Mechanism of Inhibition of the Reproduction of SARS-CoV‑2 and Ebola Viruses by Remdesivir

Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurpo...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 60; no. 24; pp. 1869 - 1875
Main Authors Wang, Jimin, Reiss, Krystle, Shi, Yuanjun, Lolis, Elias, Lisi, George P, Batista, Victor S
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.06.2021
Subjects
Online AccessGet full text
ISSN0006-2960
1520-4995
1943-295X
1520-4995
DOI10.1021/acs.biochem.1c00292

Cover

Abstract Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.
AbstractList Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.
Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.
Remdesivir is an antiviral drug initially designed against the virus. The results obtained with it both in biochemical studies and in cell line assays were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold , and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the + 3 position (with the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.
Author Lisi, George P
Wang, Jimin
Lolis, Elias
Reiss, Krystle
Shi, Yuanjun
Batista, Victor S
AuthorAffiliation Department of Chemistry
Department of Pharmacology
Department of Molecular and Cell Biology and Biochemistry
Department of Molecular Biophysics and Biochemistry
AuthorAffiliation_xml – name: Department of Pharmacology
– name: Department of Chemistry
– name: Department of Molecular Biophysics and Biochemistry
– name: Department of Molecular and Cell Biology and Biochemistry
Author_xml – sequence: 1
  givenname: Jimin
  orcidid: 0000-0002-4504-8038
  surname: Wang
  fullname: Wang, Jimin
  email: jimin.wang@yale.edu
  organization: Department of Molecular Biophysics and Biochemistry
– sequence: 2
  givenname: Krystle
  surname: Reiss
  fullname: Reiss, Krystle
  organization: Department of Chemistry
– sequence: 3
  givenname: Yuanjun
  surname: Shi
  fullname: Shi, Yuanjun
  organization: Department of Chemistry
– sequence: 4
  givenname: Elias
  orcidid: 0000-0002-7902-7868
  surname: Lolis
  fullname: Lolis, Elias
  organization: Department of Pharmacology
– sequence: 5
  givenname: George P
  surname: Lisi
  fullname: Lisi, George P
  organization: Department of Molecular and Cell Biology and Biochemistry
– sequence: 6
  givenname: Victor S
  orcidid: 0000-0002-3262-1237
  surname: Batista
  fullname: Batista, Victor S
  email: victor.batista@yale.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34110129$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi1URLeFJ0BCOXLJdvwnaXysVgUqFSG10AuHaGLPal0l9mInRXvjFXhFngRHu-XAgXKyxvP9Rt98c8KOfPDE2GsOSw6Cn6FJy84Fs6FhyQ2A0OIZW_BKQKm0ro7YAgDqUugajtlJSve5VHCuXrBjqTgHLvSCff1IZoPepaEI6-LKb1znRhf8XI0bKm5oG4OdzOPf7cXNbbkKd79-_BQFeltcdqHH4s7FKVEqul0mBkvJPbj4kj1fY5_o1eE9ZV_eXX5efSivP72_Wl1clygrOZZWcHVuVa2p4Q3UwnZCddRZJLXmXIAViBKabFdXBhCU0qYi5LVoNEmU8pSp_dzJb3H3Hfu-3UY3YNy1HNo5qzZn1R6yag9ZZeztHssbfpsoje3gkqG-R09hSq2oZa1kLQGellZSN9mhnM28OUinbiD7x8lj5Fkg9wITQ0qR1v9pVv9FGTfifJUxouufYM_27Ny8D1P0-Rr_JH4DMYy6jw
CitedBy_id crossref_primary_10_1016_j_xcrp_2022_100971
crossref_primary_10_1039_D2OB01403C
crossref_primary_10_3390_ijms252312708
crossref_primary_10_1021_acs_biochem_2c00341
crossref_primary_10_1021_acsabm_3c00339
crossref_primary_10_1097_AOG_0000000000004734
crossref_primary_10_2174_1389200223666211228160314
crossref_primary_10_1016_j_coph_2021_07_020
crossref_primary_10_3762_bjoc_20_91
crossref_primary_10_1111_bph_16344
crossref_primary_10_1021_acs_jcim_1c00384
crossref_primary_10_1080_14756366_2024_2301772
crossref_primary_10_1016_j_jbc_2021_101529
crossref_primary_10_3389_fmolb_2022_999291
crossref_primary_10_1016_j_bcp_2021_114800
Cites_doi 10.1101/2020.10.15.325050
10.1016/j.cell.2020.10.004
10.1146/annurev-virology-100114-055218
10.1126/science.1195858
10.1007/BF00928361
10.3390/v11040326
10.1016/j.cell.2020.05.034
10.1128/mBio.00221-18
10.1038/s41467-020-20542-0
10.7554/eLife.60482
10.1016/j.antiviral.2018.11.016
10.1073/pnas.1921485117
10.1126/science.abe6523
10.1007/s11262-009-0357-y
10.1016/j.antiviral.2018.04.004
10.1016/j.virusres.2015.02.025
10.1016/S0140-6736(20)31022-9
10.1016/j.virusres.2005.03.028
10.1093/nar/gkaa1116
10.1038/s41579-020-00468-6
10.1073/pnas.2012294117
10.1038/nsmb.2844
10.1007/BF01309269
10.1021/bi4014215
10.1021/acscentsci.0c00489
10.1016/j.cell.2020.07.033
10.1038/s41586-020-2008-3
10.1126/science.abc1560
10.1080/15476286.2020.1814556
10.1016/j.xinn.2021.100080
10.1074/jbc.AC120.013056
10.1038/s41572-020-0147-3
10.1074/jbc.AC120.015720
10.1074/jbc.M110.178582
10.1073/pnas.2021946118
10.1074/jbc.RA120.013679
10.1073/pnas.2026656118
10.1038/nature17180
10.1128/mBio.01661-20
10.1038/s41467-020-19883-7
10.1038/s41586-020-2012-7
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTOC
UNPAY
DOI 10.1021/acs.biochem.1c00292
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 1875
ExternalDocumentID oai:pubmedcentral.nih.gov:8204756
34110129
10_1021_acs_biochem_1c00292
c978730790
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM106121
GroupedDBID -
.K2
02
23N
4.4
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOCM
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
CITATION
CUPRZ
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
.GJ
.HR
186
1WB
3O-
6TJ
AAYJJ
ABDPE
ABHMW
ABUFD
ACKIV
ACRPL
ADNMO
ADTOC
AETEA
AEYZD
AFFNX
AGQPQ
AIDAL
AJUXI
ANPPW
ANTXH
EJD
J5H
MVM
NHB
OHT
RNS
UBC
UNPAY
XJT
YQJ
YXE
YYP
ZE2
ZGI
ZXP
ID FETCH-LOGICAL-a353t-d2147d469e818062db24bebdae4f1120d2aa30812995c0a0449c5ea16289e3a33
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
1943-295X
IngestDate Sun Oct 26 03:55:28 EDT 2025
Thu Oct 02 10:07:12 EDT 2025
Fri Jul 11 08:05:35 EDT 2025
Thu Apr 03 06:52:31 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 04:09:36 EDT 2025
Thu Jun 24 03:11:19 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://doi.org/10.15223/policy-017
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a353t-d2147d469e818062db24bebdae4f1120d2aa30812995c0a0449c5ea16289e3a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4504-8038
0000-0002-3262-1237
0000-0002-7902-7868
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8204756
PMID 34110129
PQID 2539881233
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1021_acs_biochem_1c00292
proquest_miscellaneous_2636436300
proquest_miscellaneous_2539881233
pubmed_primary_34110129
crossref_primary_10_1021_acs_biochem_1c00292
crossref_citationtrail_10_1021_acs_biochem_1c00292
acs_journals_10_1021_acs_biochem_1c00292
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-22
PublicationDateYYYYMMDD 2021-06-22
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1101/2020.10.15.325050
– ident: ref40/cit40
  doi: 10.1016/j.cell.2020.10.004
– ident: ref18/cit18
  doi: 10.1146/annurev-virology-100114-055218
– ident: ref29/cit29
  doi: 10.1126/science.1195858
– ident: ref15/cit15
  doi: 10.1007/BF00928361
– ident: ref4/cit4
  doi: 10.3390/v11040326
– ident: ref14/cit14
  doi: 10.1016/j.cell.2020.05.034
– ident: ref10/cit10
  doi: 10.1128/mBio.00221-18
– ident: ref13/cit13
  doi: 10.1038/s41467-020-20542-0
– ident: ref38/cit38
  doi: 10.7554/eLife.60482
– ident: ref2/cit2
  doi: 10.1016/j.antiviral.2018.11.016
– ident: ref28/cit28
  doi: 10.1073/pnas.1921485117
– ident: ref32/cit32
  doi: 10.1126/science.abe6523
– ident: ref41/cit41
  doi: 10.1007/s11262-009-0357-y
– ident: ref1/cit1
  doi: 10.1016/j.antiviral.2018.04.004
– ident: ref22/cit22
  doi: 10.1016/j.virusres.2015.02.025
– ident: ref6/cit6
  doi: 10.1016/S0140-6736(20)31022-9
– ident: ref24/cit24
  doi: 10.1016/j.virusres.2005.03.028
– ident: ref39/cit39
  doi: 10.1093/nar/gkaa1116
– ident: ref19/cit19
  doi: 10.1038/s41579-020-00468-6
– ident: ref37/cit37
  doi: 10.1073/pnas.2012294117
– ident: ref30/cit30
  doi: 10.1038/nsmb.2844
– ident: ref16/cit16
  doi: 10.1007/BF01309269
– ident: ref36/cit36
  doi: 10.1021/bi4014215
– ident: ref5/cit5
  doi: 10.1021/acscentsci.0c00489
– ident: ref35/cit35
  doi: 10.1016/j.cell.2020.07.033
– ident: ref25/cit25
  doi: 10.1038/s41586-020-2008-3
– ident: ref27/cit27
  doi: 10.1126/science.abc1560
– ident: ref21/cit21
  doi: 10.1080/15476286.2020.1814556
– ident: ref34/cit34
  doi: 10.1016/j.xinn.2021.100080
– ident: ref9/cit9
  doi: 10.1074/jbc.AC120.013056
– ident: ref23/cit23
  doi: 10.1038/s41572-020-0147-3
– ident: ref7/cit7
  doi: 10.1074/jbc.AC120.015720
– ident: ref17/cit17
  doi: 10.1074/jbc.M110.178582
– ident: ref33/cit33
  doi: 10.1073/pnas.2021946118
– ident: ref8/cit8
  doi: 10.1074/jbc.RA120.013679
– ident: ref31/cit31
  doi: 10.1073/pnas.2026656118
– ident: ref3/cit3
  doi: 10.1038/nature17180
– ident: ref20/cit20
  doi: 10.1128/mBio.01661-20
– ident: ref12/cit12
  doi: 10.1038/s41467-020-19883-7
– ident: ref26/cit26
  doi: 10.1038/s41586-020-2012-7
SSID ssj0004074
Score 2.447526
Snippet Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line...
Remdesivir is an antiviral drug initially designed against the virus. The results obtained with it both in biochemical studies and in cell line assays were...
SourceID unpaywall
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1869
SubjectTerms Adenosine Monophosphate - analogs & derivatives
Adenosine Monophosphate - genetics
Adenosine Monophosphate - metabolism
Alanine - analogs & derivatives
Alanine - genetics
Alanine - metabolism
antiviral agents
Antiviral Agents - metabolism
Base Pairing
cell lines
chemistry
Coronavirus RNA-Dependent RNA Polymerase - antagonists & inhibitors
Coronavirus RNA-Dependent RNA Polymerase - genetics
Coronavirus RNA-Dependent RNA Polymerase - metabolism
Ebolavirus
Ebolavirus - drug effects
Enzyme Inhibitors - metabolism
exoribonucleases
Models, Molecular
nucleosides
Protein Biosynthesis - drug effects
protein synthesis
reproduction
RNA - genetics
RNA - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Viral - genetics
RNA, Viral - metabolism
SARS-CoV-2 - drug effects
Severe acute respiratory syndrome coronavirus 2
Virus Replication - drug effects
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD506UO3h13adctuaDDGHiYnlizbegyhpRu0jHYp6ZORZIWaxU6I443s1-_Il7ALhPXR9hG2fCS-7-jcAN7Z2NqYzzQNI4MGCrOCSqk0ZQrRyEYyjZU7hzy_CM8mweepmO6B3-XC1EH7RmdeMc-9IrutYyuXuRl0cWIDhKwgEuE92A8F0u8e7E8uvoxuGpobUiabzGCBZhGyeVF7lQPXr0xMu6pDzB8oU3o6c02pcs83zjfFHD6Z8k98-od0PoCDqliqzQ81n_8GRKeP4LKbQhN_8s2r1tozP_-q7ninOT6Ghy0tJaPm0RPYs8UhHI0KNMnzDXlP6kDR-gT-EA7GXZO4I7g5ty51OCtzspiRT8VtpusYMHeF1JIgv29Kyrb3rkaXV3S8uKaMqCIlJxota3KdrarSlkRvUD5PbZl9z1ZPYXJ68nV8RttuDVRxwdc0dR2PUrS2rUsfD1mqWaCtTpUNZkjqhilTiiMBQfwTZqiGQSCNsMoP0eSzXHF-DL1iUdjnQBAMIh3JmbR6GGijlYhxOA-FiSULrejDB9RU0u62Mqkd6cxP3M1WqUmr1D6wTp2Jaaueu-Yb892DPm4HLZuiH7vF33brJMHf7zwuqrCLqkyY4DLGKXO-QybkyApd5bM-PGsW2falSDFc_TXZB7pddf_zRS_uKP8S7jMXq-P2D3sFvfWqsq-RbK31m3Z7_QLQwCaS
  priority: 102
  providerName: Unpaywall
Title Mechanism of Inhibition of the Reproduction of SARS-CoV‑2 and Ebola Viruses by Remdesivir
URI http://dx.doi.org/10.1021/acs.biochem.1c00292
https://www.ncbi.nlm.nih.gov/pubmed/34110129
https://www.proquest.com/docview/2539881233
https://www.proquest.com/docview/2636436300
https://www.ncbi.nlm.nih.gov/pmc/articles/8204756
UnpaywallVersion submittedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-4995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004074
  issn: 1943-295X
  databaseCode: ACS
  dateStart: 19620101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6h9lA48Gh5BEq1SAhxwKmz69cerahVQWqECKmKOFi764mwSJwqjkHhxF_oX-wv6awfoVAU5ejVju2dfcw3Oy-A1xghRmKsnSA0pKBw9B0plXa4ImmEoUwjZe8hTwfBycj7cO6f3whW_8eCz3uHyhRdndnyUdNuz1grEp242zwIQ-vBF_eHf8Ig3SbpMinJnJB5m2To_y-x4sgUf4ujWxjzHuyU-YVa_lSTyQ25c_wABm30Tu1u8r1bLnTX_LqdzHGzIT2E-w0CZXG9ZB7BHcx3YS_OSfueLtkbVvmEVpftu7DTb-vB7cHXU7RRwlkxZbMxe59_y3Tl7mWfCEUygvJ19timbRh_Gjr92dnV70vOVJ6yI01qNDvL5mWBBdNLopimWGQ_svljGB0ffe6fOE1pBkcJXyyc1JY3Skm1RhsrHvBUc0-jThV6Y0JwbsqVEoQ2SNj5xlWu50njo-oFpN-hUEI8ga18luMzYHTyhzqUY4na9bTRyo-IXAS-iSQP0O_AW-JX0mytIqms5ryX2MaGiUnDxA7wdjIT06Q4t5U2JuuJ3q2ILuoMH-u7v2pXSUITYM0rKsdZWSTcFzKiIQuxpk8gCALaNGcdeFovsdVHCU_YZGuyA85qzW3yR883Z9ALuMutT47dIHwfthbzEl8SqFrog2orHcD2aPAx_nINbYIe2A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-h8VB44GPjozDASAjxQLrEjtP4sao2dbDuga7TJB4iO7mKiDadmgZUnvYv7F_cX8I5dTu-VI3HWLFjn8-539m-3wG8wRgxFiPjRe2UHBSO0lNKG49rskbYVlms7T5k_zjqDcMPZ_LMBYXZWBjqREktlfUh_jW7QLBny0xus0hNWkFqD5Pox3tbRmFgXa5Od3AdDek77mXylTkB9BXX0L8bsVYpLX-3Sn9BzbvQqIpzvfiux-NfzM_BfRiuO17fOvnaquamlf74g9Pxf0f2AO45PMo6SwV6CLew2IadTkG--GTB3rL6hmi99b4Nje4qO9wOfO6jjRnOywmbjthh8SU39eUv-0SYkhGwX3LJurJB59PA605Pry4uOdNFxvYNOdXsNJ9VJZbMLKjGJMMy_5bPHsHwYP-k2_NcogZPCynmXmaTHWXkaKONHI94Znho0GQawxHhOT_jWgvCHmT6ZOprPwxVKlEHEXl7KLQQj2GrmBb4FBjZgbZpq5FC44cmNVrGVF1EMo0Vj1A24R3JK3ELrUzqM3QeJLbQCTFxQmwCX81pkjrCc5t3Y7y50vt1pfMl38fm11-vlCWhCbCHLbrAaVUmXAoV05CF2PBOJAgQWtKzJjxZatr6o4QuLPWaaoK3Vr2b9OjZzQX0Chq9k_5RcnR4_PE53OH2to5dM3wXtuazCl8Q3Jqbl_Xq-gmpnSWK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VRaL0gaPlCOciIcQDDs6u17Efo9CoBVohQqtWPFh7jFWLxIniGBSe-Av8RX4Js44dTkUVj1551nuN55ud3W8AnmCEGIlUe2HXkIPCUXpxrLTHFVkj7MY2Um4f8vAo3D8OXp3K0w2Imrsw1IiCaiqqIL7T6qlNa4aBzgtXrjOXSWrc7hgXUKKf7yUZkrI7UNQf_rwR6df8y-QvcwLpDd_QvytxlskUv1umv-DmNmyV-VQtPqvR6BcTNLgGZ6vGVydPPrbLuW6bL3_wOv5P767D1RqXst5yId2ADcx3YLeXk08-XrCnrDopWm3B78BWv8kStwsfDtHdHc6KMZuk7CA_z3R1CMw9EbZkBPCXnLJ12bD3buj1Jyffv37jTOWW7WlyrtlJNisLLJhekMTYYpF9ymY34Xiw976_79UJGzwlpJh71iU9suRwo7tBHnKreaBRW4VBSrjOt1wpQRiETKA0vvKDIDYSVSckrw-FEuIWbOaTHO8AI3vQ1d04jVH7gTZayYjERShNFPMQZQue0XgltcIVSRVL553EFdaDmNSD2ALezGtiauJzl39jtF7o-UpouuT9WP_642bBJDQBLuiicpyURcKliCPqshBr3gkFAUNHftaC28vVtvoooQxHwRa3wFstv4u06O7FB-gRXH77cpC8OTh6fQ-ucHdox6kNvw-b81mJDwh1zfXDSsF-AA9cKA0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD506UO3h13adctuaDDGHiYnlizbegyhpRu0jHYp6ZORZIWaxU6I443s1-_Il7ALhPXR9hG2fCS-7-jcAN7Z2NqYzzQNI4MGCrOCSqk0ZQrRyEYyjZU7hzy_CM8mweepmO6B3-XC1EH7RmdeMc-9IrutYyuXuRl0cWIDhKwgEuE92A8F0u8e7E8uvoxuGpobUiabzGCBZhGyeVF7lQPXr0xMu6pDzB8oU3o6c02pcs83zjfFHD6Z8k98-od0PoCDqliqzQ81n_8GRKeP4LKbQhN_8s2r1tozP_-q7ninOT6Ghy0tJaPm0RPYs8UhHI0KNMnzDXlP6kDR-gT-EA7GXZO4I7g5ty51OCtzspiRT8VtpusYMHeF1JIgv29Kyrb3rkaXV3S8uKaMqCIlJxota3KdrarSlkRvUD5PbZl9z1ZPYXJ68nV8RttuDVRxwdc0dR2PUrS2rUsfD1mqWaCtTpUNZkjqhilTiiMBQfwTZqiGQSCNsMoP0eSzXHF-DL1iUdjnQBAMIh3JmbR6GGijlYhxOA-FiSULrejDB9RU0u62Mqkd6cxP3M1WqUmr1D6wTp2Jaaueu-Yb892DPm4HLZuiH7vF33brJMHf7zwuqrCLqkyY4DLGKXO-QybkyApd5bM-PGsW2falSDFc_TXZB7pddf_zRS_uKP8S7jMXq-P2D3sFvfWqsq-RbK31m3Z7_QLQwCaS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Inhibition+of+the+Reproduction+of+SARS-CoV-2+and+Ebola+Viruses+by+Remdesivir&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Wang%2C+Jimin&rft.au=Reiss%2C+Krystle&rft.au=Shi%2C+Yuanjun&rft.au=Lolis%2C+Elias&rft.date=2021-06-22&rft.issn=1520-4995&rft.eissn=1520-4995&rft.volume=60&rft.issue=24&rft.spage=1869&rft_id=info:doi/10.1021%2Facs.biochem.1c00292&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon