Liposomal Phenylephrine Nanoparticles Enhance the Antitumor Activity of Intratumoral Chemotherapy in a Preclinical Model of Melanoma
Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing p...
Saved in:
Published in | ACS biomaterials science & engineering Vol. 10; no. 5; pp. 3412 - 3424 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2373-9878 2373-9878 |
DOI | 10.1021/acsbiomaterials.4c00078 |
Cover
Abstract | Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a “local” dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone (p = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group. |
---|---|
AbstractList | Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a "local" dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone (p = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group.Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a "local" dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone (p = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group. Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a "local" dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone ( = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group. Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a “local” dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone (p = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group. |
Author | Rachamala, Hari Krishnareddy Madamsetty, Vijay S. Mukhopadhyay, Debabrata Shreeder, Barath Bahr, Deborah Bagaria, Sanjay Escobedo, Amber L. Gabriel, Emmanuel M. Reid, Joel M. |
AuthorAffiliation | Department of Pharmacology Department of Molecular Biology Department of Immunology Mayo Clinic Department of Surgery, Division of Surgical Oncology |
AuthorAffiliation_xml | – name: Department of Pharmacology – name: Department of Molecular Biology – name: Department of Immunology – name: Mayo Clinic – name: Department of Surgery, Division of Surgical Oncology |
Author_xml | – sequence: 1 givenname: Emmanuel M. orcidid: 0000-0001-8570-4784 surname: Gabriel fullname: Gabriel, Emmanuel M. email: Gabriel.Emmanuel@mayo.edu organization: Department of Surgery, Division of Surgical Oncology – sequence: 2 givenname: Deborah surname: Bahr fullname: Bahr, Deborah organization: Mayo Clinic – sequence: 3 givenname: Hari Krishnareddy surname: Rachamala fullname: Rachamala, Hari Krishnareddy organization: Mayo Clinic – sequence: 4 givenname: Vijay S. orcidid: 0000-0001-9883-190X surname: Madamsetty fullname: Madamsetty, Vijay S. organization: Mayo Clinic – sequence: 5 givenname: Barath surname: Shreeder fullname: Shreeder, Barath organization: Mayo Clinic – sequence: 6 givenname: Sanjay surname: Bagaria fullname: Bagaria, Sanjay organization: Department of Surgery, Division of Surgical Oncology – sequence: 7 givenname: Amber L. surname: Escobedo fullname: Escobedo, Amber L. organization: Mayo Clinic – sequence: 8 givenname: Joel M. surname: Reid fullname: Reid, Joel M. organization: Mayo Clinic – sequence: 9 givenname: Debabrata orcidid: 0000-0003-1858-5054 surname: Mukhopadhyay fullname: Mukhopadhyay, Debabrata organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38613483$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9P3DAQxS1EBZTyFVofuSz1vyTOcbUCirRQDnCOvJOJYpTYqe0g7Z0Pjre7rapeOHnk-b039rzP5Nh5h4R84-yKM8G_G4gb60eTMFgzxCsFjLFKH5EzISu5qHWlj_-pT8lFjC8Z4VIXSqkTcip1yaXS8oy8re3kYzYb6GOPbjvg1AfrkD4Y5ycTkoUBI712vXGANPVIly7ZNI8-0CUk-2rTlvqO3rkUzO_rbLXqcfSZDWbaUuuooY8BYbDOQu7e-xaHneYehzxlNF_Ipy5_BC8O5zl5vrl-Wv1YrH_e3q2W64WRhUgLkKKoRdWyjVTQAqAsAUUBNZpKQSmM4XXJ9cZwXiDUNevQCNm2qtW6K6CU5-Ry7zsF_2vGmJrRRsAhvwL9HBvJpFayLgTP6NcDOm9GbJsp2NGEbfNncxmo9gAEH2PA7i_CWbOLqfkvpuYQU1bKvTIDzYufg9t1P1K9A7xqnwU |
Cites_doi | 10.1016/j.diii.2022.09.009 10.1002/ijc.30037 10.3390/pharmaceutics15030893 10.1158/0008-5472.CAN-15-2764 10.1007/s10555-014-9506-4 10.3389/fonc.2023.1151255 10.1007/s00595-009-4150-2 10.1016/j.ultsonch.2011.03.005 10.1002/hed.10261 10.1007/s12105-013-0447-y 10.1093/noajnl/vdab123 10.1038/nrc1893 10.1038/s41598-018-37909-5 10.1172/JCI44952 10.1006/bulm.2002.0293 10.1172/jci.insight.87754 10.1007/s10384-015-0378-0 10.1200/jco.2013.31.15_suppl.lba9008 10.1038/ncomms3516 10.1016/j.ejpb.2007.03.024 10.1038/s41598-020-70233-5 10.1158/0008-5472.CAN-05-3077 10.1097/IAE.0000000000000903 10.1097/00000542-199901000-00020 10.1016/j.canlet.2018.11.011 10.1038/srep18720 10.1016/j.ijpharm.2008.01.005 10.1200/JCO.2012.46.3653 10.1177/000348940411300312 10.1146/annurev-physiol-021119-034627 10.1158/0008-5472.CAN-12-2796 10.1001/archotol.128.8.880 10.2147/IJN.S204221 10.1007/BF00199699 10.18632/oncotarget.24957 10.1016/j.nano.2015.04.001 10.2741/s313 10.2147/IJN.S290263 10.1158/1078-0432.CCR-08-0783 10.1007/BF00685728 10.1158/0008-5472.CAN-05-2655 10.1038/s41598-021-84430-3 10.1038/sj.bjc.6600588 10.1038/ncomms8458 10.1002/ijc.11188 10.3390/cancers13061383 10.1038/nrc.2017.93 10.1172/JCI15223 10.1007/BF00637623 10.3390/cancers7030830 10.1016/j.jconrel.2015.08.047 10.1007/s10549-023-06974-4 10.1159/000218038 10.1097/00006534-199001000-00016 10.2147/IJN.S188667 10.1371/journal.pone.0228443 10.1111/j.1349-7006.2008.00989.x 10.1097/00008390-199510000-00004 10.1002/btm2.10465 10.1038/s41467-020-17996-7 10.1001/jamaophthalmol.2013.7666 10.1080/02841860152708206 10.1038/nrc778 10.1007/s00595-014-0952-y 10.1200/JCO.2014.58.3377 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/acsbiomaterials.4c00078 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2373-9878 |
EndPage | 3424 |
ExternalDocumentID | 38613483 10_1021_acsbiomaterials_4c00078 a026808948 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: KL2 TR002379 – fundername: NCI NIH HHS grantid: P30 CA015083 |
GroupedDBID | 53G ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH EBS GGK UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-a352t-c325927d0b34cdcce36ce25c9ea74c62aa19618ba115ec990fea23dd4d88f5c63 |
IEDL.DBID | ACS |
ISSN | 2373-9878 |
IngestDate | Fri Jul 11 08:12:05 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Tue Jul 01 00:45:38 EDT 2025 Tue May 14 03:35:12 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 5 |
Keywords | tumor vessels cancer therapies drug delivery |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a352t-c325927d0b34cdcce36ce25c9ea74c62aa19618ba115ec990fea23dd4d88f5c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9883-190X 0000-0003-1858-5054 0000-0001-8570-4784 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11301277 |
PMID | 38613483 |
PQID | 3038439521 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3038439521 pubmed_primary_38613483 crossref_primary_10_1021_acsbiomaterials_4c00078 acs_journals_10_1021_acsbiomaterials_4c00078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-13 |
PublicationDateYYYYMMDD | 2024-05-13 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS biomaterials science & engineering |
PublicationTitleAlternate | ACS Biomater. Sci. Eng |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 Luck J. M. (ref31/cit31) 1957; 17 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 Dugois P. (ref62/cit62) 1970; 223 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 Hill H. Z. (ref32/cit32) 1979; 39 ref55/cit55 ref69/cit69 Chelvi T. P. (ref66/cit66) 1995; 7 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1016/j.diii.2022.09.009 – ident: ref52/cit52 doi: 10.1002/ijc.30037 – ident: ref69/cit69 doi: 10.3390/pharmaceutics15030893 – ident: ref15/cit15 doi: 10.1158/0008-5472.CAN-15-2764 – ident: ref30/cit30 doi: 10.1007/s10555-014-9506-4 – ident: ref20/cit20 doi: 10.3389/fonc.2023.1151255 – ident: ref59/cit59 doi: 10.1007/s00595-009-4150-2 – ident: ref38/cit38 doi: 10.1016/j.ultsonch.2011.03.005 – volume: 39 start-page: 934 year: 1979 ident: ref32/cit32 publication-title: Cancer Res. – ident: ref21/cit21 doi: 10.1002/hed.10261 – ident: ref25/cit25 doi: 10.1007/s12105-013-0447-y – ident: ref3/cit3 doi: 10.1093/noajnl/vdab123 – ident: ref1/cit1 doi: 10.1038/nrc1893 – ident: ref8/cit8 doi: 10.1038/s41598-018-37909-5 – ident: ref11/cit11 doi: 10.1172/JCI44952 – ident: ref5/cit5 doi: 10.1006/bulm.2002.0293 – ident: ref10/cit10 doi: 10.1172/jci.insight.87754 – ident: ref45/cit45 doi: 10.1007/s10384-015-0378-0 – ident: ref48/cit48 doi: 10.1200/jco.2013.31.15_suppl.lba9008 – ident: ref7/cit7 doi: 10.1038/ncomms3516 – ident: ref33/cit33 doi: 10.1016/j.ejpb.2007.03.024 – volume: 7 start-page: 393 year: 1995 ident: ref66/cit66 publication-title: Oncol. Res. – ident: ref14/cit14 doi: 10.1038/s41598-020-70233-5 – ident: ref18/cit18 doi: 10.1158/0008-5472.CAN-05-3077 – ident: ref47/cit47 doi: 10.1097/IAE.0000000000000903 – ident: ref63/cit63 doi: 10.1097/00000542-199901000-00020 – ident: ref24/cit24 doi: 10.1016/j.canlet.2018.11.011 – ident: ref9/cit9 doi: 10.1038/srep18720 – ident: ref51/cit51 doi: 10.1016/j.ijpharm.2008.01.005 – ident: ref6/cit6 doi: 10.1200/JCO.2012.46.3653 – ident: ref23/cit23 doi: 10.1177/000348940411300312 – ident: ref28/cit28 doi: 10.1146/annurev-physiol-021119-034627 – ident: ref29/cit29 doi: 10.1158/0008-5472.CAN-12-2796 – ident: ref22/cit22 doi: 10.1001/archotol.128.8.880 – ident: ref67/cit67 doi: 10.2147/IJN.S204221 – ident: ref34/cit34 doi: 10.1007/BF00199699 – ident: ref57/cit57 doi: 10.18632/oncotarget.24957 – volume: 17 start-page: 1071 year: 1957 ident: ref31/cit31 publication-title: Cancer Res. – ident: ref37/cit37 doi: 10.1016/j.nano.2015.04.001 – ident: ref41/cit41 doi: 10.2741/s313 – ident: ref68/cit68 doi: 10.2147/IJN.S290263 – ident: ref13/cit13 doi: 10.1158/1078-0432.CCR-08-0783 – ident: ref53/cit53 doi: 10.1007/BF00685728 – ident: ref56/cit56 doi: 10.1158/0008-5472.CAN-05-2655 – ident: ref19/cit19 doi: 10.1038/s41598-021-84430-3 – ident: ref54/cit54 doi: 10.1038/sj.bjc.6600588 – ident: ref12/cit12 doi: 10.1038/ncomms8458 – ident: ref26/cit26 doi: 10.1002/ijc.11188 – volume: 223 start-page: 859 year: 1970 ident: ref62/cit62 publication-title: Lyon Med. – ident: ref50/cit50 doi: 10.3390/cancers13061383 – ident: ref17/cit17 doi: 10.1038/nrc.2017.93 – ident: ref58/cit58 doi: 10.1172/JCI15223 – ident: ref27/cit27 doi: 10.1007/BF00637623 – ident: ref35/cit35 doi: 10.3390/cancers7030830 – ident: ref60/cit60 doi: 10.1016/j.jconrel.2015.08.047 – ident: ref2/cit2 doi: 10.1007/s10549-023-06974-4 – ident: ref65/cit65 doi: 10.1159/000218038 – ident: ref61/cit61 doi: 10.1097/00006534-199001000-00016 – ident: ref36/cit36 doi: 10.2147/IJN.S188667 – ident: ref44/cit44 doi: 10.1371/journal.pone.0228443 – ident: ref40/cit40 doi: 10.1111/j.1349-7006.2008.00989.x – ident: ref64/cit64 doi: 10.1097/00008390-199510000-00004 – ident: ref42/cit42 doi: 10.1002/btm2.10465 – ident: ref43/cit43 doi: 10.1038/s41467-020-17996-7 – ident: ref46/cit46 doi: 10.1001/jamaophthalmol.2013.7666 – ident: ref4/cit4 doi: 10.1080/02841860152708206 – ident: ref55/cit55 doi: 10.1038/nrc778 – ident: ref16/cit16 doi: 10.1007/s00595-014-0952-y – ident: ref49/cit49 doi: 10.1200/JCO.2014.58.3377 |
SSID | ssj0001385444 |
Score | 2.2924683 |
Snippet | Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3412 |
SubjectTerms | Animals Antineoplastic Agents - administration & dosage Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Applications and Health Cell Line, Tumor Liposomes Melanoma - drug therapy Melanoma - pathology Melanoma, Experimental - drug therapy Melanoma, Experimental - pathology Melphalan - administration & dosage Melphalan - pharmacology Melphalan - therapeutic use Mice Mice, Inbred C57BL Nanoparticles - chemistry Phenylephrine - administration & dosage Phenylephrine - pharmacology |
Title | Liposomal Phenylephrine Nanoparticles Enhance the Antitumor Activity of Intratumoral Chemotherapy in a Preclinical Model of Melanoma |
URI | http://dx.doi.org/10.1021/acsbiomaterials.4c00078 https://www.ncbi.nlm.nih.gov/pubmed/38613483 https://www.proquest.com/docview/3038439521 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFH64XPTgvowbETza0SZpmx4HUVRUxAW8lTTJoDi2YjsHPfvDfa_tuDKo15ak6ctLvu8lbwHYEjZyKrWBp3ScepSwy4tTaVCXrfK1jERk6Lzj9Cw8vJbHN8HNCPhDbvC5v6NNQZHouqxnpC1NhWujMM5DRBtiQ3uXH8cqQgWyKuHKRSQ8tKjVwKtreF-ETKb4ikxD6GYFOwfTcDEI3qm9Te7b_TJtm5efuRz__kczMNWQUNaptWYWRlw2B5OfUhPOw-vJ3WNeYPMeO7912XPP4azja4bbMdrZjTsd289uSW0Y0kjWoYjf_kP-xDqmrknB8i47otPj6jF2RekJmpCvZ3aXMc3OccdtgjMZ1WXrUZtT18OvPOgFuD7Yv9o79JqKDZ5GIld6RqA1xSO7mwpprDFOUMGxwMROR9KEXGufKsykGnmoMwiEXae5sFZapbqBCcUijGV55paBdVWslCQDWmopuUxdFMaUXQ_BNDbWtmAb5Zg0K65Iqst07iffhJs0wm3B7mByk8c6j8fvTTYHSpDgmqOLFJ25vF8kCPs4tBiZTwuWau1471QoJEhSiZX_jW8VJjjSJfJL8MUajJVPfbeOdKdMNyoFfwNgdwAn |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSD78f6jODRrrZJ2_S4iLLqrggq6KmkSRbFtRXbPejZH-5M2_UFInpNyWSaTDLfJPMA2OEmtDIxviNVlDiUsMuJEqFRlo10lQh5qOm-o3sWtK_EybV_PQJyGAuDTORIKS8f8T-yC7h72EYB6aqoFqYpdKneRmHcD0RARRtaBxcftytc-qKs5OrxkDtoWMuhc9fPtEhB6fyrgvoBdZba52gGbt75Lp1O7puDImnql28pHf_zY7MwXUNS1qpkaA5GbDoPU58SFS7Aa-fuMcuxe5-d39r0uW9RBvAzw8MZre7auY4dprckRAxBJWtR_O_gIXtiLV1VqGBZjx3TXXLZjKQoWUEdAPbM7lKm2Dmev3WoJqMqbX3q07V9HOVBLcLV0eHlQdup6zc4CmFd4WiOtpUXmv2EC220tpzKj_k6sioUOvCUcqneTKIQlVqNarFnlceNEUbKnq8DvgRjaZbaFWA9GUkpyJwWSghPJDYMIsq1h6o10sY0YBfnMa73Xx6XT-ueG3-b3Lie3AbsD9c4fqyyevzeZXsoCzHuQHpWUanNBnmMIABZixAHNWC5EpJ3olwiXBKSr_6Nvy2YaF92O3Hn-Ox0DSY9BFLkseDydRgrngZ2A4FQkWyWMv8GBMEIiQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6xRVotBx7LAuVppD2SQmKncSQuFVDxVqUFiQuKHNsRiJJUTXqAMz-cmSTlJSG0XB15PLHHnm_seQD85SawMja-I1UYO5SwywljoVGWjXSVCHig6b7j7Lx9eCmOr_yrCdgdx8IgEzlSystHfNrVA5PUGQbcbWynoHRVVIvTErpUcT9gEmGJS4UbOnv_Xm9YuPRFWc3V4wF30LiWYwevz2mRktL5eyX1CfIsNVB3Bq5feC8dT-5aoyJu6ccPaR2_-3OzMF1DU9apZGkOJmz6G6beJCych6fT20GWY_c-693Y9KFvURbwM8NDGq3v2smOHaQ3JEwMwSXrUBzw6D4bso6uKlWwLGFHdKdcNiMpSlpQB4I9sNuUKdbDc7gO2WRUra1Pfc5sH0e5V3_gsntwsXfo1HUcHIXwrnA0RxvLC8xOzIU2WltOZch8HVoVCN32lHKp7kysEJ1ajeoxscrjxggjZeLrNl-ARpqldglYIkMpBZnVQgnhidgG7ZBy7qGKDbUxTdjCeYzqfZhH5RO750YfJjeqJ7cJO-N1jgZVdo-vu2yO5SHCnUjPKyq12SiPEAwgayHioSYsVoLyQpRLhE1C8uX_428Dfvb2u9Hp0fnJCvzyEE-R44LLV6FRDEd2DfFQEa-XYv8MSS4LAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liposomal+Phenylephrine+Nanoparticles+Enhance+the+Antitumor+Activity+of+Intratumoral+Chemotherapy+in+a+Preclinical+Model+of+Melanoma&rft.jtitle=ACS+biomaterials+science+%26+engineering&rft.au=Gabriel%2C+Emmanuel+M.&rft.au=Bahr%2C+Deborah&rft.au=Rachamala%2C+Hari+Krishnareddy&rft.au=Madamsetty%2C+Vijay+S.&rft.date=2024-05-13&rft.issn=2373-9878&rft.eissn=2373-9878&rft.volume=10&rft.issue=5&rft.spage=3412&rft.epage=3424&rft_id=info:doi/10.1021%2Facsbiomaterials.4c00078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsbiomaterials_4c00078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2373-9878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2373-9878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2373-9878&client=summon |