Metabolomics Analysis in Acute Paraquat Poisoning Patients Based on UPLC-Q-TOF-MS and Machine Learning Approach

Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a blood metabolomics study based on ultraperformance liq...

Full description

Saved in:
Bibliographic Details
Published inChemical research in toxicology Vol. 32; no. 4; pp. 629 - 637
Main Authors Wen, Congcong, Lin, Feiyan, Huang, Binge, Zhang, Zhiguang, Wang, Xianqin, Ma, Jianshe, Lin, Guanyang, Chen, Huiling, Hu, Lufeng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2019
Subjects
Online AccessGet full text
ISSN0893-228X
1520-5010
1520-5010
DOI10.1021/acs.chemrestox.8b00328

Cover

Abstract Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a blood metabolomics study based on ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and efficient machine learning approach was performed on 23 PQ poisoned patients and 29 healthy subjects. The initial PQ plasma concentrations of PQ poisoned patients were >1000 ng/mL, and the blood samples were collected at before first hemoperfusion (HP), after first HP, and after last HP. The results showed that PQ poisoned patients all differed from healthy subjects, whatever they were before or after first HP or after last HP. The efficient machine learning approaches selected key metabolites from three UPLC/Q-TOF-MS data sets which had the highest classification performance in terms of classification accuracy, Matthews Correlation Coefficients, sensitivity, and specificity, respectively. The mass identification revealed that the most important metabolite was adenosine, which sustained in low level, regardless of whether PQ poisoned patients received HP treatment. In conclusion, decreased adenosine was the most important metabolite in PQ poisoned patients. The metabolic disturbance caused by PQ poisoning cannot be improved by HP treatment even the PQ was cleared from the blood.
AbstractList Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a blood metabolomics study based on ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and efficient machine learning approach was performed on 23 PQ poisoned patients and 29 healthy subjects. The initial PQ plasma concentrations of PQ poisoned patients were >1000 ng/mL, and the blood samples were collected at before first hemoperfusion (HP), after first HP, and after last HP. The results showed that PQ poisoned patients all differed from healthy subjects, whatever they were before or after first HP or after last HP. The efficient machine learning approaches selected key metabolites from three UPLC/Q-TOF-MS data sets which had the highest classification performance in terms of classification accuracy, Matthews Correlation Coefficients, sensitivity, and specificity, respectively. The mass identification revealed that the most important metabolite was adenosine, which sustained in low level, regardless of whether PQ poisoned patients received HP treatment. In conclusion, decreased adenosine was the most important metabolite in PQ poisoned patients. The metabolic disturbance caused by PQ poisoning cannot be improved by HP treatment even the PQ was cleared from the blood.
Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a blood metabolomics study based on ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and efficient machine learning approach was performed on 23 PQ poisoned patients and 29 healthy subjects. The initial PQ plasma concentrations of PQ poisoned patients were >1000 ng/mL, and the blood samples were collected at before first hemoperfusion (HP), after first HP, and after last HP. The results showed that PQ poisoned patients all differed from healthy subjects, whatever they were before or after first HP or after last HP. The efficient machine learning approaches selected key metabolites from three UPLC/Q-TOF-MS data sets which had the highest classification performance in terms of classification accuracy, Matthews Correlation Coefficients, sensitivity, and specificity, respectively. The mass identification revealed that the most important metabolite was adenosine, which sustained in low level, regardless of whether PQ poisoned patients received HP treatment. In conclusion, decreased adenosine was the most important metabolite in PQ poisoned patients. The metabolic disturbance caused by PQ poisoning cannot be improved by HP treatment even the PQ was cleared from the blood.Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a blood metabolomics study based on ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and efficient machine learning approach was performed on 23 PQ poisoned patients and 29 healthy subjects. The initial PQ plasma concentrations of PQ poisoned patients were >1000 ng/mL, and the blood samples were collected at before first hemoperfusion (HP), after first HP, and after last HP. The results showed that PQ poisoned patients all differed from healthy subjects, whatever they were before or after first HP or after last HP. The efficient machine learning approaches selected key metabolites from three UPLC/Q-TOF-MS data sets which had the highest classification performance in terms of classification accuracy, Matthews Correlation Coefficients, sensitivity, and specificity, respectively. The mass identification revealed that the most important metabolite was adenosine, which sustained in low level, regardless of whether PQ poisoned patients received HP treatment. In conclusion, decreased adenosine was the most important metabolite in PQ poisoned patients. The metabolic disturbance caused by PQ poisoning cannot be improved by HP treatment even the PQ was cleared from the blood.
Author Huang, Binge
Ma, Jianshe
Zhang, Zhiguang
Hu, Lufeng
Chen, Huiling
Lin, Feiyan
Wang, Xianqin
Wen, Congcong
Lin, Guanyang
AuthorAffiliation Department of pharmacy
Central laboratory
College of Physics and Electronic Information Engineering
AuthorAffiliation_xml – name: Department of pharmacy
– name: Central laboratory
– name: College of Physics and Electronic Information Engineering
Author_xml – sequence: 1
  givenname: Congcong
  surname: Wen
  fullname: Wen, Congcong
– sequence: 2
  givenname: Feiyan
  surname: Lin
  fullname: Lin, Feiyan
– sequence: 3
  givenname: Binge
  surname: Huang
  fullname: Huang, Binge
– sequence: 4
  givenname: Zhiguang
  surname: Zhang
  fullname: Zhang, Zhiguang
– sequence: 5
  givenname: Xianqin
  surname: Wang
  fullname: Wang, Xianqin
– sequence: 6
  givenname: Jianshe
  surname: Ma
  fullname: Ma, Jianshe
– sequence: 7
  givenname: Guanyang
  surname: Lin
  fullname: Lin, Guanyang
– sequence: 8
  givenname: Huiling
  surname: Chen
  fullname: Chen, Huiling
  email: chenhuiling.jlu@gmail.com
  organization: College of Physics and Electronic Information Engineering
– sequence: 9
  givenname: Lufeng
  orcidid: 0000-0002-3494-2405
  surname: Hu
  fullname: Hu, Lufeng
  email: hulufeng79@sina.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30807114$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJaZykfyHo2Ms6M9pPQy-uaZKCTVySQG9iVqttFHYlR9JC8--j1A6FXnISjN5HI97nhB1ZZzVj5whzBIEXpMJcPejR6xDdn3nTAuSi-cBmWArISkA4YjNoFnkmRPPrmJ2E8AiAia0_seMcGqgRixlzGx2pdYMbjQp8aWl4DiZwY_lSTVHzLXl6mijyrTPBWWN_p1E02sbAv1HQHXeW32_Xq-xndndzmW1uOdmOb0g9GKv5WpP_Cy13O-_S8Ix97GkI-vPhPGX3l9_vVtfZ-ubqx2q5zigvi5j1BXbUoUYgqus-_baAosG-rgtCqghUBz2JBZWVwFpXWEInVFUv8ratih7zU_Zl_25a-zSlkuRogtLDQFa7KUiBTZWosoYUPT9Ep3bUndx5M5J_lm8lpcDXfUB5F4LXvVQmphKcjZ7MIBHkqxOZnMh_TuTBScKr__C3De-CYg--3j-6ySc74T3oBW32pxU
CitedBy_id crossref_primary_10_1016_j_ecoenv_2025_117713
crossref_primary_10_1016_j_ecoenv_2023_115543
crossref_primary_10_1080_17425255_2023_2232724
crossref_primary_10_1155_2021_6315010
crossref_primary_10_1111_bcpt_13800
crossref_primary_10_1166_jbmb_2024_2437
crossref_primary_10_1016_j_fct_2023_114187
crossref_primary_10_4103_jrms_jrms_602_22
crossref_primary_10_2174_1573406419666230406091759
crossref_primary_10_1007_s00216_022_03875_1
crossref_primary_10_1177_20552076241287891
crossref_primary_10_2174_1573412916666200206145207
crossref_primary_10_2174_1573412916666191022161501
crossref_primary_10_2174_1573412916999200624160304
crossref_primary_10_1007_s11356_023_26605_1
crossref_primary_10_3390_molecules28020684
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1109_ACCESS_2021_3079204
crossref_primary_10_1016_j_fct_2023_113765
Cites_doi 10.1111/iep.12183
10.1016/j.asoc.2008.07.005
10.1371/journal.pone.0051743
10.1016/j.patcog.2011.03.013
10.1016/j.cmpb.2017.06.005
10.1080/15563650.2017.1394465
10.1007/s10916-011-9655-8
10.1016/j.brainres.2004.02.078
10.1155/2015/298253
10.1080/01431160902788636
10.1021/pr501116c
10.1038/srep26070
10.1016/j.neucom.2013.03.057
10.1371/journal.pone.0143003
10.1016/j.clinbiochem.2010.09.006
10.1109/IJCNN.2004.1380068
10.1016/j.neucom.2005.12.126
10.1016/j.compbiomed.2015.02.003
10.1016/j.psyneuen.2018.07.002
10.1016/j.tiv.2017.10.017
10.1248/bpb.b14-00781
10.1016/j.vascn.2016.05.010
10.1109/tcbb.2007.1012
10.1016/j.aca.2011.02.038
10.1109/JBHI.2018.2845866
10.1038/srep09168
10.1080/00207721.2013.801096
10.1016/j.fct.2017.12.034
10.1109/TCYB.2013.2260736
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.chemrestox.8b00328
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-5010
EndPage 637
ExternalDocumentID 30807114
10_1021_acs_chemrestox_8b00328
a814563563
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
29B
55A
5GY
5RE
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
YZZ
---
-~X
4.4
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a354t-f41dad1e10aa77f80740481f774a1a6a0cd0fa29a56217e6150d2c6793bb64f13
IEDL.DBID ACS
ISSN 0893-228X
1520-5010
IngestDate Thu Jul 10 22:20:56 EDT 2025
Thu Jan 02 22:59:31 EST 2025
Tue Jul 01 03:45:26 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Thu Aug 27 13:43:29 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a354t-f41dad1e10aa77f80740481f774a1a6a0cd0fa29a56217e6150d2c6793bb64f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3494-2405
PMID 30807114
PQID 2186615570
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2186615570
pubmed_primary_30807114
crossref_citationtrail_10_1021_acs_chemrestox_8b00328
crossref_primary_10_1021_acs_chemrestox_8b00328
acs_journals_10_1021_acs_chemrestox_8b00328
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Chemical research in toxicology
PublicationTitleAlternate Chem. Res. Toxicol
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Liu J. Y. (ref5/cit5) 2012; 30
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
Wang S. (ref6/cit6) 2015; 8
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Duda R. O. (ref19/cit19) 2012
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1111/iep.12183
– ident: ref28/cit28
  doi: 10.1016/j.asoc.2008.07.005
– ident: ref4/cit4
  doi: 10.1371/journal.pone.0051743
– volume: 30
  start-page: 686
  year: 2012
  ident: ref5/cit5
  publication-title: Chinese journal of industrial hygiene and occupational diseases
– ident: ref29/cit29
  doi: 10.1016/j.patcog.2011.03.013
– ident: ref26/cit26
  doi: 10.1016/j.cmpb.2017.06.005
– ident: ref2/cit2
  doi: 10.1080/15563650.2017.1394465
– ident: ref20/cit20
  doi: 10.1007/s10916-011-9655-8
– ident: ref10/cit10
  doi: 10.1016/j.brainres.2004.02.078
– ident: ref18/cit18
  doi: 10.1155/2015/298253
– ident: ref30/cit30
  doi: 10.1080/01431160902788636
– ident: ref12/cit12
  doi: 10.1021/pr501116c
– ident: ref16/cit16
  doi: 10.1038/srep26070
– ident: ref31/cit31
  doi: 10.1016/j.neucom.2013.03.057
– ident: ref21/cit21
  doi: 10.1371/journal.pone.0143003
– volume: 8
  start-page: 19100
  year: 2015
  ident: ref6/cit6
  publication-title: Int. J. Clin Exp Med.
– ident: ref9/cit9
  doi: 10.1016/j.clinbiochem.2010.09.006
– ident: ref22/cit22
  doi: 10.1109/IJCNN.2004.1380068
– ident: ref23/cit23
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref25/cit25
  doi: 10.1016/j.compbiomed.2015.02.003
– ident: ref3/cit3
  doi: 10.1016/j.psyneuen.2018.07.002
– ident: ref33/cit33
  doi: 10.1016/j.tiv.2017.10.017
– ident: ref14/cit14
  doi: 10.1248/bpb.b14-00781
– ident: ref1/cit1
  doi: 10.1016/j.vascn.2016.05.010
– ident: ref24/cit24
  doi: 10.1109/tcbb.2007.1012
– volume-title: Pattern classification
  year: 2012
  ident: ref19/cit19
– ident: ref17/cit17
  doi: 10.1016/j.aca.2011.02.038
– ident: ref11/cit11
  doi: 10.1109/JBHI.2018.2845866
– ident: ref8/cit8
  doi: 10.1038/srep09168
– ident: ref27/cit27
  doi: 10.1080/00207721.2013.801096
– ident: ref32/cit32
  doi: 10.1016/j.fct.2017.12.034
– ident: ref15/cit15
  doi: 10.1109/TCYB.2013.2260736
– ident: ref13/cit13
  doi: 10.1016/j.compbiomed.2015.02.003
SSID ssj0011027
Score 2.4086878
Snippet Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 629
SubjectTerms Adenosine - analysis
Adenosine - metabolism
Chromatography, High Pressure Liquid
Humans
Machine Learning
Mass Spectrometry
Metabolomics
Paraquat - blood
Paraquat - metabolism
Paraquat - poisoning
Title Metabolomics Analysis in Acute Paraquat Poisoning Patients Based on UPLC-Q-TOF-MS and Machine Learning Approach
URI http://dx.doi.org/10.1021/acs.chemrestox.8b00328
https://www.ncbi.nlm.nih.gov/pubmed/30807114
https://www.proquest.com/docview/2186615570
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fa9RAEMeHWl8EsVp_nVUZQfpic81ufj-eh0cRT1N6B_cW9leqWBNtEmj71zubH3eIHNXHLMzCbmZ3vsnsfBbgrdbaT6SxjP1EOn6saB9k9EjaNAgT5dE3h61Gnn8OT5b-x1Ww2gF3Swafs2OhaPK_mh_2qoryahxbP-TxHbjLQwo2VgxNz9Z5A7Lo2J6J53Aer4aa4K392KCkqj-D0hal2Uac2R6cDnU73UGT7-OmlmN18zfG8Z8H8xAe9PITJ52_PIIdU-zDYdrxq6-PcLEpx6qO8BDTDdn6eh_udz_5sKtdegzl3NTkRBe2srnCgW-C3wqcqKY2mIpL8asRNaalPbREUZKaWo5rhe8pfGosC1ymn6bOqbP4MnPmZygKjfP2gKfBnv16jpMefP4ElrMPi-mJ09_g4Agv8Gsn95kWmhnmChFFuQXvWD5NTppTMBEKV2k3FzwRpMJYZCycXnMV0p4hZejnzHsKu0VZmOeA0ouFZeEZ3zO-4L5UrtSBYjI3mkzFCN7R5Gb9CqyyNrnOWWYbNzOe9TM-gmB44ZnqYej2To6LW-2O13Y_OxzIrRZvBn_KaOXadIwoTNlUmb0NzGaFI3cEzzpHW_fpkZCP6FP1xX-N6gDukZ5rk10seAm79WVjXpFmquXrdpn8BuNEFQY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ri9NAEMAHPT8oiI_zVZ8ryH3x0ssmm9fHWixVmzNyLfRb2FdEPBO9JOD51zuTpC0Kx6EfszBLdjObmd3Z-Q3AK2OMSJQlxn6iHBFr_A9yfETfNAgT7eOeg7KR0-NwvhLv18F6OLqgXBh8iRp7qrsg_o4uwI-oDYfxjSpWVD_HMamjF1-Fa0EoQqrZMJmebMMHKNEjPhPf8bx4vUkNvrAfsk26_tM2XeBwdoZndhvW21fu7pt8HbeNGutff9Ec_2NMd-DW4IyySa89d-GKLffhIOtp1ueHbLlLzqoP2QHLdpzr83242R_5sT6T6R5UqW1QpU4pz7lmG9oJ-1KyiW4byzJ5Jn-0smFZRVeY0GZiU0d1rdkbNKaGVSVbZYup88lZfpw56QmTpWFpd93TsoEE-5lNBgz6fVjN3i6nc2eo5-BIPxCNUwhupOGWu1JGUUEYHqLVFOiBSi5D6WrjFtJLJPpkPLKEqjeeDvEPolQoCu4_gL2yKu0jYMqPJZHxrPCtkJ5Q2lUm0FwV1qCoHMFrnNx8WI913oXaPZ5T427G82HGRxBsvnuuBzQ6Veg4vVTuaCv3vYeDXCrxcqNWOa5jCs7I0lZtnVNtMIoRR-4IHvb6tu3TR7c-wo3r438a1Qu4Pl-mi3zx7vjDE7iBnl4XBuPBU9hrzlr7DL2pRj3vVs5v-lQdaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9qBRFK1fro-VxB-sXmms07-Ok8Par2aqR3cB8KYV8pxZq0TQLWv96ZPO5QKEU_ZmGWfczs_Daz8xuAN1prL5aGOPZjaXmRwnOQ4ydiUz-IlYt3DspGnh4G-3Pv88JfrMG7PhcGB1FiT2UTxCerPtdZxzDA96gdp_KDqlYUP4cRqaQT3YLbiEo41W0YjY-WIQSUaGk-Y9dynGjRpwdf2w_5J1X-6Z-uAZ2N85ncg-PlsJs3J9-HdSWH6tdfjI7_Oa_7sNmBUjZqtegBrJl8C3aSltX6apfNVkla5S7bYcmK7_pqCzbaX3-szWh6CMXUVKhaZ5TvXLKe9YSd5myk6sqwRFyKi1pULCnoKRP6Tmxq2F1L9h6dqmZFzubJwdj6Zs2-TqzpERO5ZtPm2adhHSPsCRt1dOiPYD75OBvvW11dB0u4vldZmce10NxwW4gwzIiOh1hrMkSigotA2ErbmXBigdiMh4Yo67WjAjxJpAy8jLuPYT0vcrMNTLqRIIY847nGE44nlS21r7jMjEZRMYC3uLhpZ5dl2oTcHZ5S42rF027FB-D3e5-qjiKdKnWc3Si3t5Q7b0lCbpR43atWivZMQRqRm6IuU6oRRrHi0B7Ak1bnln26CO9DvMA-_adZvYI7yYdJevDp8MszuIuAr4mGcf85rFeXtXmBoKqSLxvj-Q3saR_i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolomics+Analysis+in+Acute+Paraquat+Poisoning+Patients+Based+on+UPLC-Q-TOF-MS+and+Machine+Learning+Approach&rft.jtitle=Chemical+research+in+toxicology&rft.au=Wen%2C+Congcong&rft.au=Lin%2C+Feiyan&rft.au=Huang%2C+Binge&rft.au=Zhang%2C+Zhiguang&rft.date=2019-04-15&rft.eissn=1520-5010&rft.volume=32&rft.issue=4&rft.spage=629&rft_id=info:doi/10.1021%2Facs.chemrestox.8b00328&rft_id=info%3Apmid%2F30807114&rft.externalDocID=30807114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-228X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-228X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-228X&client=summon