Soil salinity monitoring model based on the synergistic construction of ground‐UAV‐satellite data

Soil salinization poses a significant constraint on the sustainable development of agriculture. While satellite remote‐sensing data enables salinity monitoring over large spatial scales, its coarse resolution limits monitoring accuracy. On the other hand, unmanned aerial vehicle (UAV) remote‐sensing...

Full description

Saved in:
Bibliographic Details
Published inSoil use and management Vol. 40; no. 1
Main Authors Jia, Jiangdong, Chen, Ce, Liu, Qi, Ding, Binbin, Ren, Zheng, Jia, Yanxin, Bai, Xuqian, Du, Ruiqi, Chen, Qinda, Wang, Shuang, Luo, Linyu, Zhang, Zhitao, Geng, Hongsuo
Format Journal Article
LanguageEnglish
Published Bedfordshire Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN0266-0032
1475-2743
DOI10.1111/sum.12980

Cover

Abstract Soil salinization poses a significant constraint on the sustainable development of agriculture. While satellite remote‐sensing data enables salinity monitoring over large spatial scales, its coarse resolution limits monitoring accuracy. On the other hand, unmanned aerial vehicle (UAV) remote‐sensing data offers greater accuracy in salinity monitoring but covers a smaller area compared to satellite remote sensing. To address the need for both high precision and wide‐range monitoring, we developed a soil salinity monitoring model integrating ground, UAV, and satellite data. Field experiments were conducted in the Shahaoqu irrigation area, Inner Mongolia, China, from August 11 to 15, 2019. During this period, we collected satellite remote‐sensing images, UAV remote‐sensing images, and soil salinity data. Spectral bands from the remote‐sensing data were utilized to construct separate vegetation and salinity indices, which were further filtered using the variable importance in projection (VIP) algorithm. The soil salinity monitoring model was then constructed using the extreme learning machine (ELM) algorithm. Several soil salinity monitoring models were developed, including SSMM‐UAV (based on ground‐UAV data at a resolution of 6.5 cm), SSMM‐UAV‐upscaling (obtained by upscaling the results of SSMM‐UAV to a 16 m scale), SSMM‐satellite (based on ground‐satellite data at a 16 m scale), and SSMM‐UAV‐satellite (constructed using ground‐UAV‐satellite data at a 16 m scale). The results revealed that SSMM‐UAV accurately monitored soil salinity at the UAV scale, with R2 values exceeding .81 and RMSEs below 0.11% for both the model modelling set and validation set. SSMM‐UAV‐upscaling demonstrated consistency with SSMM‐UAV and effectively represented salinity conditions at the 16 m scale. In contrast, SSMM‐satellite exhibited inferior performance, with R2 values of .42 and .32 for the modelling set and validation set, respectively, and RMSEs of 0.15% and 0.17%, respectively. By incorporating ground‐UAV‐satellite data, SSMM‐UAV‐satellite improved the R2 of SSMM‐satellite by more than .09 and reduced the RMSEs by at least 0.08%. Furthermore, the area covered by satellite data was ca. 85 times larger than that covered by UAV data. The synergistic use of UAV and satellite data in salinity monitoring enhances the accuracy of satellite remote sensing and expands the monitoring range of UAV remote sensing. The findings of this study provide a reference for high precision and large‐scale salt monitoring through the synergistic integration of ground, UAV, and satellite data.
AbstractList Soil salinization poses a significant constraint on the sustainable development of agriculture. While satellite remote‐sensing data enables salinity monitoring over large spatial scales, its coarse resolution limits monitoring accuracy. On the other hand, unmanned aerial vehicle (UAV) remote‐sensing data offers greater accuracy in salinity monitoring but covers a smaller area compared to satellite remote sensing. To address the need for both high precision and wide‐range monitoring, we developed a soil salinity monitoring model integrating ground, UAV, and satellite data. Field experiments were conducted in the Shahaoqu irrigation area, Inner Mongolia, China, from August 11 to 15, 2019. During this period, we collected satellite remote‐sensing images, UAV remote‐sensing images, and soil salinity data. Spectral bands from the remote‐sensing data were utilized to construct separate vegetation and salinity indices, which were further filtered using the variable importance in projection (VIP) algorithm. The soil salinity monitoring model was then constructed using the extreme learning machine (ELM) algorithm. Several soil salinity monitoring models were developed, including SSMM‐UAV (based on ground‐UAV data at a resolution of 6.5 cm), SSMM‐UAV‐upscaling (obtained by upscaling the results of SSMM‐UAV to a 16 m scale), SSMM‐satellite (based on ground‐satellite data at a 16 m scale), and SSMM‐UAV‐satellite (constructed using ground‐UAV‐satellite data at a 16 m scale). The results revealed that SSMM‐UAV accurately monitored soil salinity at the UAV scale, with R2 values exceeding .81 and RMSEs below 0.11% for both the model modelling set and validation set. SSMM‐UAV‐upscaling demonstrated consistency with SSMM‐UAV and effectively represented salinity conditions at the 16 m scale. In contrast, SSMM‐satellite exhibited inferior performance, with R2 values of .42 and .32 for the modelling set and validation set, respectively, and RMSEs of 0.15% and 0.17%, respectively. By incorporating ground‐UAV‐satellite data, SSMM‐UAV‐satellite improved the R2 of SSMM‐satellite by more than .09 and reduced the RMSEs by at least 0.08%. Furthermore, the area covered by satellite data was ca. 85 times larger than that covered by UAV data. The synergistic use of UAV and satellite data in salinity monitoring enhances the accuracy of satellite remote sensing and expands the monitoring range of UAV remote sensing. The findings of this study provide a reference for high precision and large‐scale salt monitoring through the synergistic integration of ground, UAV, and satellite data.
Soil salinization poses a significant constraint on the sustainable development of agriculture. While satellite remote‐sensing data enables salinity monitoring over large spatial scales, its coarse resolution limits monitoring accuracy. On the other hand, unmanned aerial vehicle (UAV) remote‐sensing data offers greater accuracy in salinity monitoring but covers a smaller area compared to satellite remote sensing. To address the need for both high precision and wide‐range monitoring, we developed a soil salinity monitoring model integrating ground, UAV, and satellite data. Field experiments were conducted in the Shahaoqu irrigation area, Inner Mongolia, China, from August 11 to 15, 2019. During this period, we collected satellite remote‐sensing images, UAV remote‐sensing images, and soil salinity data. Spectral bands from the remote‐sensing data were utilized to construct separate vegetation and salinity indices, which were further filtered using the variable importance in projection (VIP) algorithm. The soil salinity monitoring model was then constructed using the extreme learning machine (ELM) algorithm. Several soil salinity monitoring models were developed, including SSMM‐UAV (based on ground‐UAV data at a resolution of 6.5 cm), SSMM‐UAV‐upscaling (obtained by upscaling the results of SSMM‐UAV to a 16 m scale), SSMM‐satellite (based on ground‐satellite data at a 16 m scale), and SSMM‐UAV‐satellite (constructed using ground‐UAV‐satellite data at a 16 m scale). The results revealed that SSMM‐UAV accurately monitored soil salinity at the UAV scale, with R 2 values exceeding .81 and RMSEs below 0.11% for both the model modelling set and validation set. SSMM‐UAV‐upscaling demonstrated consistency with SSMM‐UAV and effectively represented salinity conditions at the 16 m scale. In contrast, SSMM‐satellite exhibited inferior performance, with R 2 values of .42 and .32 for the modelling set and validation set, respectively, and RMSEs of 0.15% and 0.17%, respectively. By incorporating ground‐UAV‐satellite data, SSMM‐UAV‐satellite improved the R 2 of SSMM‐satellite by more than .09 and reduced the RMSEs by at least 0.08%. Furthermore, the area covered by satellite data was ca. 85 times larger than that covered by UAV data. The synergistic use of UAV and satellite data in salinity monitoring enhances the accuracy of satellite remote sensing and expands the monitoring range of UAV remote sensing. The findings of this study provide a reference for high precision and large‐scale salt monitoring through the synergistic integration of ground, UAV, and satellite data.
Soil salinization poses a significant constraint on the sustainable development of agriculture. While satellite remote‐sensing data enables salinity monitoring over large spatial scales, its coarse resolution limits monitoring accuracy. On the other hand, unmanned aerial vehicle (UAV) remote‐sensing data offers greater accuracy in salinity monitoring but covers a smaller area compared to satellite remote sensing. To address the need for both high precision and wide‐range monitoring, we developed a soil salinity monitoring model integrating ground, UAV, and satellite data. Field experiments were conducted in the Shahaoqu irrigation area, Inner Mongolia, China, from August 11 to 15, 2019. During this period, we collected satellite remote‐sensing images, UAV remote‐sensing images, and soil salinity data. Spectral bands from the remote‐sensing data were utilized to construct separate vegetation and salinity indices, which were further filtered using the variable importance in projection (VIP) algorithm. The soil salinity monitoring model was then constructed using the extreme learning machine (ELM) algorithm. Several soil salinity monitoring models were developed, including SSMM‐UAV (based on ground‐UAV data at a resolution of 6.5 cm), SSMM‐UAV‐upscaling (obtained by upscaling the results of SSMM‐UAV to a 16 m scale), SSMM‐satellite (based on ground‐satellite data at a 16 m scale), and SSMM‐UAV‐satellite (constructed using ground‐UAV‐satellite data at a 16 m scale). The results revealed that SSMM‐UAV accurately monitored soil salinity at the UAV scale, with R² values exceeding .81 and RMSEs below 0.11% for both the model modelling set and validation set. SSMM‐UAV‐upscaling demonstrated consistency with SSMM‐UAV and effectively represented salinity conditions at the 16 m scale. In contrast, SSMM‐satellite exhibited inferior performance, with R² values of .42 and .32 for the modelling set and validation set, respectively, and RMSEs of 0.15% and 0.17%, respectively. By incorporating ground‐UAV‐satellite data, SSMM‐UAV‐satellite improved the R² of SSMM‐satellite by more than .09 and reduced the RMSEs by at least 0.08%. Furthermore, the area covered by satellite data was ca. 85 times larger than that covered by UAV data. The synergistic use of UAV and satellite data in salinity monitoring enhances the accuracy of satellite remote sensing and expands the monitoring range of UAV remote sensing. The findings of this study provide a reference for high precision and large‐scale salt monitoring through the synergistic integration of ground, UAV, and satellite data.
Author Jia, Yanxin
Bai, Xuqian
Du, Ruiqi
Liu, Qi
Geng, Hongsuo
Zhang, Zhitao
Chen, Qinda
Chen, Ce
Luo, Linyu
Ding, Binbin
Ren, Zheng
Wang, Shuang
Jia, Jiangdong
Author_xml – sequence: 1
  givenname: Jiangdong
  orcidid: 0000-0003-1006-8909
  surname: Jia
  fullname: Jia, Jiangdong
  organization: Northwest A&F University
– sequence: 2
  givenname: Ce
  surname: Chen
  fullname: Chen, Ce
  organization: Northwest A&F University
– sequence: 3
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: Northwest A&F University
– sequence: 4
  givenname: Binbin
  surname: Ding
  fullname: Ding, Binbin
  organization: Northwest A&F University
– sequence: 5
  givenname: Zheng
  surname: Ren
  fullname: Ren, Zheng
  organization: Northwest A&F University
– sequence: 6
  givenname: Yanxin
  surname: Jia
  fullname: Jia, Yanxin
  organization: Shanghai Sanwang Qitong Information Technology Co
– sequence: 7
  givenname: Xuqian
  surname: Bai
  fullname: Bai, Xuqian
  organization: Northwest A&F University
– sequence: 8
  givenname: Ruiqi
  surname: Du
  fullname: Du, Ruiqi
  organization: Northwest A&F University
– sequence: 9
  givenname: Qinda
  surname: Chen
  fullname: Chen, Qinda
  organization: Changjiang Water Resources Commission
– sequence: 10
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Northwest A&F University
– sequence: 11
  givenname: Linyu
  surname: Luo
  fullname: Luo, Linyu
  organization: Northwest A&F University
– sequence: 12
  givenname: Zhitao
  surname: Zhang
  fullname: Zhang, Zhitao
  email: zhitaozhang@126.com
  organization: Northwest A&F University
– sequence: 13
  givenname: Hongsuo
  surname: Geng
  fullname: Geng, Hongsuo
  email: genghongsuo11@nwafu.edu.cn
  organization: Northwest A&F University
BookMark eNp1kM1OAyEUhYnRxFpd-AYkbnQxLT8DM7M0xr-kxoXWLUHmTqWZggIT052P4DP6JKJ1ZZQF9yZ859zL2UPbzjtA6JCSCc1nGofVhLKmJltoRMtKFKwq-TYaESZlQQhnu2gvxiUhjFaSjBDcedvjqHvrbFrjlc_FB-sWuW2hx486Qou9w-kJcFw7CAsbkzXYeBdTGEyy-dF3eBH84NqPt_f56UO-o07Q9zYBbnXS-2in032Eg586RvOL8_uzq2J2e3l9djorNBecFA0X5rFuDWGMaq1JR7sSpGlkWQppRCOkYILW0HaMCg5QsYrJpuxqXomG1YaP0fHG9zn4lwFiUisbTV5EO_BDVJyUpBRUiDqjR7_QpR-Cy9spnofIWhJSZWq6oUzwMQbolLFJf_05BW17RYn6il3l2NV37Flx8kvxHOxKh_Wf7I_7q-1h_T-o7uY3G8Un2xOVzA
CitedBy_id crossref_primary_10_3390_rs16244812
crossref_primary_10_7717_peerj_18186
crossref_primary_10_3390_land13091438
crossref_primary_10_1007_s42729_024_02087_z
crossref_primary_10_3390_land14010110
Cites_doi 10.1016/j.jag.2013.06.002
10.3390/rs13101875
10.7717/peerj.9087
10.1007/s13042-011-0019-y
10.1177/0309133307083294
10.1016/j.geoderma.2014.07.028
10.1016/j.compag.2018.12.005
10.1016/j.rse.2019.01.030
10.1016/j.agwat.2004.09.038
10.1109/TGRS.1995.8746027
10.1016/j.rse.2017.09.031
10.1016/j.rsase.2018.12.010
10.2307/2532051
10.1016/j.agwat.2020.106387
10.2747/1548-1603.48.1.99
10.3390/s22020546
10.1016/j.geoderma.2018.09.046
10.1109/IECON.2018.8592767
10.1080/00401706.1969.10490666
10.1016/j.scitotenv.2017.10.025
10.1016/j.geoderma.2014.03.025
10.3390/rs12111843
10.1016/j.compag.2018.07.016
10.1016/j.geoderma.2018.08.006
10.1016/j.rse.2019.03.025
10.2307/1936256
10.2134/agronj1968.00021962006000060016x
10.3390/rs61110335
10.1002/ldr.3737
10.1002/ldr.2670
10.1016/j.geoderma.2005.10.009
10.1080/01431161.2021.1978579
10.1016/j.scitotenv.2017.11.185
10.1080/01431169608948714
10.1016/j.geoderma.2018.12.022
10.1007/BFb0062108
ContentType Journal Article
Copyright 2023 British Society of Soil Science.
2024 British Society of Soil Science
Copyright_xml – notice: 2023 British Society of Soil Science.
– notice: 2024 British Society of Soil Science
DBID AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
DOI 10.1111/sum.12980
DatabaseName CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1475-2743
EndPage n/a
ExternalDocumentID 10_1111_sum_12980
SUM12980
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52279047; 52279049; 51979232; 52179044
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-a3530-935cb8dc0221aaa0f1f4e6c964456c595652518edf2153ee7272694f8375928c3
IEDL.DBID DR2
ISSN 0266-0032
IngestDate Fri Jul 11 18:33:26 EDT 2025
Thu Sep 18 15:15:54 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Wed Oct 01 01:23:58 EDT 2025
Wed Jan 22 16:12:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3530-935cb8dc0221aaa0f1f4e6c964456c595652518edf2153ee7272694f8375928c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1006-8909
PQID 3251686007
PQPubID 1046348
PageCount 21
ParticipantIDs proquest_miscellaneous_3040451558
proquest_journals_3251686007
crossref_citationtrail_10_1111_sum_12980
crossref_primary_10_1111_sum_12980
wiley_primary_10_1111_sum_12980_SUM12980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/March 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/March 2024
PublicationDecade 2020
PublicationPlace Bedfordshire
PublicationPlace_xml – name: Bedfordshire
PublicationTitle Soil use and management
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 45
2019; 50
2018; 204
2020; 241
2019; 13
1995; 33
2014; 26
2020; 243
2020; 12
2022; 814
2021; 165
2022; 22
2007; 31
2020; 729
1968; 60
2006; 134
2020; 8
2022; 121
2021; 32
2021; 277
2022; 409
1983
2018; 615
2014; 6
2005; 77
2019; 156
1996; 17
2021; 42
2011; 2
2021; 267
2017; 28
1969; 50
2018; 621
1969; 11
1997
2007
2019; 224
2020; 36
2021; 383
1993
2019; 227
2022; 43
2021; 385
2014; 230
2014; 235
2018; 153
2021; 13
2013; 36
2023; 230
2021
2021; 775
2022; 6
2020; 193
2018
2016
2011; 48
2019; 337
2019; 338
2022; 424
e_1_2_8_28_1
Wang N. (e_1_2_8_46_1) 2022; 409
e_1_2_8_24_1
e_1_2_8_47_1
Chen J. (e_1_2_8_9_1) 2019; 50
e_1_2_8_26_1
e_1_2_8_49_1
Wang J. (e_1_2_8_44_1) 2022; 424
Yang N. (e_1_2_8_56_1) 2021
Wang Z. (e_1_2_8_48_1) 2021; 775
Gal Y. (e_1_2_8_12_1) 2016
Zhu C. M. (e_1_2_8_63_1) 2022; 121
e_1_2_8_7_1
Akça E. (e_1_2_8_3_1) 2020; 193
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
He L. (e_1_2_8_16_1) 2021; 267
Kun C. (e_1_2_8_27_1) 2021
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Nabiollahi K. (e_1_2_8_32_1) 2021; 385
Zhou T. (e_1_2_8_62_1) 2020; 729
Zhang Z. (e_1_2_8_61_1) 2019; 50
Sun Y. (e_1_2_8_41_1) 2013; 36
Xiao D. (e_1_2_8_52_1) 2021; 165
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_2_1
Gu S. (e_1_2_8_14_1) 2023; 230
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_58_1
Wang L. (e_1_2_8_45_1) 1993
Alvarez‐Vanhard E. (e_1_2_8_5_1) 2020; 243
Xie L. (e_1_2_8_53_1) 2022; 6
Ma Y. (e_1_2_8_30_1) 2022; 43
Singh A. (e_1_2_8_40_1) 2021; 277
Yang N. (e_1_2_8_57_1) 2020; 36
Taghizadeh‐Mehrjardi R. (e_1_2_8_42_1) 2021; 383
e_1_2_8_10_1
e_1_2_8_31_1
Yan D. (e_1_2_8_55_1) 2022; 814
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 48
  start-page: 99
  year: 2011
  end-page: 111
  article-title: Small‐scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities
  publication-title: GIScience & Remote Sensing
– volume: 729
  start-page: 244
  issue: 138
  year: 2020
  article-title: High‐resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel‐1 and Sentinel‐2 data based on machine learning algorithms
  publication-title: Science of the Total Environment
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 338
  start-page: 502
  year: 2019
  end-page: 512
  article-title: UAV based soil salinity assessment of cropland
  publication-title: Geoderma
– volume: 385
  start-page: 858
  issue: 114
  year: 2021
  article-title: Assessing agricultural salt‐affected land using digital soil mapping and hybridized random forests
  publication-title: Geoderma
– volume: 12
  start-page: 1843
  year: 2020
  article-title: Quantifying uncertainty and bridging the scaling gap in the retrieval of leaf area index by coupling Sentinel‐2 and UAV observations
  publication-title: Remote Sensing
– volume: 224
  start-page: 119
  year: 2019
  end-page: 132
  article-title: Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data
  publication-title: Remote Sensing of Environment
– volume: 277
  start-page: 383
  issue: 111
  year: 2021
  article-title: Soil salinization management for sustainable development: A review
  publication-title: Journal of Environmental Management
– volume: 13
  start-page: 1875
  year: 2021
  article-title: Spatial and temporal variability of soil salinity in the Yangtze River estuary using electromagnetic induction
  publication-title: Remote Sensing
– year: 2021
– volume: 42
  start-page: 8952
  year: 2021
  end-page: 8978
  article-title: Effect of spring irrigation on soil salinity monitoring with UAV‐borne multispectral sensor
  publication-title: International Journal of Remote Sensing
– volume: 32
  start-page: 597
  year: 2021
  end-page: 612
  article-title: Estimating soil salinity with different fractional vegetation cover using remote sensing
  publication-title: Land Degradation & Development
– volume: 13
  start-page: 415
  year: 2019
  end-page: 425
  article-title: Mapping soil salinity in arid and semi‐arid regions using Landsat 8 OLI satellite data
  publication-title: Remote Sensing Applications: Society and Environment
– year: 2018
– volume: 615
  start-page: 918
  year: 2018
  end-page: 930
  article-title: Estimation of soil salt content (SSC) in the Ebinur Lake wetland National Nature Reserve (ELWNNR), Northwest China, based on a bootstrap‐BP neural network model and optimal spectral indices
  publication-title: Science of the Total Environment
– volume: 153
  start-page: 213
  year: 2018
  end-page: 225
  article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield
  publication-title: Computers and Electronics in Agriculture
– volume: 424
  start-page: 972
  issue: 115
  year: 2022
  article-title: Proximal and remote sensor data fusion for 3D imaging of infertile and acidic soil
  publication-title: Geoderma
– volume: 26
  start-page: 156
  year: 2014
  end-page: 175
  article-title: Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 36
  start-page: 520
  year: 2013
  end-page: 527
  article-title: Inversion of the MODIS snow abundance ratio based on NDSI—albedo feature space
  publication-title: Arid Land Geography
– volume: 17
  start-page: 1425
  year: 1996
  end-page: 1432
  article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features
  publication-title: International Journal of Remote Sensing
– volume: 230
  start-page: 706
  issue: 105
  year: 2023
  article-title: Soil salinity simulation based on electromagnetic induction and deep learning
  publication-title: Soil and Tillage Research
– volume: 241
  year: 2020
  article-title: Soil salinity assessment using vegetation indices derived from Sentinel‐2 multispectral data. Application to Lezíria Grande, Portugal
  publication-title: Agricultural Water Management
– year: 1997
– volume: 621
  start-page: 697
  year: 2018
  end-page: 712
  article-title: Mapping groundwater contamination risk of multiple aquifers using multi‐model ensemble of machine learning algorithms
  publication-title: Science of the Total Environment
– volume: 50
  start-page: 161
  year: 2019
  end-page: 169
  article-title: Soil salinization monitoring method based on UAV‐satellite remote sensing scale‐up
  publication-title: Transactions of the Chinese Society for Agricultural Machinery
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  article-title: Computer aided design of experiments
  publication-title: Technometrics
– volume: 409
  start-page: 656
  issue: 115
  year: 2022
  article-title: A framework for determining the total salt content of soil profiles using time‐series Sentinel‐2 images and a random forest‐temporal convolution network
  publication-title: Geoderma
– volume: 8
  start-page: 9087
  year: 2020
  article-title: Estimation of soil salt content by combining UAV‐borne multispectral sensor and machine learning algorithms
  publication-title: PeerJ
– volume: 227
  start-page: 61
  year: 2019
  end-page: 73
  article-title: UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel‐1 and Sentinel‐2 data
  publication-title: Remote Sensing of Environment
– year: 1993
– volume: 156
  start-page: 447
  year: 2019
  end-page: 458
  article-title: Modelling long‐term soil salinity dynamics using SaltMod in Hetao Irrigation District, China
  publication-title: Computers and Electronics in Agriculture
– volume: 50
  start-page: 663
  year: 1969
  end-page: 666
  article-title: Derivation of leaf‐area index from quality of light on the forest floor
  publication-title: Ecology
– volume: 121
  start-page: 416
  year: 2022
  article-title: Exploring the potential of UAV hyperspectral image for estimating soil salinity: Effects of optimal band combination algorithm and random forest
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 775
  start-page: 807
  issue: 145
  year: 2021
  article-title: Regional suitability prediction of soil salinization based on remote‐sensing derivatives and optimal spectral index
  publication-title: Science of the Total Environment
– volume: 235
  start-page: 316
  year: 2014
  end-page: 322
  article-title: Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa oasis, China, using remote sensing and electromagnetic induction instruments
  publication-title: Geoderma
– volume: 338
  start-page: 325
  year: 2019
  end-page: 342
  article-title: Simulation of dynamical interactions between soil freezing/thawing and salinization for improving water management in cold/arid agricultural region
  publication-title: Geoderma
– volume: 6
  start-page: 257
  year: 2022
  article-title: A framework for soil salinity monitoring in coastal wetland reclamation areas based on combined unmanned aerial vehicle (UAV)
  publication-title: Data and Satellite Data
– volume: 267
  start-page: 731
  issue: 112
  year: 2021
  article-title: Integration of multi‐scale remote sensing data for reindeer lichen fractional cover mapping in eastern Canada
  publication-title: Remote Sensing of Environment
– start-page: 286
  year: 1983
  end-page: 293
– volume: 77
  start-page: 96
  year: 2005
  end-page: 109
  article-title: Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators
  publication-title: Agricultural Water Management
– year: 2007
– volume: 230
  start-page: 1
  year: 2014
  end-page: 8
  article-title: Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high‐spatial resolution imageries: Applications in a date palm dominated region
  publication-title: Geoderma
– volume: 60
  start-page: 640
  year: 1968
  end-page: 643
  article-title: Measuring the color of growing turf with a reflectance spectrophotometer 1
  publication-title: Agronomy Journal
– volume: 28
  start-page: 870
  year: 2017
  end-page: 877
  article-title: Satellite thermography for soil salinity assessment of cropped areas in Uzbekistan
  publication-title: Land Degradation & Development
– volume: 33
  start-page: 457
  year: 1995
  end-page: 465
  article-title: A feedback based modification of the NDVI to minimize canopy background and atmospheric noise
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 1050
  year: 2016
  end-page: 1059
– volume: 337
  start-page: 1309
  year: 2019
  end-page: 1319
  article-title: Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China
  publication-title: Geoderma
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  article-title: Extreme learning machines: A survey
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 165
  start-page: 182
  issue: 106
  year: 2021
  article-title: Salt content in saline‐alkali soil detection using visible–near infrared spectroscopy and a 2D deep learning
  publication-title: Microchemical Journal
– volume: 383
  start-page: 793
  issue: 114
  year: 2021
  article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
  publication-title: Geoderma
– volume: 134
  start-page: 217
  year: 2006
  end-page: 230
  article-title: Detecting salinity hazards within a semiarid context by means of combining soil and remote‐sensing data
  publication-title: Geoderma
– volume: 22
  start-page: 546
  year: 2022
  article-title: Precise monitoring of soil salinity in China's Yellow River Delta using UA V‐borne multispectral imagery and a soil salinity retrieval index
  publication-title: Sensors
– volume: 31
  start-page: 471
  year: 2007
  end-page: 479
  article-title: The modifiable areal unit problem (MAUP) in physical geography
  publication-title: Progress in Physical Geography
– volume: 243
  start-page: 780
  issue: 111
  year: 2020
  article-title: Can UAVs fill the gap between in situ surveys and satellites for habitat mapping?
  publication-title: Remote Sensing of Environment
– volume: 6
  start-page: 10335
  year: 2014
  end-page: 10355
  article-title: Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system
  publication-title: Remote Sensing
– volume: 36
  start-page: 13
  year: 2020
  end-page: 21
  article-title: Soil salinity inversion at different depths using improved spectral index with UAV multispectral remote sensing
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 193
  start-page: 614
  issue: 104
  year: 2020
  article-title: Long‐term monitoring of soil salinity in a semi‐arid environment of Turkey
  publication-title: Catena
– volume: 50
  start-page: 142
  year: 2019
  end-page: 152
  article-title: Soil salinity inversion based on best subsets‐quantile regression model
  publication-title: Transactions of the Chinese Society for Agricultural Machinery
– volume: 43
  start-page: 7039
  year: 2022
  end-page: 7063
  article-title: Fusion level of satellite and UAV image data for soil salinity inversion in the coastal area of the Yellow River
  publication-title: Delta
– volume: 814
  start-page: 631
  issue: 152
  year: 2022
  article-title: Integrating UAV data for assessing the ecological response of Spartina alterniflora towards inundation and salinity gradients in coastal wetland
  publication-title: Science of the Total Environment
– volume: 204
  start-page: 690
  year: 2018
  end-page: 703
  article-title: Fractional cover mapping of spruce and pine at 1 ha resolution combining very high and medium spatial resolution satellite imagery
  publication-title: Remote Sensing of Environment
– ident: e_1_2_8_39_1
  doi: 10.1016/j.jag.2013.06.002
– ident: e_1_2_8_54_1
  doi: 10.3390/rs13101875
– volume: 43
  start-page: 7039
  year: 2022
  ident: e_1_2_8_30_1
  article-title: Fusion level of satellite and UAV image data for soil salinity inversion in the coastal area of the Yellow River
  publication-title: Delta
– ident: e_1_2_8_49_1
  doi: 10.7717/peerj.9087
– volume: 409
  start-page: 656
  issue: 115
  year: 2022
  ident: e_1_2_8_46_1
  article-title: A framework for determining the total salt content of soil profiles using time‐series Sentinel‐2 images and a random forest‐temporal convolution network
  publication-title: Geoderma
– ident: e_1_2_8_17_1
  doi: 10.1007/s13042-011-0019-y
– volume: 165
  start-page: 182
  issue: 106
  year: 2021
  ident: e_1_2_8_52_1
  article-title: Salt content in saline‐alkali soil detection using visible–near infrared spectroscopy and a 2D deep learning
  publication-title: Microchemical Journal
– ident: e_1_2_8_10_1
  doi: 10.1177/0309133307083294
– ident: e_1_2_8_11_1
  doi: 10.1016/j.geoderma.2014.07.028
– ident: e_1_2_8_8_1
  doi: 10.1016/j.compag.2018.12.005
– ident: e_1_2_8_38_1
  doi: 10.1016/j.rse.2019.01.030
– ident: e_1_2_8_24_1
  doi: 10.1016/j.agwat.2004.09.038
– volume: 193
  start-page: 614
  issue: 104
  year: 2020
  ident: e_1_2_8_3_1
  article-title: Long‐term monitoring of soil salinity in a semi‐arid environment of Turkey
  publication-title: Catena
– ident: e_1_2_8_29_1
  doi: 10.1109/TGRS.1995.8746027
– ident: e_1_2_8_18_1
  doi: 10.1016/j.rse.2017.09.031
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rsase.2018.12.010
– volume-title: Irrigation and drainage and salinization control in the river‐loop irrigation area of Inner Mongolia
  year: 1993
  ident: e_1_2_8_45_1
– ident: e_1_2_8_28_1
  doi: 10.2307/2532051
– ident: e_1_2_8_36_1
  doi: 10.1016/j.agwat.2020.106387
– volume: 277
  start-page: 383
  issue: 111
  year: 2021
  ident: e_1_2_8_40_1
  article-title: Soil salinization management for sustainable development: A review
  publication-title: Journal of Environmental Management
– volume: 385
  start-page: 858
  issue: 114
  year: 2021
  ident: e_1_2_8_32_1
  article-title: Assessing agricultural salt‐affected land using digital soil mapping and hybridized random forests
  publication-title: Geoderma
– volume: 814
  start-page: 631
  issue: 152
  year: 2022
  ident: e_1_2_8_55_1
  article-title: Integrating UAV data for assessing the ecological response of Spartina alterniflora towards inundation and salinity gradients in coastal wetland
  publication-title: Science of the Total Environment
– ident: e_1_2_8_15_1
  doi: 10.2747/1548-1603.48.1.99
– ident: e_1_2_8_59_1
  doi: 10.3390/s22020546
– volume: 243
  start-page: 780
  issue: 111
  year: 2020
  ident: e_1_2_8_5_1
  article-title: Can UAVs fill the gap between in situ surveys and satellites for habitat mapping?
  publication-title: Remote Sensing of Environment
– volume: 267
  start-page: 731
  issue: 112
  year: 2021
  ident: e_1_2_8_16_1
  article-title: Integration of multi‐scale remote sensing data for reindeer lichen fractional cover mapping in eastern Canada
  publication-title: Remote Sensing of Environment
– ident: e_1_2_8_20_1
  doi: 10.1016/j.geoderma.2018.09.046
– ident: e_1_2_8_34_1
  doi: 10.1109/IECON.2018.8592767
– volume: 729
  start-page: 244
  issue: 138
  year: 2020
  ident: e_1_2_8_62_1
  article-title: High‐resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel‐1 and Sentinel‐2 data based on machine learning algorithms
  publication-title: Science of the Total Environment
– ident: e_1_2_8_23_1
  doi: 10.1080/00401706.1969.10490666
– start-page: 1050
  volume-title: International conference on machine learning
  year: 2016
  ident: e_1_2_8_12_1
– volume: 121
  start-page: 416
  year: 2022
  ident: e_1_2_8_63_1
  article-title: Exploring the potential of UAV hyperspectral image for estimating soil salinity: Effects of optimal band combination algorithm and random forest
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– ident: e_1_2_8_47_1
  doi: 10.1016/j.scitotenv.2017.10.025
– volume: 36
  start-page: 520
  year: 2013
  ident: e_1_2_8_41_1
  article-title: Inversion of the MODIS snow abundance ratio based on NDSI—albedo feature space
  publication-title: Arid Land Geography
– ident: e_1_2_8_4_1
  doi: 10.1016/j.geoderma.2014.03.025
– volume: 50
  start-page: 142
  year: 2019
  ident: e_1_2_8_61_1
  article-title: Soil salinity inversion based on best subsets‐quantile regression model
  publication-title: Transactions of the Chinese Society for Agricultural Machinery
– ident: e_1_2_8_37_1
  doi: 10.3390/rs12111843
– volume: 775
  start-page: 807
  issue: 145
  year: 2021
  ident: e_1_2_8_48_1
  article-title: Regional suitability prediction of soil salinization based on remote‐sensing derivatives and optimal spectral index
  publication-title: Science of the Total Environment
– volume: 230
  start-page: 706
  issue: 105
  year: 2023
  ident: e_1_2_8_14_1
  article-title: Soil salinity simulation based on electromagnetic induction and deep learning
  publication-title: Soil and Tillage Research
– ident: e_1_2_8_26_1
  doi: 10.1016/j.compag.2018.07.016
– ident: e_1_2_8_35_1
  doi: 10.1016/j.geoderma.2018.08.006
– ident: e_1_2_8_22_1
  doi: 10.1016/j.rse.2019.03.025
– ident: e_1_2_8_21_1
  doi: 10.2307/1936256
– ident: e_1_2_8_43_1
– ident: e_1_2_8_7_1
  doi: 10.2134/agronj1968.00021962006000060016x
– ident: e_1_2_8_25_1
– ident: e_1_2_8_13_1
  doi: 10.3390/rs61110335
– volume: 424
  start-page: 972
  issue: 115
  year: 2022
  ident: e_1_2_8_44_1
  article-title: Proximal and remote sensor data fusion for 3D imaging of infertile and acidic soil
  publication-title: Geoderma
– volume-title: Spatial variability and scale effects of soil salinity in typical areas of the Yellow River Delta
  year: 2021
  ident: e_1_2_8_27_1
– ident: e_1_2_8_60_1
  doi: 10.1002/ldr.3737
– ident: e_1_2_8_19_1
  doi: 10.1002/ldr.2670
– volume: 36
  start-page: 13
  year: 2020
  ident: e_1_2_8_57_1
  article-title: Soil salinity inversion at different depths using improved spectral index with UAV multispectral remote sensing
  publication-title: Transactions of the Chinese Society of Agricultural Engineering
– volume: 50
  start-page: 161
  year: 2019
  ident: e_1_2_8_9_1
  article-title: Soil salinization monitoring method based on UAV‐satellite remote sensing scale‐up
  publication-title: Transactions of the Chinese Society for Agricultural Machinery
– ident: e_1_2_8_33_1
  doi: 10.1016/j.geoderma.2005.10.009
– volume-title: Research on UAV multispectral remote sensing model for estimating soil salt content
  year: 2021
  ident: e_1_2_8_56_1
– ident: e_1_2_8_58_1
  doi: 10.1080/01431161.2021.1978579
– ident: e_1_2_8_6_1
  doi: 10.1016/j.scitotenv.2017.11.185
– volume: 6
  start-page: 257
  year: 2022
  ident: e_1_2_8_53_1
  article-title: A framework for soil salinity monitoring in coastal wetland reclamation areas based on combined unmanned aerial vehicle (UAV)
  publication-title: Data and Satellite Data
– ident: e_1_2_8_31_1
  doi: 10.1080/01431169608948714
– volume: 383
  start-page: 793
  issue: 114
  year: 2021
  ident: e_1_2_8_42_1
  article-title: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models
  publication-title: Geoderma
– ident: e_1_2_8_51_1
  doi: 10.1016/j.geoderma.2018.12.022
– ident: e_1_2_8_50_1
  doi: 10.1007/BFb0062108
SSID ssj0021760
Score 2.4407182
Snippet Soil salinization poses a significant constraint on the sustainable development of agriculture. While satellite remote‐sensing data enables salinity monitoring...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
administrative management
Agricultural development
Algorithms
China
Environmental monitoring
Field tests
irrigation
Machine learning
machine learning algorithm
Modelling
Monitoring
Remote sensing
Salinity
Salinity data
Salinity effects
Salinization
satellite
Satellite imagery
Satellites
Soil salinity
soil salinity monitoring
Soil salinization
Soils
Spectral bands
Sustainable development
UAV
Unmanned aerial vehicles
upscaling
vegetation
Title Soil salinity monitoring model based on the synergistic construction of ground‐UAV‐satellite data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12980
https://www.proquest.com/docview/3251686007
https://www.proquest.com/docview/3040451558
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-0032
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1475-2743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021760
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LJz34FtcXUTx46dJu0pjiaRFlEfSgrngQSpomIq6t2HrQkz_B3-gvcSZ9-EBBvJTSpjTNZDrfTDLfELItLDiygAO8wIbG41YFnkys8JQ2vtxVqd4NMN_5-EQMR_zoMrzskL0mF6bih2gDbqgZ7n-NCq6S4pOSg6B6YKwk-usBE86dOm2powBpizq-Ah6zz_o1qxDu4mmf_GqLPgDmZ5jq7MzhDLlqelhtL7ntPZZJTz9_I2_85yfMkukaf9JBNWHmSMdk82RqcP1Qc3CYBWLO8psxLRTmTJZP9M5pPYb_qCubQ9HwpTTPKGBHWjxh8qBje6Y6_6CjpbmlmDGSpW8vr6PBBRwL5dg_S0NxW-oiGR0enO8Pvboag6dYyHwvYqFOZKrB6AdKKd8GlhuhIwBUodAh-FkhYCVpUgsoghmDK7wi4hY84DDqS82WyESWZ2aZ0MAkXCNyZDzhTPcjARNFWB8vccWiLtlp5BLrmqocK2aM48ZlgZGL3ch1yVbb9L7i5_ip0Voj3LhW0SJm0FshkZ6_Szbb26BcuGKiMpM_Qhv4xXEsgiOhS06Sv78kBjPoTlb-3nSVTPYBJFUhnTUyATIy6wByymTDzeZ3xbz6zw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwEB4hKOAKXncnlqdBV9Bklawdk0g0KwRangXHIhoUOY6NEJAgdimg4ifwG_klzDgPOATSiSaKEkdxPJ7MN2PPNwB_pEVHFnGAF9jQeMKqwItSKz2ljR9tqExvBJTvfHgke32xdxaejcBmnQtT8kM0ATfSDPe_JgWngPQ7LUdJtdFaReiwjwmJfgpBouOGPAqxtqwiLOgz-7xT8QrRPp7m0X-t0RvEfA9UnaXZmYLzuo_lBpOr9v0wbevHD_SN3_2IaZisICjrlnNmBkZMPgs_uhd3FQ2H-Qnmb3F5zQaK0iaHD-zGKT5FAJmrnMPI9mWsyBnCRzZ4oPxBR_jMdPHGSMsKyyhpJM9enp773VM8DpQjAB0aRjtTf0F_Z_tkq-dVBRk8xUPuezEPdRplGu1-oJTybWCFkTpGTBVKHaKrFSJcikxmEUhwY2iRV8bCohMcxp1I898wmhe5mQMWmFRoAo9cpILrTixxrkjr0yWheNyC9Vowia7YyqloxnVSey04cokbuRasNU1vS4qOzxot1tJNKi0dJBx7KyNi6G_BanMb9YsWTVRuintsg385QXVwIuySE-XXL0nQErqT-f9vugLjvZPDg-Rg92h_ASY6iJnKCM8ijKK8zBJinmG67Kb2K3R6_vA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKlXlUAql6hYKBvXQS1bJ-oEjcVkVVrQ8hGi34oIix7ErBE1QdznQEz-B38gv6YzzgFatVHGJosRRHI8n84098w3AO-XRkUUcECVeukh4k0Q69yoy1sV60xR2M6F854NDtTsWn07kyQxstbkwNT9Et-BGmhH-16Tg7rLwD7QcJdVHa6XRYX8iZKopoG_7uCOPQqytmhUW9JljPmh4hSiOp3v0d2t0DzEfAtVgaUbzcNr2sQ4wOe9fTfO-_fkHfeNjP-IFPG8gKBvWc2YBZly5CHPDbz8aGg73Etzn6uyCTQylTU6v2feg-LQCyELlHEa2r2BVyRA-ssk15Q8Gwmdmq3tGWlZ5RkkjZXF3czsefsXjxAQC0KljFJm6BOPRzpcPu1FTkCEyXPI4Srm0uS4s2v3EGBP7xAunbIqYSior0dWSCJe0KzwCCe4cbfKqVHh0gmU60Ja_gtmyKt1rYInLhSXwyEUuuB2kCueK8jFdEoanPXjfCiazDVs5Fc24yFqvBUcuCyPXg42u6WVN0fG3RiutdLNGSycZx94qTQz9PVjvbqN-0aaJKV11hW3wLyeoDo7GLgVR_vslGVrCcPLm_5uuwdOj7VG2__FwbxmeDRAy1Qs8KzCL4nJvEfJM89Uws38BHq_-dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+salinity+monitoring+model+based+on+the+synergistic+construction+of+ground%E2%80%90UAV%E2%80%90satellite+data&rft.jtitle=Soil+use+and+management&rft.au=Jia%2C+Jiangdong&rft.au=Chen%2C+Ce&rft.au=Liu%2C+Qi&rft.au=Ding%2C+Binbin&rft.date=2024-01-01&rft.issn=0266-0032&rft.volume=40&rft.issue=1+p.e12980-&rft_id=info:doi/10.1111%2Fsum.12980&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon