Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method

SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the p...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 224; no. 2; pp. 1056 - 1078
Main Authors Guo, Peng, Singh, Satish C, Vaddineni, Venkata A, Visser, Gerhard, Grevemeyer, Ingo, Saygin, Erdinc
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.02.2021
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN0956-540X
1365-246X
1365-246X
DOI10.1093/gji/ggaa505

Cover

Abstract SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
AbstractList SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity-depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity-depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s-1 in the lower crust to 8 km s-1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
Author Grevemeyer, Ingo
Visser, Gerhard
Saygin, Erdinc
Vaddineni, Venkata A
Guo, Peng
Singh, Satish C
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0003-1248-5650
  surname: Guo
  fullname: Guo, Peng
  email: peng.guo@csiro.au
– sequence: 2
  givenname: Satish C
  surname: Singh
  fullname: Singh, Satish C
– sequence: 3
  givenname: Venkata A
  surname: Vaddineni
  fullname: Vaddineni, Venkata A
– sequence: 4
  givenname: Gerhard
  orcidid: 0000-0001-8752-9828
  surname: Visser
  fullname: Visser, Gerhard
– sequence: 5
  givenname: Ingo
  orcidid: 0000-0002-6807-604X
  surname: Grevemeyer
  fullname: Grevemeyer, Ingo
– sequence: 6
  givenname: Erdinc
  surname: Saygin
  fullname: Saygin, Erdinc
BackLink https://insu.hal.science/insu-03584389$$DView record in HAL
BookMark eNp9kEFP4zAQhS3EShSWE3_AJw5AwI7jxD5CxdKVuvQASNysIRm3Rqld2Um7_feELRIS0nKaw3zz3rx3SPZ98EjICWeXnGlxNX91V_M5gGRyj4y4KGWWF-XzPhkxLctMFuz5gBym9MoYL3ihRuTvffCt8wiR2r5t6QbWaENcUufXGJMLngZLN67BDFYYuz4ind080AY6oANI_4RFoKmLff1v1yfn5xRoF8GnrHFL9O8i0NIb2GJy4OkSu0VofpIfFtqExx_ziDz9un0cT7Lp7O73-HqagZC6yypVy0bzsmJa13md66pRFl-UQMt4XbCq1KhzJUSJDQrBhGzkiwBlpaqsYLk4Ihc73d6vYLuBtjWr6JYQt4Yz896aGVozH60N-NkOX8AnGMCZyfXUOJ96M1ioQii95gPMd3AdQ0oRraldB92Qd4jv2v8YnH-5-f6d0x0d-tW34BtjS6Cg
CitedBy_id crossref_primary_10_1016_j_softx_2022_101298
crossref_primary_10_1016_j_epsl_2025_119309
crossref_primary_10_1029_2023JB027953
crossref_primary_10_5194_se_15_683_2024
crossref_primary_10_1016_j_tecto_2021_229030
crossref_primary_10_1029_2021JB021883
crossref_primary_10_1093_gji_ggae112
crossref_primary_10_1038_s41561_022_00963_w
crossref_primary_10_1785_0220230010
crossref_primary_10_1029_2024JB029776
crossref_primary_10_1007_s10712_021_09644_6
Cites_doi 10.1190/1.3238367
10.1029/2018GL080931
10.1046/j.1365-246X.2003.01919.x
10.1093/gji/ggw286
10.1093/gji/ggw014
10.1111/j.1365-246X.2008.03919.x
10.1093/gji/ggw061
10.1093/gji/ggx091
10.1111/j.1365-246X.2004.02453.x
10.1029/2019JB018589
10.1111/j.1365-246X.1992.tb00100.x
10.1111/j.1365-246X.2009.04278.x
10.1111/j.1365-246X.1988.tb03879.x
10.1111/j.1365-246X.1986.tb04514.x
10.1093/gji/ggx428
10.1029/94JB03097
10.1190/geo2018-0785.1
10.1093/gji/ggu199
10.1190/1.1442836
10.1190/segam2017-17680416.1
10.1046/j.1365-246X.2002.01645.x
10.1111/j.1365-246X.2008.03897.x
10.1111/j.1365-246X.2011.04970.x
10.1046/j.1365-246X.2002.01847.x
10.1111/j.1365-246X.1978.tb05491.x
10.1029/2012JB009360
10.1093/gji/ggaa201
10.1093/gji/ggv466
10.1130/0091-7613(1985)13<62:SSOTOM>2.0.CO;2
10.1002/2016JB013891
10.1029/2018GC008000
10.1093/biomet/82.4.711
10.1029/2003GC000664
10.1093/gji/ggu057
10.1002/2017JB014833
10.1190/geo2016-0594.1
10.1190/geo2018-0747.1
10.1029/2000RG000089
10.1002/2016JB013265
10.1029/2018GC008022
10.1111/j.1365-246X.2006.03155.x
10.1130/G38356.1
10.1111/j.1365-246X.2009.04226.x
10.1046/j.1365-246x.1999.00900.x
10.1093/gji/ggv326
10.1029/97JB02933
10.1029/2019JB018428
10.1093/gji/ggx216
10.1093/gji/ggt165
10.1002/2015JB012764
10.1046/j.1365-246X.1998.00498.x
10.1098/rsta.2011.0547
10.1190/1.1441754
10.1190/1.1441250
10.1190/geo2013-0055.1
10.1029/RG023i002p00105
10.1016/j.pepi.2006.03.016
10.1029/2011JB008560
10.1785/0120050077
10.1121/1.3500674
10.1093/gji/ggy496
10.1190/1.1442147
10.1111/j.1365-246X.2006.02978.x
10.1190/segam2019-3216560.1
10.1029/98JB00904
10.1029/96JB02566
10.1190/geo2016-0010.1
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020
Attribution
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2020
– notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1093/gji/ggaa505
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 1078
ExternalDocumentID 10.1093/gji/ggaa505
oai:HAL:insu-03584389v1
10_1093_gji_ggaa505
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
1XC
AAMMB
ABNGD
ACUKT
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
APJGH
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-a359t-78c5d9167099c2c297d8feb83ef01c40769e928336ede33035d5b3a8f587f3023
IEDL.DBID UNPAY
ISSN 0956-540X
1365-246X
IngestDate Sun Oct 26 04:15:54 EDT 2025
Tue Oct 14 20:26:22 EDT 2025
Tue Jul 01 03:21:08 EDT 2025
Thu Apr 24 23:07:55 EDT 2025
Wed Aug 28 03:17:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Probability distributions
Body waves
Crustal imaging
Waveform inversion
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a359t-78c5d9167099c2c297d8feb83ef01c40769e928336ede33035d5b3a8f587f3023
ORCID 0000-0001-8752-9828
0000-0003-1248-5650
0000-0002-6807-604X
0000-0002-7164-022X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/gji/article-pdf/224/2/1056/34860092/ggaa505.pdf
PageCount 23
ParticipantIDs unpaywall_primary_10_1093_gji_ggaa505
hal_primary_oai_HAL_insu_03584389v1
crossref_citationtrail_10_1093_gji_ggaa505
crossref_primary_10_1093_gji_ggaa505
oup_primary_10_1093_gji_ggaa505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Geophysical journal international
PublicationYear 2021
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References Dettmer (2020121103433018800_bib18) 2010; 128
Tromp (2020121103433018800_bib61) 2005; 160
Buehler (2020121103433018800_bib11) 2017; 122
Ganley (2020121103433018800_bib25) 1981; 46
Sambridge (2020121103433018800_bib51) 1999; 138
Hawkins (2020121103433018800_bib34) 2015; 203
Zhao (2020121103433018800_bib71) 2019
Malinverno (2020121103433018800_bib40) 2002; 151
Zhang (2020121103433018800_bib70) 2020; 125
Fichtner (2020121103433018800_bib22) 2018; 216
Saygin (2020121103433018800_bib56) 2015; 204
Dadi (2020121103433018800_bib17) 2018
Sambridge (2020121103433018800_bib52) 1992; 109
Burdick (2020121103433018800_bib12) 2017; 209
Gebraad (2020121103433018800_bib26) 2020; 125
Agostinetti (2020121103433018800_bib1) 2010; 181
Visser (2020121103433018800_bib68) 2019; 84
Hawkins (2020121103433018800_bib35) 2019; 20
Sambridge (2020121103433018800_bib53) 2002; 40
Zhu (2020121103433018800_bib72) 2018; 83
Green (2020121103433018800_bib31) 2003
Jian (2020121103433018800_bib37) 2017; 45
Bodin (2020121103433018800_bib7) 2012; 117
Pratt (2020121103433018800_bib48) 1998; 133
Chapman (2020121103433018800_bib15) 1978; 54
Ray (2020121103433018800_bib49) 2016; 205
Vigh (2020121103433018800_bib65) 2014; 79
Fichtner (2020121103433018800_bib21) 2006; 157
Aki (2020121103433018800_bib2) 1980
Fichtner (2020121103433018800_bib20) 2019; 46
Górszczyk (2020121103433018800_bib27) 2017; 122
Virieux (2020121103433018800_bib66) 1986; 51
Chapman (2020121103433018800_bib16) 2014; 197
Pica (2020121103433018800_bib46) 1990; 55
Biswas (2020121103433018800_bib5) 2017
Sambridge (2020121103433018800_bib54) 2006; 167
Grad (2020121103433018800_bib29) 2009; 176
Green (2020121103433018800_bib30) 1995; 82
Forbriger (2020121103433018800_bib23) 2014; 198
Tarantola (2020121103433018800_bib60) 1984; 49
Beller (2020121103433018800_bib4) 2018; 212
Chapman (2020121103433018800_bib14) 1985; 23
Mosegaard (2020121103433018800_bib45) 1997; 102
Bozdağ (2020121103433018800_bib8) 2011; 185
McGlashan (2020121103433018800_bib42) 2008; 175
Kamei (2020121103433018800_bib38) 2013; 194
Virieux (2020121103433018800_bib67) 2009; 74
Hrubcová (2020121103433018800_bib36) 2013; 118
Métivier (2020121103433018800_bib43) 2016; 205
Brocher (2020121103433018800_bib10) 1985; 13
Martin (2020121103433018800_bib41) 2009; 179
Ray (2020121103433018800_bib50) 2017; 212
Shipp (2020121103433018800_bib59) 2002; 151
Galetti (2020121103433018800_bib24) 2017; 208
Brocher (2020121103433018800_bib9) 2005; 95
Vaddineni (2020121103433018800_bib62) 2018
Guo (2020121103433018800_bib33) 2020; 222
Plessix (2020121103433018800_bib47) 2006; 167
Killingbeck (2020121103433018800_bib39) 2018; 19
Dettmer (2020121103433018800_bib19) 2016; 121
Mosegaard (2020121103433018800_bib44) 1995; 100
Gouveia (2020121103433018800_bib28) 1998; 103
Guo (2020121103433018800_bib32) 2019; 84
Sen (2020121103433018800_bib57) 2017; 82
Auld (2020121103433018800_bib3) 1973
Zelt (2020121103433018800_bib69) 2003; 153
Van Avendonk (2020121103433018800_bib64) 2004; 5
Bodin (2020121103433018800_bib6) 2009; 178
Cary (2020121103433018800_bib13) 1988; 93
Van Avendonk (2020121103433018800_bib63) 1998; 103
Sambridge (2020121103433018800_bib55) 2013; 371
Shaw (2020121103433018800_bib58) 1986; 85
References_xml – volume: 74
  start-page: WCC1
  issue: 6
  year: 2009
  ident: 2020121103433018800_bib67
  article-title: An overview of full-waveform inversion in exploration geophysics
  publication-title: Geophysics
  doi: 10.1190/1.3238367
– volume: 46
  start-page: 644
  issue: 2
  year: 2019
  ident: 2020121103433018800_bib20
  article-title: Hamiltonian nullspace shuttles
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080931
– volume: 153
  start-page: 609
  issue: 3
  year: 2003
  ident: 2020121103433018800_bib69
  article-title: Assessment of crustal velocity models using seismic refraction and reflection tomography
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2003.01919.x
– volume: 208
  start-page: 36
  issue: 1
  year: 2017
  ident: 2020121103433018800_bib24
  article-title: Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggw286
– volume: 205
  start-page: 345
  issue: 1
  year: 2016
  ident: 2020121103433018800_bib43
  article-title: Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggw014
– volume: 176
  start-page: 279
  issue: 1
  year: 2009
  ident: 2020121103433018800_bib29
  article-title: The Moho depth map of the European plate
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03919.x
– volume: 205
  start-page: 915
  issue: 2
  year: 2016
  ident: 2020121103433018800_bib49
  article-title: Frequency domain full waveform elastic inversion of marine seismic data from the Alba field using a Bayesian trans-dimensional algorithm
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggw061
– volume: 209
  start-page: 1337
  issue: 2
  year: 2017
  ident: 2020121103433018800_bib12
  article-title: Velocity variations and uncertainty from transdimensional P-wave tomography of North America
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx091
– volume: 160
  start-page: 195
  issue: 1
  year: 2005
  ident: 2020121103433018800_bib61
  article-title: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02453.x
– volume: 125
  start-page: e2019JB018589
  issue: 4
  year: 2020
  ident: 2020121103433018800_bib70
  article-title: Seismic tomography using variational inference methods
  publication-title: J. geophys. Res.
  doi: 10.1029/2019JB018589
– volume: 109
  start-page: 323
  issue: 2
  year: 1992
  ident: 2020121103433018800_bib52
  article-title: Genetic algorithms in seismic waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1992.tb00100.x
– volume: 179
  start-page: 333
  issue: 1
  year: 2009
  ident: 2020121103433018800_bib41
  article-title: An unsplit convolutional perfectly matched layer technique improved at grazing incidence for viscoelastic wave equation
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04278.x
– volume: 93
  start-page: 527
  issue: 3
  year: 1988
  ident: 2020121103433018800_bib13
  article-title: Automatic 1-D waveform inversion of marine seismic refraction data
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1988.tb03879.x
– volume: 85
  start-page: 291
  issue: 2
  year: 1986
  ident: 2020121103433018800_bib58
  article-title: The accuracy of models derived by WKBJ waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1986.tb04514.x
– volume: 212
  start-page: 522
  issue: 1
  year: 2017
  ident: 2020121103433018800_bib50
  article-title: Low frequency full waveform seismic inversion within a tree based Bayesian framework
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx428
– volume: 100
  start-page: 12 431
  issue: B7
  year: 1995
  ident: 2020121103433018800_bib44
  article-title: Monte carlo sampling of solutions to inverse problems
  publication-title: J. geophys. Res.
  doi: 10.1029/94JB03097
– volume: 84
  start-page: R845
  issue: 6
  year: 2019
  ident: 2020121103433018800_bib68
  article-title: Bayesian transdimensional seismic full waveform inversion with a dipping layer parameterization
  publication-title: Geophysics
  doi: 10.1190/geo2018-0785.1
– volume: 198
  start-page: 1387
  issue: 3
  year: 2014
  ident: 2020121103433018800_bib23
  article-title: Line-source simulation for shallow-seismic data. Part 1: theoretical background
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu199
– volume: 55
  start-page: 284
  issue: 3
  year: 1990
  ident: 2020121103433018800_bib46
  article-title: Nonlinear inversion of seismic reflection data in a laterally invariant medium
  publication-title: Geophysics
  doi: 10.1190/1.1442836
– volume-title: 2017 SEG International Exposition and Annual Meeting
  year: 2017
  ident: 2020121103433018800_bib5
  article-title: 2D full-waveform inversion and uncertainty estimation using the reversible jump Hamiltonian Monte Carlo
  doi: 10.1190/segam2017-17680416.1
– volume: 151
  start-page: 325
  issue: 2
  year: 2002
  ident: 2020121103433018800_bib59
  article-title: Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01645.x
– volume: 175
  start-page: 1013
  issue: 3
  year: 2008
  ident: 2020121103433018800_bib42
  article-title: Crustal thickness in the central Andes from teleseismically recorded depth phase precursors
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2008.03897.x
– volume: 185
  start-page: 845
  issue: 2
  year: 2011
  ident: 2020121103433018800_bib8
  article-title: Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2011.04970.x
– volume: 151
  start-page: 675
  issue: 3
  year: 2002
  ident: 2020121103433018800_bib40
  article-title: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.2002.01847.x
– volume: 54
  start-page: 481
  issue: 3
  year: 1978
  ident: 2020121103433018800_bib15
  article-title: A new method for computing synthetic seismograms
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1978.tb05491.x
– volume: 118
  start-page: 120
  issue: 1
  year: 2013
  ident: 2020121103433018800_bib36
  article-title: Moho depth determination from waveforms of microearthquakes in the West Bohemia/Vogtland swarm area
  publication-title: J. geophys. Res.
  doi: 10.1029/2012JB009360
– volume: 222
  start-page: 610
  issue: 1
  year: 2020
  ident: 2020121103433018800_bib33
  article-title: Bayesian trans-dimensional full waveform inversion: synthetic and field data application
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa201
– volume: 204
  start-page: 918
  issue: 2
  year: 2015
  ident: 2020121103433018800_bib56
  article-title: Imaging architecture of the Jakarta Basin, Indonesia with transdimensional inversion of seismic noise
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv466
– start-page: T23E
  year: 2018
  ident: 2020121103433018800_bib62
  article-title: Tomographic study of oceanic lithosphere from 0 to 25 Ma in the equatorial Atlantic Ocean using wide angle OBS data
  publication-title: American Geophysical Union, Fall Meeting
– volume: 13
  start-page: 62
  issue: 1
  year: 1985
  ident: 2020121103433018800_bib10
  article-title: Seismic stratigraphy of the oceanic Moho based on ophiolite models
  publication-title: Geology
  doi: 10.1130/0091-7613(1985)13<62:SSOTOM>2.0.CO;2
– volume: 122
  start-page: 4601
  issue: 6
  year: 2017
  ident: 2020121103433018800_bib27
  article-title: Toward a robust workflow for deep crustal imaging by FWI of OBS data: the eastern Nankai Trough revisited
  publication-title: J. geophys. Res.
  doi: 10.1002/2016JB013891
– volume: 19
  start-page: 4957
  issue: 12
  year: 2018
  ident: 2020121103433018800_bib39
  article-title: Multimodal layered transdimensional inversion of seismic dispersion curves with depth constraints
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2018GC008000
– volume: 82
  start-page: 711
  issue: 4
  year: 1995
  ident: 2020121103433018800_bib30
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume: 5
  issue: 8
  year: 2004
  ident: 2020121103433018800_bib64
  article-title: Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2003GC000664
– volume: 197
  start-page: 1196
  issue: 2
  year: 2014
  ident: 2020121103433018800_bib16
  article-title: Correcting an acoustic wavefield for elastic effects
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu057
– volume-title: Quantative Seismology: Theory and Methods
  year: 1980
  ident: 2020121103433018800_bib2
– start-page: 1576
  issue: 2
  year: 2018
  ident: 2020121103433018800_bib17
  article-title: Understanding the late-stage evolution of Shatsky Rise using transdimensional acoustic impedance inversion
  publication-title: J. geophys. Res.
  doi: 10.1002/2017JB014833
– volume: 83
  start-page: 1
  issue: 4
  year: 2018
  ident: 2020121103433018800_bib72
  article-title: Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method
  publication-title: Geophysics
  doi: 10.1190/geo2016-0594.1
– volume-title: Acoustic Fields and Waves in Solids: Volume I
  year: 1973
  ident: 2020121103433018800_bib3
– volume: 84
  start-page: T381
  issue: 6
  year: 2019
  ident: 2020121103433018800_bib32
  article-title: Modeling the viscoelastic effects in P-waves with modified viscoacoustic wave propagation
  publication-title: Geophysics
  doi: 10.1190/geo2018-0747.1
– volume: 181
  start-page: 858
  issue: 2
  year: 2010
  ident: 2020121103433018800_bib1
  article-title: Receiver function inversion by trans-dimensional Monte Carlo sampling
  publication-title: Geophys. J. Int.
– volume: 40
  start-page: 3
  issue: 3
  year: 2002
  ident: 2020121103433018800_bib53
  article-title: Monte Carlo methods in geophysical inverse problems
  publication-title: Rev. Geophys.
  doi: 10.1029/2000RG000089
– volume: 122
  start-page: 436
  issue: 1
  year: 2017
  ident: 2020121103433018800_bib11
  article-title: Uppermost mantle seismic velocity structure beneath USArray
  publication-title: J. geophys. Res.
  doi: 10.1002/2016JB013265
– volume: 20
  start-page: 505
  issue: 1
  year: 2019
  ident: 2020121103433018800_bib35
  article-title: Trans-dimensional surface reconstruction with different classes of parameterization
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2018GC008022
– volume: 167
  start-page: 528
  issue: 2
  year: 2006
  ident: 2020121103433018800_bib54
  article-title: Trans-dimensional inverse problems, model comparison and the evidence
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03155.x
– volume: 45
  start-page: 143
  issue: 2
  year: 2017
  ident: 2020121103433018800_bib37
  article-title: Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge
  publication-title: Geology
  doi: 10.1130/G38356.1
– volume: 178
  start-page: 1411
  issue: 3
  year: 2009
  ident: 2020121103433018800_bib6
  article-title: Seismic tomography with the reversible jump algorithm
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04226.x
– volume: 138
  start-page: 727
  issue: 3
  year: 1999
  ident: 2020121103433018800_bib51
  article-title: Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.1999.00900.x
– volume: 203
  start-page: 972
  issue: 2
  year: 2015
  ident: 2020121103433018800_bib34
  article-title: Geophysical imaging using trans-dimensional trees
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv326
– volume: 103
  start-page: 2759
  issue: B2
  year: 1998
  ident: 2020121103433018800_bib28
  article-title: Bayesian seismic waveform inversion: parameter estimation and uncertainty analysis
  publication-title: J. geophys. Res.
  doi: 10.1029/97JB02933
– volume: 125
  start-page: e2019JB018428
  issue: 3
  year: 2020
  ident: 2020121103433018800_bib26
  article-title: Bayesian elastic full-waveform inversion using Hamiltonian Monte Carlo
  publication-title: J. geophys. Res.
  doi: 10.1029/2019JB018428
– volume: 212
  start-page: 1369
  issue: 2
  year: 2018
  ident: 2020121103433018800_bib4
  article-title: Lithospheric architecture of the south-western Alps revealed by multiparameter teleseismic full-waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx216
– volume: 194
  start-page: 1250
  issue: 2
  year: 2013
  ident: 2020121103433018800_bib38
  article-title: On acoustic waveform tomography of wide-angle obs data–strategies for pre-conditioning and inversion
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt165
– volume: 121
  start-page: 4483
  issue: 6
  year: 2016
  ident: 2020121103433018800_bib19
  article-title: Tsunami source uncertainty estimation: the 2011 Japan tsunami
  publication-title: J. geophys. Res.
  doi: 10.1002/2015JB012764
– volume: 133
  start-page: 341
  issue: 2
  year: 1998
  ident: 2020121103433018800_bib48
  article-title: Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246X.1998.00498.x
– volume: 371
  start-page: 20110547
  issue: 1984
  year: 2013
  ident: 2020121103433018800_bib55
  article-title: Transdimensional inference in the geosciences
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2011.0547
– volume: 49
  start-page: 1259
  issue: 8
  year: 1984
  ident: 2020121103433018800_bib60
  article-title: Inversion of seismic reflection data in the acoustic approximation
  publication-title: Geophysics
  doi: 10.1190/1.1441754
– volume: 46
  start-page: 1100
  issue: 8
  year: 1981
  ident: 2020121103433018800_bib25
  article-title: A method for calculating synthetic seismograms which include the effects of absorption and dispersion
  publication-title: Geophysics
  doi: 10.1190/1.1441250
– volume: 79
  start-page: R63
  issue: 2
  year: 2014
  ident: 2020121103433018800_bib65
  article-title: Elastic full-waveform inversion application using multicomponent measurements of seismic data collection
  publication-title: Geophysics
  doi: 10.1190/geo2013-0055.1
– volume: 23
  start-page: 105
  issue: 2
  year: 1985
  ident: 2020121103433018800_bib14
  article-title: The computation of body wave synthetic seismograms in laterally homogeneous media
  publication-title: Rev. Geophys.
  doi: 10.1029/RG023i002p00105
– volume: 157
  start-page: 86
  issue: 1–2
  year: 2006
  ident: 2020121103433018800_bib21
  article-title: The adjoint method in seismology: I. Theory
  publication-title: Phys. Earth planet. Inter.
  doi: 10.1016/j.pepi.2006.03.016
– volume: 117
  issue: B2
  year: 2012
  ident: 2020121103433018800_bib7
  article-title: Transdimensional inversion of receiver functions and surface wave dispersion
  publication-title: J. geophys. Res.
  doi: 10.1029/2011JB008560
– volume: 95
  start-page: 2081
  issue: 6
  year: 2005
  ident: 2020121103433018800_bib9
  article-title: Empirical relations between elastic wavespeeds and density in the earth’s crust
  publication-title: Bull. seism. Soc. Am.
  doi: 10.1785/0120050077
– volume: 128
  start-page: 3393
  issue: 6
  year: 2010
  ident: 2020121103433018800_bib18
  article-title: Trans-dimensional geoacoustic inversion
  publication-title: J. acoust. Soc. Am.
  doi: 10.1121/1.3500674
– start-page: 179
  year: 2003
  ident: 2020121103433018800_bib31
  publication-title: Trans-dimensional Markov chain Monte Carlo
– volume: 216
  start-page: 1344
  issue: 2
  year: 2018
  ident: 2020121103433018800_bib22
  article-title: Hamiltonian Monte Carlo solution of tomographic inverse problems
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggy496
– volume: 51
  start-page: 889
  issue: 4
  year: 1986
  ident: 2020121103433018800_bib66
  article-title: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method
  publication-title: Geophysics
  doi: 10.1190/1.1442147
– volume: 167
  start-page: 495
  issue: 2
  year: 2006
  ident: 2020121103433018800_bib47
  article-title: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.02978.x
– volume-title: SEG International Exposition and Annual Meeting
  year: 2019
  ident: 2020121103433018800_bib71
  article-title: A gradient based MCMC method for FWI and uncertainty analysis
  doi: 10.1190/segam2019-3216560.1
– volume: 103
  start-page: 17885
  issue: B8
  year: 1998
  ident: 2020121103433018800_bib63
  article-title: A two-dimensional tomographic study of the Clipperton transform fault
  publication-title: J. geophys. Res.
  doi: 10.1029/98JB00904
– volume: 102
  start-page: 2969
  issue: B2
  year: 1997
  ident: 2020121103433018800_bib45
  article-title: Monte Carlo analysis of seismic reflections from Moho and the W reflector
  publication-title: J. geophys. Res.
  doi: 10.1029/96JB02566
– volume: 82
  start-page: R119
  issue: 3
  year: 2017
  ident: 2020121103433018800_bib57
  article-title: Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm
  publication-title: Geophysics
  doi: 10.1190/geo2016-0010.1
SSID ssj0014148
Score 2.4057693
Snippet SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is...
Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a...
SourceID unpaywall
hal
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1056
SubjectTerms Sciences of the Universe
Title Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method
URI https://insu.hal.science/insu-03584389
https://academic.oup.com/gji/article-pdf/224/2/1056/34860092/ggaa505.pdf
UnpaywallVersion publishedVersion
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 1365-246X
  databaseCode: KQ8
  dateStart: 19580301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 1365-246X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXWTgheGF8TBTYsAS9Iblo7TuLHbtpU8dGBWKXwFDm20xWqtBpdy_j13Fs7FSA08cBLpMQ3iWM7usf2uecS8tJwycvSaeb6PMVtxowBKsqYsH3NEyFkZTcE2VEyHMdvcpnvkGETC6MDK7zbhDRMvkyj0IhsYasIXE7EI8wXHwlMoNRTPJpMtAZP3oXyFtlNJKDyNtkdjz4MPjdSewBM8m0IVpzkIVQP5vObN4Qn_OacWhdIjfRhb7ev6oW-XuvZ7Bfvc7pHpk29Penka_dqWXbNjz8kHf_Hh90jdwNEpQN_132y4-oH5NaGKmq-PSTfR15dQ19SXLuna71yiHzptF75xTc6r-h6ah3TC3eJOxT07OgTRS4qBUP6fn4xp163FsuQeT-hmi7RazKL2Qa8Ugg90tcOYzypT3P9iIxPT86Phyzkb2BaSLVkaWakBfiZAgo13HCV2qxyZSZc1esbmEkmyimANyJx1gnwpdLKUuiskllaYTKjfdKu57V7TKiCS0IZcKVKxtppOEtMrExPadPTSdwhr5uOK0wQN8ccG7PCb7KLApq7CM3ZgSHaGC-8psffzV7ACNhaoA73cPCuwBiBAuqaYd74Vb9DnkOP3vycV9vRc5Pdk3-0e0rucCTWbKjjz0gb-ssdADJaloek9fZjBsfzs_ww_AA_AZubDbg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELV2u0Jw4RtRPi0BFyQ3rR0n8bGLWFUIChJUKqdoYjvdQpVWS7dl-fXM1E4FCK04cEwycRx7pHm238xj7LmVWlaVB-EHMqdjxkIgKiqEcgOQmVK6djuC7DgbTdI3Uz09YKM2FwYiK7zXpjTMvsyTOIhi5eoEQ04iE9KLTxQJKPWNTGYzAIzkPXx-yI4yjai8w44m4w_Dz22pPQQm030KVppNY6oerud3X4gt_BacDk-JGhnS3q6eNyu42MJi8Uv0ObnB5m2_A-nka-98XfXsjz9KOv6PH7vJrkeIyofhrVvswDe32ZUdVdR-u8O-j0N1DTjjtHfPt7DxhHz5vNmEzTe-rPl27ryAlT-jEwr-_vgjJy4qR0P-bnm65KFuLT0j5v2MA19T1BSO1AZCpRB-DBeecjx5kLm-yyYnrz-9Gomo3yBAabMWeWG1Q_iZIwq10kqTu6L2VaF83R9YXElmxhuENyrzziuMpdrpSkFR6yKvSczoHus0y8bfZ9zgLWUshlKjU_CAV5lNje0bsH3I0i572U5caWNxc9LYWJThkF2VONxlHM4uumhrvAo1Pf5u9gw9YG9BdbhHw7cl5QiU2NeCdOM3gy57ijN6eTsv9t5zmd2Df7R7yK5JItbsqOOPWAfnyz9GZLSunkSn_wkIlAun
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+full+waveform+inversion+of+wide-aperture+OBS+data+for+Moho+structure+using+a+trans-dimensional+Bayesian+method&rft.jtitle=Geophysical+journal+international&rft.au=Guo%2C+Peng&rft.au=Singh%2C+Satish+C&rft.au=Vaddineni%2C+Venkata+A&rft.au=Visser%2C+Gerhard&rft.date=2021-02-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=224&rft.issue=2&rft.spage=1056&rft.epage=1078&rft_id=info:doi/10.1093%2Fgji%2Fggaa505&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggaa505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon