/j.1365-246X.2009.04226.x 10.1046/j.1365-246x.1999.00900.x 10.1093/gji/ggv326 10.1029/97JB02933 10.1029/2019JB018428 10.1093/gji/ggx216 10.1093/gji/ggt165 10.1002/2015JB012764 10.1046/j.1365-246X.1998.00498.x 10.1098/rsta.2011.0547 10.1190/1.1441754 10.1190/1.1441250 10.1190/geo2013-0055.1 10.1029/RG023i002p00105 10.1016/j.pepi.2006.03.016 10.1029/2011JB008560 10.1785/0120050077 10.1121/1.3500674 10.1093/gji/ggy496 10.1190/1.1442147 10.1111/j.1365-246X.2006.02978.x 10.1190/segam2019-3216560.1 10.1029/98JB00904 10.1029/96JB02566 10.1190/geo2016-0010.1 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020 Attribution |
| Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020 – notice: Attribution |
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1093/gji/ggaa505 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1365-246X |
| EndPage | 1078 |
| ExternalDocumentID | 10.1093/gji/ggaa505 oai:HAL:insu-03584389v1 10_1093_gji_ggaa505 |
| GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ 1XC AAMMB ABNGD ACUKT AEFGJ AGQPQ AGXDD AIDQK AIDYY APJGH VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-a359t-78c5d9167099c2c297d8feb83ef01c40769e928336ede33035d5b3a8f587f3023 |
| IEDL.DBID | UNPAY |
| ISSN | 0956-540X 1365-246X |
| IngestDate | Sun Oct 26 04:15:54 EDT 2025 Tue Oct 14 20:26:22 EDT 2025 Tue Jul 01 03:21:08 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Wed Aug 28 03:17:39 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Probability distributions Body waves Crustal imaging Waveform inversion |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a359t-78c5d9167099c2c297d8feb83ef01c40769e928336ede33035d5b3a8f587f3023 |
| ORCID | 0000-0001-8752-9828 0000-0003-1248-5650 0000-0002-6807-604X 0000-0002-7164-022X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/gji/article-pdf/224/2/1056/34860092/ggaa505.pdf |
| PageCount | 23 |
| ParticipantIDs | unpaywall_primary_10_1093_gji_ggaa505 hal_primary_oai_HAL_insu_03584389v1 crossref_citationtrail_10_1093_gji_ggaa505 crossref_primary_10_1093_gji_ggaa505 oup_primary_10_1093_gji_ggaa505 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Geophysical journal international |
| PublicationYear | 2021 |
| Publisher | Oxford University Press Oxford University Press (OUP) |
| Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP) |
| References | Dettmer (2020121103433018800_bib18) 2010; 128 Tromp (2020121103433018800_bib61) 2005; 160 Buehler (2020121103433018800_bib11) 2017; 122 Ganley (2020121103433018800_bib25) 1981; 46 Sambridge (2020121103433018800_bib51) 1999; 138 Hawkins (2020121103433018800_bib34) 2015; 203 Zhao (2020121103433018800_bib71) 2019 Malinverno (2020121103433018800_bib40) 2002; 151 Zhang (2020121103433018800_bib70) 2020; 125 Fichtner (2020121103433018800_bib22) 2018; 216 Saygin (2020121103433018800_bib56) 2015; 204 Dadi (2020121103433018800_bib17) 2018 Sambridge (2020121103433018800_bib52) 1992; 109 Burdick (2020121103433018800_bib12) 2017; 209 Gebraad (2020121103433018800_bib26) 2020; 125 Agostinetti (2020121103433018800_bib1) 2010; 181 Visser (2020121103433018800_bib68) 2019; 84 Hawkins (2020121103433018800_bib35) 2019; 20 Sambridge (2020121103433018800_bib53) 2002; 40 Zhu (2020121103433018800_bib72) 2018; 83 Green (2020121103433018800_bib31) 2003 Jian (2020121103433018800_bib37) 2017; 45 Bodin (2020121103433018800_bib7) 2012; 117 Pratt (2020121103433018800_bib48) 1998; 133 Chapman (2020121103433018800_bib15) 1978; 54 Ray (2020121103433018800_bib49) 2016; 205 Vigh (2020121103433018800_bib65) 2014; 79 Fichtner (2020121103433018800_bib21) 2006; 157 Aki (2020121103433018800_bib2) 1980 Fichtner (2020121103433018800_bib20) 2019; 46 Górszczyk (2020121103433018800_bib27) 2017; 122 Virieux (2020121103433018800_bib66) 1986; 51 Chapman (2020121103433018800_bib16) 2014; 197 Pica (2020121103433018800_bib46) 1990; 55 Biswas (2020121103433018800_bib5) 2017 Sambridge (2020121103433018800_bib54) 2006; 167 Grad (2020121103433018800_bib29) 2009; 176 Green (2020121103433018800_bib30) 1995; 82 Forbriger (2020121103433018800_bib23) 2014; 198 Tarantola (2020121103433018800_bib60) 1984; 49 Beller (2020121103433018800_bib4) 2018; 212 Chapman (2020121103433018800_bib14) 1985; 23 Mosegaard (2020121103433018800_bib45) 1997; 102 Bozdağ (2020121103433018800_bib8) 2011; 185 McGlashan (2020121103433018800_bib42) 2008; 175 Kamei (2020121103433018800_bib38) 2013; 194 Virieux (2020121103433018800_bib67) 2009; 74 Hrubcová (2020121103433018800_bib36) 2013; 118 Métivier (2020121103433018800_bib43) 2016; 205 Brocher (2020121103433018800_bib10) 1985; 13 Martin (2020121103433018800_bib41) 2009; 179 Ray (2020121103433018800_bib50) 2017; 212 Shipp (2020121103433018800_bib59) 2002; 151 Galetti (2020121103433018800_bib24) 2017; 208 Brocher (2020121103433018800_bib9) 2005; 95 Vaddineni (2020121103433018800_bib62) 2018 Guo (2020121103433018800_bib33) 2020; 222 Plessix (2020121103433018800_bib47) 2006; 167 Killingbeck (2020121103433018800_bib39) 2018; 19 Dettmer (2020121103433018800_bib19) 2016; 121 Mosegaard (2020121103433018800_bib44) 1995; 100 Gouveia (2020121103433018800_bib28) 1998; 103 Guo (2020121103433018800_bib32) 2019; 84 Sen (2020121103433018800_bib57) 2017; 82 Auld (2020121103433018800_bib3) 1973 Zelt (2020121103433018800_bib69) 2003; 153 Van Avendonk (2020121103433018800_bib64) 2004; 5 Bodin (2020121103433018800_bib6) 2009; 178 Cary (2020121103433018800_bib13) 1988; 93 Van Avendonk (2020121103433018800_bib63) 1998; 103 Sambridge (2020121103433018800_bib55) 2013; 371 Shaw (2020121103433018800_bib58) 1986; 85 |
| References_xml | – volume: 74 start-page: WCC1 issue: 6 year: 2009 ident: 2020121103433018800_bib67 article-title: An overview of full-waveform inversion in exploration geophysics publication-title: Geophysics doi: 10.1190/1.3238367 – volume: 46 start-page: 644 issue: 2 year: 2019 ident: 2020121103433018800_bib20 article-title: Hamiltonian nullspace shuttles publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080931 – volume: 153 start-page: 609 issue: 3 year: 2003 ident: 2020121103433018800_bib69 article-title: Assessment of crustal velocity models using seismic refraction and reflection tomography publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2003.01919.x – volume: 208 start-page: 36 issue: 1 year: 2017 ident: 2020121103433018800_bib24 article-title: Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry publication-title: Geophys. J. Int. doi: 10.1093/gji/ggw286 – volume: 205 start-page: 345 issue: 1 year: 2016 ident: 2020121103433018800_bib43 article-title: Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion publication-title: Geophys. J. Int. doi: 10.1093/gji/ggw014 – volume: 176 start-page: 279 issue: 1 year: 2009 ident: 2020121103433018800_bib29 article-title: The Moho depth map of the European plate publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.03919.x – volume: 205 start-page: 915 issue: 2 year: 2016 ident: 2020121103433018800_bib49 article-title: Frequency domain full waveform elastic inversion of marine seismic data from the Alba field using a Bayesian trans-dimensional algorithm publication-title: Geophys. J. Int. doi: 10.1093/gji/ggw061 – volume: 209 start-page: 1337 issue: 2 year: 2017 ident: 2020121103433018800_bib12 article-title: Velocity variations and uncertainty from transdimensional P-wave tomography of North America publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx091 – volume: 160 start-page: 195 issue: 1 year: 2005 ident: 2020121103433018800_bib61 article-title: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2004.02453.x – volume: 125 start-page: e2019JB018589 issue: 4 year: 2020 ident: 2020121103433018800_bib70 article-title: Seismic tomography using variational inference methods publication-title: J. geophys. Res. doi: 10.1029/2019JB018589 – volume: 109 start-page: 323 issue: 2 year: 1992 ident: 2020121103433018800_bib52 article-title: Genetic algorithms in seismic waveform inversion publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1992.tb00100.x – volume: 179 start-page: 333 issue: 1 year: 2009 ident: 2020121103433018800_bib41 article-title: An unsplit convolutional perfectly matched layer technique improved at grazing incidence for viscoelastic wave equation publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2009.04278.x – volume: 93 start-page: 527 issue: 3 year: 1988 ident: 2020121103433018800_bib13 article-title: Automatic 1-D waveform inversion of marine seismic refraction data publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1988.tb03879.x – volume: 85 start-page: 291 issue: 2 year: 1986 ident: 2020121103433018800_bib58 article-title: The accuracy of models derived by WKBJ waveform inversion publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1986.tb04514.x – volume: 212 start-page: 522 issue: 1 year: 2017 ident: 2020121103433018800_bib50 article-title: Low frequency full waveform seismic inversion within a tree based Bayesian framework publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx428 – volume: 100 start-page: 12 431 issue: B7 year: 1995 ident: 2020121103433018800_bib44 article-title: Monte carlo sampling of solutions to inverse problems publication-title: J. geophys. Res. doi: 10.1029/94JB03097 – volume: 84 start-page: R845 issue: 6 year: 2019 ident: 2020121103433018800_bib68 article-title: Bayesian transdimensional seismic full waveform inversion with a dipping layer parameterization publication-title: Geophysics doi: 10.1190/geo2018-0785.1 – volume: 198 start-page: 1387 issue: 3 year: 2014 ident: 2020121103433018800_bib23 article-title: Line-source simulation for shallow-seismic data. Part 1: theoretical background publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu199 – volume: 55 start-page: 284 issue: 3 year: 1990 ident: 2020121103433018800_bib46 article-title: Nonlinear inversion of seismic reflection data in a laterally invariant medium publication-title: Geophysics doi: 10.1190/1.1442836 – volume-title: 2017 SEG International Exposition and Annual Meeting year: 2017 ident: 2020121103433018800_bib5 article-title: 2D full-waveform inversion and uncertainty estimation using the reversible jump Hamiltonian Monte Carlo doi: 10.1190/segam2017-17680416.1 – volume: 151 start-page: 325 issue: 2 year: 2002 ident: 2020121103433018800_bib59 article-title: Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2002.01645.x – volume: 175 start-page: 1013 issue: 3 year: 2008 ident: 2020121103433018800_bib42 article-title: Crustal thickness in the central Andes from teleseismically recorded depth phase precursors publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2008.03897.x – volume: 185 start-page: 845 issue: 2 year: 2011 ident: 2020121103433018800_bib8 article-title: Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2011.04970.x – volume: 151 start-page: 675 issue: 3 year: 2002 ident: 2020121103433018800_bib40 article-title: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.2002.01847.x – volume: 54 start-page: 481 issue: 3 year: 1978 ident: 2020121103433018800_bib15 article-title: A new method for computing synthetic seismograms publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1978.tb05491.x – volume: 118 start-page: 120 issue: 1 year: 2013 ident: 2020121103433018800_bib36 article-title: Moho depth determination from waveforms of microearthquakes in the West Bohemia/Vogtland swarm area publication-title: J. geophys. Res. doi: 10.1029/2012JB009360 – volume: 222 start-page: 610 issue: 1 year: 2020 ident: 2020121103433018800_bib33 article-title: Bayesian trans-dimensional full waveform inversion: synthetic and field data application publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa201 – volume: 204 start-page: 918 issue: 2 year: 2015 ident: 2020121103433018800_bib56 article-title: Imaging architecture of the Jakarta Basin, Indonesia with transdimensional inversion of seismic noise publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv466 – start-page: T23E year: 2018 ident: 2020121103433018800_bib62 article-title: Tomographic study of oceanic lithosphere from 0 to 25 Ma in the equatorial Atlantic Ocean using wide angle OBS data publication-title: American Geophysical Union, Fall Meeting – volume: 13 start-page: 62 issue: 1 year: 1985 ident: 2020121103433018800_bib10 article-title: Seismic stratigraphy of the oceanic Moho based on ophiolite models publication-title: Geology doi: 10.1130/0091-7613(1985)13<62:SSOTOM>2.0.CO;2 – volume: 122 start-page: 4601 issue: 6 year: 2017 ident: 2020121103433018800_bib27 article-title: Toward a robust workflow for deep crustal imaging by FWI of OBS data: the eastern Nankai Trough revisited publication-title: J. geophys. Res. doi: 10.1002/2016JB013891 – volume: 19 start-page: 4957 issue: 12 year: 2018 ident: 2020121103433018800_bib39 article-title: Multimodal layered transdimensional inversion of seismic dispersion curves with depth constraints publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2018GC008000 – volume: 82 start-page: 711 issue: 4 year: 1995 ident: 2020121103433018800_bib30 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika doi: 10.1093/biomet/82.4.711 – volume: 5 issue: 8 year: 2004 ident: 2020121103433018800_bib64 article-title: Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2003GC000664 – volume: 197 start-page: 1196 issue: 2 year: 2014 ident: 2020121103433018800_bib16 article-title: Correcting an acoustic wavefield for elastic effects publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu057 – volume-title: Quantative Seismology: Theory and Methods year: 1980 ident: 2020121103433018800_bib2 – start-page: 1576 issue: 2 year: 2018 ident: 2020121103433018800_bib17 article-title: Understanding the late-stage evolution of Shatsky Rise using transdimensional acoustic impedance inversion publication-title: J. geophys. Res. doi: 10.1002/2017JB014833 – volume: 83 start-page: 1 issue: 4 year: 2018 ident: 2020121103433018800_bib72 article-title: Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method publication-title: Geophysics doi: 10.1190/geo2016-0594.1 – volume-title: Acoustic Fields and Waves in Solids: Volume I year: 1973 ident: 2020121103433018800_bib3 – volume: 84 start-page: T381 issue: 6 year: 2019 ident: 2020121103433018800_bib32 article-title: Modeling the viscoelastic effects in P-waves with modified viscoacoustic wave propagation publication-title: Geophysics doi: 10.1190/geo2018-0747.1 – volume: 181 start-page: 858 issue: 2 year: 2010 ident: 2020121103433018800_bib1 article-title: Receiver function inversion by trans-dimensional Monte Carlo sampling publication-title: Geophys. J. Int. – volume: 40 start-page: 3 issue: 3 year: 2002 ident: 2020121103433018800_bib53 article-title: Monte Carlo methods in geophysical inverse problems publication-title: Rev. Geophys. doi: 10.1029/2000RG000089 – volume: 122 start-page: 436 issue: 1 year: 2017 ident: 2020121103433018800_bib11 article-title: Uppermost mantle seismic velocity structure beneath USArray publication-title: J. geophys. Res. doi: 10.1002/2016JB013265 – volume: 20 start-page: 505 issue: 1 year: 2019 ident: 2020121103433018800_bib35 article-title: Trans-dimensional surface reconstruction with different classes of parameterization publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2018GC008022 – volume: 167 start-page: 528 issue: 2 year: 2006 ident: 2020121103433018800_bib54 article-title: Trans-dimensional inverse problems, model comparison and the evidence publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03155.x – volume: 45 start-page: 143 issue: 2 year: 2017 ident: 2020121103433018800_bib37 article-title: Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge publication-title: Geology doi: 10.1130/G38356.1 – volume: 178 start-page: 1411 issue: 3 year: 2009 ident: 2020121103433018800_bib6 article-title: Seismic tomography with the reversible jump algorithm publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2009.04226.x – volume: 138 start-page: 727 issue: 3 year: 1999 ident: 2020121103433018800_bib51 article-title: Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.1999.00900.x – volume: 203 start-page: 972 issue: 2 year: 2015 ident: 2020121103433018800_bib34 article-title: Geophysical imaging using trans-dimensional trees publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv326 – volume: 103 start-page: 2759 issue: B2 year: 1998 ident: 2020121103433018800_bib28 article-title: Bayesian seismic waveform inversion: parameter estimation and uncertainty analysis publication-title: J. geophys. Res. doi: 10.1029/97JB02933 – volume: 125 start-page: e2019JB018428 issue: 3 year: 2020 ident: 2020121103433018800_bib26 article-title: Bayesian elastic full-waveform inversion using Hamiltonian Monte Carlo publication-title: J. geophys. Res. doi: 10.1029/2019JB018428 – volume: 212 start-page: 1369 issue: 2 year: 2018 ident: 2020121103433018800_bib4 article-title: Lithospheric architecture of the south-western Alps revealed by multiparameter teleseismic full-waveform inversion publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx216 – volume: 194 start-page: 1250 issue: 2 year: 2013 ident: 2020121103433018800_bib38 article-title: On acoustic waveform tomography of wide-angle obs data–strategies for pre-conditioning and inversion publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt165 – volume: 121 start-page: 4483 issue: 6 year: 2016 ident: 2020121103433018800_bib19 article-title: Tsunami source uncertainty estimation: the 2011 Japan tsunami publication-title: J. geophys. Res. doi: 10.1002/2015JB012764 – volume: 133 start-page: 341 issue: 2 year: 1998 ident: 2020121103433018800_bib48 article-title: Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246X.1998.00498.x – volume: 371 start-page: 20110547 issue: 1984 year: 2013 ident: 2020121103433018800_bib55 article-title: Transdimensional inference in the geosciences publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2011.0547 – volume: 49 start-page: 1259 issue: 8 year: 1984 ident: 2020121103433018800_bib60 article-title: Inversion of seismic reflection data in the acoustic approximation publication-title: Geophysics doi: 10.1190/1.1441754 – volume: 46 start-page: 1100 issue: 8 year: 1981 ident: 2020121103433018800_bib25 article-title: A method for calculating synthetic seismograms which include the effects of absorption and dispersion publication-title: Geophysics doi: 10.1190/1.1441250 – volume: 79 start-page: R63 issue: 2 year: 2014 ident: 2020121103433018800_bib65 article-title: Elastic full-waveform inversion application using multicomponent measurements of seismic data collection publication-title: Geophysics doi: 10.1190/geo2013-0055.1 – volume: 23 start-page: 105 issue: 2 year: 1985 ident: 2020121103433018800_bib14 article-title: The computation of body wave synthetic seismograms in laterally homogeneous media publication-title: Rev. Geophys. doi: 10.1029/RG023i002p00105 – volume: 157 start-page: 86 issue: 1–2 year: 2006 ident: 2020121103433018800_bib21 article-title: The adjoint method in seismology: I. Theory publication-title: Phys. Earth planet. Inter. doi: 10.1016/j.pepi.2006.03.016 – volume: 117 issue: B2 year: 2012 ident: 2020121103433018800_bib7 article-title: Transdimensional inversion of receiver functions and surface wave dispersion publication-title: J. geophys. Res. doi: 10.1029/2011JB008560 – volume: 95 start-page: 2081 issue: 6 year: 2005 ident: 2020121103433018800_bib9 article-title: Empirical relations between elastic wavespeeds and density in the earth’s crust publication-title: Bull. seism. Soc. Am. doi: 10.1785/0120050077 – volume: 128 start-page: 3393 issue: 6 year: 2010 ident: 2020121103433018800_bib18 article-title: Trans-dimensional geoacoustic inversion publication-title: J. acoust. Soc. Am. doi: 10.1121/1.3500674 – start-page: 179 year: 2003 ident: 2020121103433018800_bib31 publication-title: Trans-dimensional Markov chain Monte Carlo – volume: 216 start-page: 1344 issue: 2 year: 2018 ident: 2020121103433018800_bib22 article-title: Hamiltonian Monte Carlo solution of tomographic inverse problems publication-title: Geophys. J. Int. doi: 10.1093/gji/ggy496 – volume: 51 start-page: 889 issue: 4 year: 1986 ident: 2020121103433018800_bib66 article-title: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method publication-title: Geophysics doi: 10.1190/1.1442147 – volume: 167 start-page: 495 issue: 2 year: 2006 ident: 2020121103433018800_bib47 article-title: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.02978.x – volume-title: SEG International Exposition and Annual Meeting year: 2019 ident: 2020121103433018800_bib71 article-title: A gradient based MCMC method for FWI and uncertainty analysis doi: 10.1190/segam2019-3216560.1 – volume: 103 start-page: 17885 issue: B8 year: 1998 ident: 2020121103433018800_bib63 article-title: A two-dimensional tomographic study of the Clipperton transform fault publication-title: J. geophys. Res. doi: 10.1029/98JB00904 – volume: 102 start-page: 2969 issue: B2 year: 1997 ident: 2020121103433018800_bib45 article-title: Monte Carlo analysis of seismic reflections from Moho and the W reflector publication-title: J. geophys. Res. doi: 10.1029/96JB02566 – volume: 82 start-page: R119 issue: 3 year: 2017 ident: 2020121103433018800_bib57 article-title: Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm publication-title: Geophysics doi: 10.1190/geo2016-0010.1 |
| SSID | ssj0014148 |
| Score | 2.4057693 |
| Snippet | SUMMARY
Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is... Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a... |
| SourceID | unpaywall hal crossref oup |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1056 |
| SubjectTerms | Sciences of the Universe |
| Title | Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method |
| URI | https://insu.hal.science/insu-03584389 https://academic.oup.com/gji/article-pdf/224/2/1056/34860092/ggaa505.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 224 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 1365-246X databaseCode: KQ8 dateStart: 19580301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 1365-246X databaseCode: TOX dateStart: 19880101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXWTgheGF8TBTYsAS9Iblo7TuLHbtpU8dGBWKXwFDm20xWqtBpdy_j13Fs7FSA08cBLpMQ3iWM7usf2uecS8tJwycvSaeb6PMVtxowBKsqYsH3NEyFkZTcE2VEyHMdvcpnvkGETC6MDK7zbhDRMvkyj0IhsYasIXE7EI8wXHwlMoNRTPJpMtAZP3oXyFtlNJKDyNtkdjz4MPjdSewBM8m0IVpzkIVQP5vObN4Qn_OacWhdIjfRhb7ev6oW-XuvZ7Bfvc7pHpk29Penka_dqWXbNjz8kHf_Hh90jdwNEpQN_132y4-oH5NaGKmq-PSTfR15dQ19SXLuna71yiHzptF75xTc6r-h6ah3TC3eJOxT07OgTRS4qBUP6fn4xp163FsuQeT-hmi7RazKL2Qa8Ugg90tcOYzypT3P9iIxPT86Phyzkb2BaSLVkaWakBfiZAgo13HCV2qxyZSZc1esbmEkmyimANyJx1gnwpdLKUuiskllaYTKjfdKu57V7TKiCS0IZcKVKxtppOEtMrExPadPTSdwhr5uOK0wQN8ccG7PCb7KLApq7CM3ZgSHaGC-8psffzV7ACNhaoA73cPCuwBiBAuqaYd74Vb9DnkOP3vycV9vRc5Pdk3-0e0rucCTWbKjjz0gb-ssdADJaloek9fZjBsfzs_ww_AA_AZubDbg |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELV2u0Jw4RtRPi0BFyQ3rR0n8bGLWFUIChJUKqdoYjvdQpVWS7dl-fXM1E4FCK04cEwycRx7pHm238xj7LmVWlaVB-EHMqdjxkIgKiqEcgOQmVK6djuC7DgbTdI3Uz09YKM2FwYiK7zXpjTMvsyTOIhi5eoEQ04iE9KLTxQJKPWNTGYzAIzkPXx-yI4yjai8w44m4w_Dz22pPQQm030KVppNY6oerud3X4gt_BacDk-JGhnS3q6eNyu42MJi8Uv0ObnB5m2_A-nka-98XfXsjz9KOv6PH7vJrkeIyofhrVvswDe32ZUdVdR-u8O-j0N1DTjjtHfPt7DxhHz5vNmEzTe-rPl27ryAlT-jEwr-_vgjJy4qR0P-bnm65KFuLT0j5v2MA19T1BSO1AZCpRB-DBeecjx5kLm-yyYnrz-9Gomo3yBAabMWeWG1Q_iZIwq10kqTu6L2VaF83R9YXElmxhuENyrzziuMpdrpSkFR6yKvSczoHus0y8bfZ9zgLWUshlKjU_CAV5lNje0bsH3I0i572U5caWNxc9LYWJThkF2VONxlHM4uumhrvAo1Pf5u9gw9YG9BdbhHw7cl5QiU2NeCdOM3gy57ijN6eTsv9t5zmd2Df7R7yK5JItbsqOOPWAfnyz9GZLSunkSn_wkIlAun |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+full+waveform+inversion+of+wide-aperture+OBS+data+for+Moho+structure+using+a+trans-dimensional+Bayesian+method&rft.jtitle=Geophysical+journal+international&rft.au=Guo%2C+Peng&rft.au=Singh%2C+Satish+C&rft.au=Vaddineni%2C+Venkata+A&rft.au=Visser%2C+Gerhard&rft.date=2021-02-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=224&rft.issue=2&rft.spage=1056&rft.epage=1078&rft_id=info:doi/10.1093%2Fgji%2Fggaa505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggaa505 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |