Computational movement analysis

This SpringerBrief discusses the characteristics of spatiotemporal movement data, including uncertainty and scale. It investigates three core aspects of Computational Movement Analysis: Conceptual modeling of movement and movement spaces, spatiotemporal analysis methods aiming at a better understand...

Full description

Saved in:
Bibliographic Details
Main Author Laube, Patrick
Format eBook Book
LanguageEnglish
Published Cham Springer 2014
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesSpringerBriefs in Computer Science
Subjects
Online AccessGet full text
ISBN9783319102672
3319102672
9783319102689
3319102680
ISSN2191-5768
2191-5776
DOI10.1007/978-3-319-10268-9

Cover

Table of Contents:
  • Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Introduction -- 1.1 Motivation -- 1.2 Introducing Computational Movement Analysis -- 1.3 Structure of this Book -- References -- 2 Movement Spaces and Movement Traces -- 2.1 Data -- 2.2 Conceptual Models for Movement and Movement Spaces -- 2.2.1 Lagrangian Versus Eulerian Movement -- 2.2.2 Constraints to Movement -- 2.2.3 Continuous Versus Discrete Movement Spaces -- 2.3 Computing Movement Descriptors -- 2.3.1 Trajectory Operators -- 2.3.2 Scale -- 2.3.3 Uncertainty and Data Quality -- 2.4 Related Work -- 2.5 Concluding Remarks -- References -- 3 Movement Mining -- 3.1 Data Mining for CMA -- 3.1.1 Defining Movement Mining -- 3.1.2 What is Special About Movement Data? -- 3.2 Movement Mining Tasks -- 3.2.1 Segmentation and Filtering -- 3.2.2 Similarity and Clustering -- 3.2.3 Movement Patterns -- 3.2.4 Exploratory Analysis and Visualization -- 3.3 Evaluation -- 3.3.1 Validation -- 3.3.2 Credibility -- 3.3.3 Efficiency -- 3.4 Related Work -- 3.5 Concluding Remarks -- References -- 4 Decentralized Movement Analysis -- 4.1 Foundations -- 4.2 Movement in Decentralized Spatial Information Systems -- 4.2.1 Static Nodes Monitor Mobile Objects -- 4.2.2 Mobile Agents Monitor Their Collective Movement -- 4.3 Decentralized Movement Analysis Principles -- 4.3.1 Challenges -- 4.3.2 Specific Decentralized Movement Analysis Principles -- 4.3.3 Revisiting General DeSC Principles -- 4.4 Related Work -- 4.5 Concluding Remarks -- References -- 5 Grand Challenges in Computational Movement Analysis -- 5.1 Coping with Big Movement Data -- 5.2 Bridging the Semantic Gap -- 5.3 Contributing to Ambient Spatial Intelligence -- 5.4 Balancing Benefits and Privacy -- 5.5 Improving Recognition -- 5.6 Towards a Unifying Theory of CMA -- References