Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm

•A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for predicting rock mass parameters, including UCS, Bi, DPW, and α.•The inputs of these models are TBM driving data, including Th, Tor, PR and CP.•Th...

Full description

Saved in:
Bibliographic Details
Published inTunnelling and underground space technology Vol. 95; p. 103103
Main Authors Liu, B., Wang, R., Zhao, G., Guo, X., Wang, Y., Li, J., Wang, S.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0886-7798
1878-4364
DOI10.1016/j.tust.2019.103103

Cover

Abstract •A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for predicting rock mass parameters, including UCS, Bi, DPW, and α.•The inputs of these models are TBM driving data, including Th, Tor, PR and CP.•These prediction models are established based on 360 samples collected from the Water Supply Project from Songhua River.•The models predict more accurate results for rock mass parameters than common BPNN method. The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction. Previous studies have confirmed the existence of a relationship between TBM driving parameters and rock mass parameters. In this work, we attempt to utilize the TBM driving parameters to predict rock mass parameters, including uniaxial compressive strength (UCS), brittleness index (Bi), distance between plane of weakness (DPW), and the orientation of discontinuities (α). We propose a hybrid algorithm (SA-BPNN) which integrates the back propagation neural network (BPNN) with simulated annealing (SA). A three-layer BPNN model was trained, using TBM driving and rock mass parameters from the Songhua River water conveyance project. We collected 320 samples, and randomly selected 280 of these to train the model, while the remaining 40 samples made up the first dataset to test the model. The predicted mean absolute percentage errors (MAPEs) of α, UCS, DPW, and Bi were 7.7%, 13.9%, 12.9%, and 11.0%, respectively, with the corresponding determination coefficient (R2) of 0.845, 0.737, 0.731, and 0.657, respectively. Another 40 samples with different lithology were collected to verify the model. Although the prediction results were not as good as those from the first dataset, they were still acceptable. The results reveal that the SA-BPNN model has a relatively high accuracy. To verify the optimization effect of the SA method on the BPNN algorithm, a BPNN model was established and tested. The results of the SA-BPNN model were more accurate than those of the BPNN model.
AbstractList •A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for predicting rock mass parameters, including UCS, Bi, DPW, and α.•The inputs of these models are TBM driving data, including Th, Tor, PR and CP.•These prediction models are established based on 360 samples collected from the Water Supply Project from Songhua River.•The models predict more accurate results for rock mass parameters than common BPNN method. The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction. Previous studies have confirmed the existence of a relationship between TBM driving parameters and rock mass parameters. In this work, we attempt to utilize the TBM driving parameters to predict rock mass parameters, including uniaxial compressive strength (UCS), brittleness index (Bi), distance between plane of weakness (DPW), and the orientation of discontinuities (α). We propose a hybrid algorithm (SA-BPNN) which integrates the back propagation neural network (BPNN) with simulated annealing (SA). A three-layer BPNN model was trained, using TBM driving and rock mass parameters from the Songhua River water conveyance project. We collected 320 samples, and randomly selected 280 of these to train the model, while the remaining 40 samples made up the first dataset to test the model. The predicted mean absolute percentage errors (MAPEs) of α, UCS, DPW, and Bi were 7.7%, 13.9%, 12.9%, and 11.0%, respectively, with the corresponding determination coefficient (R2) of 0.845, 0.737, 0.731, and 0.657, respectively. Another 40 samples with different lithology were collected to verify the model. Although the prediction results were not as good as those from the first dataset, they were still acceptable. The results reveal that the SA-BPNN model has a relatively high accuracy. To verify the optimization effect of the SA method on the BPNN algorithm, a BPNN model was established and tested. The results of the SA-BPNN model were more accurate than those of the BPNN model.
The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction. Previous studies have confirmed the existence of a relationship between TBM driving parameters and rock mass parameters. In this work, we attempt to utilize the TBM driving parameters to predict rock mass parameters, including uniaxial compressive strength (UCS), brittleness index (Bi), distance between plane of weakness (DPW), and the orientation of discontinuities (α). We propose a hybrid algorithm (SA-BPNN) which integrates the back propagation neural network (BPNN) with simulated annealing (SA). A three-layer BPNN model was trained, using TBM driving and rock mass parameters from the Songhua River water conveyance project. We collected 320 samples, and randomly selected 280 of these to train the model, while the remaining 40 samples made up the first dataset to test the model. The predicted mean absolute percentage errors (MAPEs) of α, UCS, DPW, and Bi were 7.7%, 13.9%, 12.9%, and 11.0%, respectively, with the corresponding determination coefficient (R2) of 0.845, 0.737, 0.731, and 0.657, respectively. Another 40 samples with different lithology were collected to verify the model. Although the prediction results were not as good as those from the first dataset, they were still acceptable. The results reveal that the SA-BPNN model has a relatively high accuracy. To verify the optimization effect of the SA method on the BPNN algorithm, a BPNN model was established and tested. The results of the SA-BPNN model were more accurate than those of the BPNN model.
ArticleNumber 103103
Author Liu, B.
Wang, R.
Wang, S.
Guo, X.
Li, J.
Wang, Y.
Zhao, G.
Author_xml – sequence: 1
  givenname: B.
  surname: Liu
  fullname: Liu, B.
  organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China
– sequence: 2
  givenname: R.
  surname: Wang
  fullname: Wang, R.
  organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China
– sequence: 3
  givenname: G.
  surname: Zhao
  fullname: Zhao, G.
  organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China
– sequence: 4
  givenname: X.
  surname: Guo
  fullname: Guo, X.
  organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China
– sequence: 5
  givenname: Y.
  surname: Wang
  fullname: Wang, Y.
  organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China
– sequence: 6
  givenname: J.
  surname: Li
  fullname: Li, J.
  organization: China Railway Engineering Equipment Group, Henan, China
– sequence: 7
  givenname: S.
  surname: Wang
  fullname: Wang, S.
  email: sdgeowsg@gmail.com
  organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China
BookMark eNp9kU1v3CAQhlGVSt2k_QM9IfXsDR9ewFIvTdQvKVVzSM9ojMcbNjZsAaftvw_u9tRDJKRBw_uA5uGcnIUYkJC3nG054-rysC1LLlvBeFcbsq4XZMONNk0rVXtGNswY1WjdmVfkPOcDY2wnRLchv28TDt4VHwONI03RPdAZcqZHSDBjwZSpD7TcI727-kbLEgJOtIeMA63I1S0NuCSYaim_Ynqo4YL7BKWeZz8v098dVAomH_YUpn1MvtzPr8nLEaaMb_7VC_Lj08e76y_NzffPX68_3DQgd7w0rdI7VEL2Zuy7oRuMYG43Os2EdEporbka2Qijlq7twYi-V8hAgmJMtIMw8oK8O917TPHngrnYQ1xSqE9aIeWa4krWlDmlXIo5Jxyt8wVWKyWBnyxndvVsD3b1bFfP9uS5ouI_9Jj8DOnP89D7E4R19EePyWbnMbj6FwldsUP0z-FPTw-aXQ
CitedBy_id crossref_primary_10_1016_j_tust_2023_105211
crossref_primary_10_3390_buildings14082454
crossref_primary_10_1007_s00603_024_03903_9
crossref_primary_10_1016_j_earscirev_2022_103991
crossref_primary_10_1016_j_gsf_2020_09_020
crossref_primary_10_3390_app12178468
crossref_primary_10_1016_j_autcon_2024_105425
crossref_primary_10_1155_2021_8819393
crossref_primary_10_1016_j_jocs_2024_102266
crossref_primary_10_3390_eng4020087
crossref_primary_10_1007_s10706_023_02663_7
crossref_primary_10_1016_j_trgeo_2023_101022
crossref_primary_10_1016_j_measurement_2021_109545
crossref_primary_10_1016_j_eswa_2023_120100
crossref_primary_10_1680_jsmic_20_00011
crossref_primary_10_1049_ipr2_12204
crossref_primary_10_1515_aut_2023_0034
crossref_primary_10_3390_app122312334
crossref_primary_10_1016_j_undsp_2024_01_008
crossref_primary_10_1155_2021_8336887
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_1016_j_tust_2022_104654
crossref_primary_10_1016_j_solener_2024_112785
crossref_primary_10_1016_j_tust_2023_105040
crossref_primary_10_1016_j_tust_2022_104497
crossref_primary_10_1016_j_jrmge_2021_11_008
crossref_primary_10_1016_j_tust_2020_103677
crossref_primary_10_1007_s00366_021_01393_9
crossref_primary_10_1007_s10668_024_04767_3
crossref_primary_10_12677_mos_2024_134419
crossref_primary_10_3390_math10101746
crossref_primary_10_1007_s10706_023_02536_z
crossref_primary_10_1007_s11440_023_01871_y
crossref_primary_10_3390_app131810026
crossref_primary_10_1007_s12205_023_2475_9
crossref_primary_10_1016_j_engappai_2022_104842
crossref_primary_10_1016_j_autcon_2022_104310
crossref_primary_10_1016_j_autcon_2022_104711
crossref_primary_10_1016_j_jrmge_2021_05_004
crossref_primary_10_54097_hset_v67i_11524
crossref_primary_10_1007_s40515_025_00572_1
crossref_primary_10_1016_j_tust_2024_106045
crossref_primary_10_1016_j_ymssp_2021_108035
crossref_primary_10_1007_s11709_023_0044_4
crossref_primary_10_1061_JCEMD4_COENG_14788
crossref_primary_10_1007_s10706_023_02739_4
crossref_primary_10_1007_s11709_022_0908_z
crossref_primary_10_1038_s41598_023_28243_6
crossref_primary_10_1016_j_resconrec_2022_106272
crossref_primary_10_1007_s10064_022_02594_2
crossref_primary_10_1016_j_undsp_2023_01_001
crossref_primary_10_1016_j_autcon_2022_104326
crossref_primary_10_1016_j_undsp_2023_01_004
crossref_primary_10_1016_j_tust_2021_104054
crossref_primary_10_1016_j_undsp_2023_01_002
crossref_primary_10_1007_s11356_022_22793_4
crossref_primary_10_1038_s41598_022_05027_y
crossref_primary_10_1155_2021_5554215
crossref_primary_10_1007_s11440_022_01779_z
crossref_primary_10_1007_s12065_021_00606_w
crossref_primary_10_1007_s13369_023_07805_w
crossref_primary_10_1007_s11440_023_01850_3
crossref_primary_10_1061__ASCE_GM_1943_5622_0002245
crossref_primary_10_1007_s12205_022_1388_3
crossref_primary_10_1007_s00603_024_04032_z
crossref_primary_10_1016_j_jrmge_2023_02_014
crossref_primary_10_1016_j_measurement_2024_115596
crossref_primary_10_3390_app132312887
crossref_primary_10_1016_j_measurement_2024_114268
crossref_primary_10_1016_j_engfracmech_2021_107750
crossref_primary_10_1016_j_tust_2020_103595
crossref_primary_10_1007_s12205_023_0719_3
crossref_primary_10_1016_j_tust_2021_103871
crossref_primary_10_1016_j_tust_2023_105096
crossref_primary_10_1007_s40808_024_02093_1
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1007_s13201_023_01913_6
crossref_primary_10_1016_j_tust_2021_104285
crossref_primary_10_1016_j_jrmge_2021_09_004
crossref_primary_10_1155_2022_8506273
crossref_primary_10_3390_fractalfract7070546
crossref_primary_10_1016_j_geoderma_2022_115749
crossref_primary_10_1061_JCCEE5_CPENG_6041
crossref_primary_10_1007_s10846_022_01664_7
crossref_primary_10_1007_s11440_022_01651_0
crossref_primary_10_3390_app14083240
crossref_primary_10_1007_s11356_022_24420_8
crossref_primary_10_1007_s40098_024_01065_7
crossref_primary_10_1007_s10064_023_03095_6
crossref_primary_10_1016_j_inffus_2024_102705
crossref_primary_10_1007_s00500_022_06735_3
crossref_primary_10_1007_s11600_024_01320_8
crossref_primary_10_1016_j_engappai_2020_104015
crossref_primary_10_1007_s00603_025_04501_z
crossref_primary_10_1016_j_tust_2022_104852
crossref_primary_10_1007_s12205_024_1432_6
crossref_primary_10_1016_j_tust_2022_104451
crossref_primary_10_3390_buildings14124027
crossref_primary_10_3390_rs12223811
crossref_primary_10_1007_s11440_023_01902_8
crossref_primary_10_1007_s11431_022_2290_7
crossref_primary_10_1016_j_gsf_2022_101519
crossref_primary_10_1016_j_tust_2022_104448
crossref_primary_10_1016_j_tust_2024_105937
crossref_primary_10_1016_j_advengsoft_2024_103853
crossref_primary_10_1038_s41598_024_65556_6
crossref_primary_10_1002_dug2_12081
crossref_primary_10_1002_dug2_12082
crossref_primary_10_1088_1755_1315_570_5_052056
crossref_primary_10_1016_j_tust_2023_105317
crossref_primary_10_1007_s12205_022_0128_z
crossref_primary_10_1007_s11368_024_03886_8
crossref_primary_10_1016_j_measurement_2023_112942
crossref_primary_10_3390_app11031060
crossref_primary_10_1016_j_undsp_2021_12_003
crossref_primary_10_1038_s41598_024_73742_9
crossref_primary_10_1016_j_jrmge_2021_07_012
crossref_primary_10_1007_s10064_021_02527_5
crossref_primary_10_1016_j_ymssp_2021_108353
crossref_primary_10_1038_s41598_022_05727_5
crossref_primary_10_1016_j_aei_2023_102130
crossref_primary_10_3390_app13127060
crossref_primary_10_3390_app112110264
crossref_primary_10_1016_j_trgeo_2022_100837
crossref_primary_10_1016_j_tust_2024_105960
crossref_primary_10_1177_14759217241289066
crossref_primary_10_1155_2020_8838216
crossref_primary_10_1016_j_rsma_2022_102719
crossref_primary_10_1016_j_tust_2022_104794
crossref_primary_10_1007_s11440_023_02048_3
crossref_primary_10_1016_j_autcon_2021_103647
crossref_primary_10_1080_15376494_2022_2051780
crossref_primary_10_3390_rs15112812
crossref_primary_10_3390_su15075768
crossref_primary_10_1016_j_jrmge_2022_06_015
crossref_primary_10_1007_s10064_023_03406_x
crossref_primary_10_1016_j_undsp_2022_11_001
crossref_primary_10_1142_S021812662450230X
crossref_primary_10_3390_su142013420
crossref_primary_10_1007_s11440_022_01685_4
Cites_doi 10.1016/j.neucom.2013.09.016
10.1016/j.jappgeo.2012.10.002
10.1016/j.eswa.2011.01.019
10.1007/s12665-015-4106-3
10.1063/1.1699114
10.1057/palgrave.jors.2602436
10.1016/j.tust.2004.02.128
10.1016/j.ijrmms.2011.02.013
10.1016/j.gsf.2014.10.004
10.1007/s00603-004-0032-5
10.1007/s00603-014-0619-4
10.1515/eng-2017-0012
10.1016/j.eswa.2007.12.024
10.1016/j.ijrmms.2015.09.019
10.1016/S0925-2312(00)00352-0
10.1016/j.tust.2006.07.004
10.1007/s00603-002-0049-6
10.1007/BF02478259
10.1016/j.autcon.2018.03.030
10.1016/j.ijrmms.2014.12.007
10.1021/ef400179b
10.1016/0893-6080(88)90469-8
10.1016/j.anucene.2013.10.024
10.1038/323533a0
10.1016/j.tust.2010.01.008
10.1016/j.eswa.2010.04.020
10.1016/S0886-7798(03)00030-0
10.1016/j.advengsoft.2013.12.007
10.1016/j.autcon.2018.11.013
10.1080/17486020701377140
10.1109/4235.996017
10.1016/j.jclepro.2016.08.005
10.1016/j.ijrmms.2008.03.003
10.1016/j.ijrmms.2014.09.012
10.1016/j.autcon.2018.12.022
10.1007/s00603-012-0314-2
10.1016/j.tust.2017.07.017
10.1126/science.220.4598.671
10.1007/s11740-011-0298-x
10.1016/j.tust.2008.12.007
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jan 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2020
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.tust.2019.103103
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2019_103103
S088677981930269X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
KR7
SSH
ID FETCH-LOGICAL-a351t-4675e623b8fb9d9d820c5fc7023c6277716f0faf73c4ba82bb6e0a3a60024d283
IEDL.DBID .~1
ISSN 0886-7798
IngestDate Mon Jul 14 10:35:55 EDT 2025
Thu Oct 16 04:43:41 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Tue Jul 16 04:31:22 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords BP neural network
TBM
Simulated annealing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-4675e623b8fb9d9d820c5fc7023c6277716f0faf73c4ba82bb6e0a3a60024d283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2330024163
PQPubID 2045384
ParticipantIDs proquest_journals_2330024163
crossref_citationtrail_10_1016_j_tust_2019_103103
crossref_primary_10_1016_j_tust_2019_103103
elsevier_sciencedirect_doi_10_1016_j_tust_2019_103103
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Tunnelling and underground space technology
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chaki, Ghosal (b0035) 2011; 5
Bahrami, Doulati Ardejani (b0005) 2016; 137
Matias, Souza, Araújo, Antunes (b0125) 2014; 129
Hamidi, Shahriar, Rezai, Rostami (b0095) 2010; 25
Zhao, Gong, Zhang, Zhao (b0225) 2007; 2
Lee, Chen, Huang (b0110) 2001; 41
Deb, Pratap, Agarwal, Meyarivan (b0050) 2002; 6
Rumelhart, Hinton, Williams (b0180) 1986; 323
Sun, Shi, Zhang, Zhao, Song (b0185) 2018; 92
Zameer, Mirza, Mirza (b0215) 2014; 65
Gandomi, Soltanpour, Zolfaghari, Gandomi (b0075) 2016; 7
Yagiz, Karahan (b0200) 2015; 80
Zain, Haron, Sharif (b0210) 2011; 38
Bruland (b0030) 1998
Hechtnielsen, R., 1988. Theory of the backpropagation neural network. Neural networks for perception, vol 1, pp. 445.
Chatterjee, Maitra, Goswami (b0040) 2009; 36
Gong, Zhao (b0090) 2009; 46
Fazeli, Soleimani, Ahmadi, Badrnezhad, Mohammadi (b0060) 2013; 27
Mahdevari, Shahriar, Yagiz, Shirazi (b0120) 2014; 72
Mikaeil, Naghadehi, Sereshki (b0140) 2009; 24
Kirkpatrick, Gelatt, Vecchi (b0105) 1983; 220
Minh, Katushin, Antonov, Veinthal (b0145) 2017; 7
Zhang, Liu, Tan (b0220) 2019; 100
Bejari (b0015) 2013; 46
Fattahi, Bazdar (b0055) 2017; 70
Frough, Torabi, Yagiz (b0065) 2015; 48
Gong, Zhao (b0085) 2007; 22
Mirjalili, Mirjalili, Lewis (b0150) 2014; 69
Benato, Oreste (b0025) 2015; 74
Okubo, Kfukie, Chen (b0155) 2003; 36
Liu, Dai, Zhang, Liu (b0115) 2015; 73
Barton (b0010) 2000
Gao, Shi, Song, Zhang, Zhang (b0080) 2019; 98
Yagiz, Karahan (b0195) 2011; 48
Mcculloch, Pitts (b0130) 1943; 5
Preinl (b0160) 2006; 21
Tavakkoli-Moghaddam, Safaei, Sassani (b0190) 2008; 59
Yamamoto, Shirasagi, Yamamoto, Mito, Aoki (b0205) 2003; 18
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b0135) 1953; 21
Rostami (b0170) 2008; 1
Ribacchi, Fazio (b0165) 2005; 38
Benardos, Kaliampakos (b0020) 2004; 19
Zhu, Zhao (b0230) 2013; 88
Rostami, J., Ozdemir, L., Nilsen, B., 1977. Comparison between CSM and NTH hard rock TBM performance prediction models. In: Proceedings of the annual technical meeting: Institute of Shaft Drilling.
Chen, Lin, Yang, Tsai (b0045) 2010; 37
Mahdevari (10.1016/j.tust.2019.103103_b0120) 2014; 72
Ribacchi (10.1016/j.tust.2019.103103_b0165) 2005; 38
Chen (10.1016/j.tust.2019.103103_b0045) 2010; 37
Gao (10.1016/j.tust.2019.103103_b0080) 2019; 98
Metropolis (10.1016/j.tust.2019.103103_b0135) 1953; 21
10.1016/j.tust.2019.103103_b0100
Yagiz (10.1016/j.tust.2019.103103_b0200) 2015; 80
Yamamoto (10.1016/j.tust.2019.103103_b0205) 2003; 18
10.1016/j.tust.2019.103103_b0175
Chaki (10.1016/j.tust.2019.103103_b0035) 2011; 5
Gandomi (10.1016/j.tust.2019.103103_b0075) 2016; 7
Mikaeil (10.1016/j.tust.2019.103103_b0140) 2009; 24
Liu (10.1016/j.tust.2019.103103_b0115) 2015; 73
Deb (10.1016/j.tust.2019.103103_b0050) 2002; 6
Bejari (10.1016/j.tust.2019.103103_b0015) 2013; 46
Hamidi (10.1016/j.tust.2019.103103_b0095) 2010; 25
Tavakkoli-Moghaddam (10.1016/j.tust.2019.103103_b0190) 2008; 59
Frough (10.1016/j.tust.2019.103103_b0065) 2015; 48
Okubo (10.1016/j.tust.2019.103103_b0155) 2003; 36
Rumelhart (10.1016/j.tust.2019.103103_b0180) 1986; 323
Benato (10.1016/j.tust.2019.103103_b0025) 2015; 74
Zain (10.1016/j.tust.2019.103103_b0210) 2011; 38
Matias (10.1016/j.tust.2019.103103_b0125) 2014; 129
Preinl (10.1016/j.tust.2019.103103_b0160) 2006; 21
Mirjalili (10.1016/j.tust.2019.103103_b0150) 2014; 69
Barton (10.1016/j.tust.2019.103103_b0010) 2000
Fazeli (10.1016/j.tust.2019.103103_b0060) 2013; 27
Zhang (10.1016/j.tust.2019.103103_b0220) 2019; 100
Gong (10.1016/j.tust.2019.103103_b0090) 2009; 46
Benardos (10.1016/j.tust.2019.103103_b0020) 2004; 19
Zameer (10.1016/j.tust.2019.103103_b0215) 2014; 65
Bahrami (10.1016/j.tust.2019.103103_b0005) 2016; 137
Fattahi (10.1016/j.tust.2019.103103_b0055) 2017; 70
Sun (10.1016/j.tust.2019.103103_b0185) 2018; 92
Bruland (10.1016/j.tust.2019.103103_b0030) 1998
Yagiz (10.1016/j.tust.2019.103103_b0195) 2011; 48
Lee (10.1016/j.tust.2019.103103_b0110) 2001; 41
Kirkpatrick (10.1016/j.tust.2019.103103_b0105) 1983; 220
Mcculloch (10.1016/j.tust.2019.103103_b0130) 1943; 5
Minh (10.1016/j.tust.2019.103103_b0145) 2017; 7
Zhu (10.1016/j.tust.2019.103103_b0230) 2013; 88
Zhao (10.1016/j.tust.2019.103103_b0225) 2007; 2
Rostami (10.1016/j.tust.2019.103103_b0170) 2008; 1
Chatterjee (10.1016/j.tust.2019.103103_b0040) 2009; 36
Gong (10.1016/j.tust.2019.103103_b0085) 2007; 22
References_xml – volume: 129
  start-page: 428
  year: 2014
  end-page: 436
  ident: b0125
  article-title: Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine
  publication-title: Neurocomputing
– reference: Hechtnielsen, R., 1988. Theory of the backpropagation neural network. Neural networks for perception, vol 1, pp. 445.
– volume: 7
  start-page: 75
  year: 2016
  end-page: 82
  ident: b0075
  article-title: Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique
  publication-title: Geosci. Front.
– volume: 24
  start-page: 500
  year: 2009
  end-page: 505
  ident: b0140
  article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions
  publication-title: Tunn. Undergr. Space Technol.
– volume: 70
  start-page: 114
  year: 2017
  end-page: 124
  ident: b0055
  article-title: Applying improved artificial neural network models to evaluate drilling rate index
  publication-title: Tunn. Undergr. Space Technol.
– volume: 21
  year: 2006
  ident: b0160
  article-title: Rock mass excavability indicator: New way to selecting the optimum tunnel construction method
  publication-title: Tunn. Undergr. Space Technol.
– volume: 48
  start-page: 1305
  year: 2015
  end-page: 1312
  ident: b0065
  article-title: Application of RMR for estimating rock-mass–related TBM utilization and performance parameters: A case study
  publication-title: Rock Mech. Rock Eng.
– volume: 46
  start-page: 897
  year: 2013
  end-page: 907
  ident: b0015
  article-title: Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses
  publication-title: Rock Mech. Rock Eng.
– volume: 41
  start-page: 125
  year: 2001
  end-page: 143
  ident: b0110
  article-title: Learning efficiency improvement of back propagation algorithm by error saturation prevention method
  publication-title: Neurocomputing
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0105
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 59
  start-page: 443
  year: 2008
  end-page: 454
  ident: b0190
  article-title: A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing
  publication-title: J. Oper. Res. Soc.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1091
  ident: b0135
  article-title: Equation of state calculations by fast computing machines
  publication-title: The J. Chem. Phys.
– reference: Rostami, J., Ozdemir, L., Nilsen, B., 1977. Comparison between CSM and NTH hard rock TBM performance prediction models. In: Proceedings of the annual technical meeting: Institute of Shaft Drilling.
– volume: 137
  start-page: 1129
  year: 2016
  end-page: 1137
  ident: b0005
  article-title: Prediction of pyrite oxidation in a coal washing waste pile using a hybrid method, coupling artificial neural networks and simulated annealing (ANN/SA)
  publication-title: J. Clean Prod.
– volume: 65
  start-page: 122
  year: 2014
  end-page: 131
  ident: b0215
  article-title: Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes
  publication-title: Ann. Nucl. Energy
– volume: 72
  start-page: 214
  year: 2014
  end-page: 229
  ident: b0120
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2000
  ident: b0010
  article-title: TBM tunnelling in jointed and faulted rock
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0150
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  ident: b0220
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom. Constr.
– volume: 73
  start-page: 5933
  year: 2015
  end-page: 5949
  ident: b0115
  article-title: Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity
  publication-title: Environ. Earth Sci.
– volume: 36
  start-page: 2391
  year: 2009
  end-page: 2399
  ident: b0040
  article-title: Classification of overcurrent and inrush current for power system reliability using Slantlet transform and artificial neural network
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 105
  year: 2005
  end-page: 127
  ident: b0165
  article-title: Influence of rock mass parameters on the performance of a TBM in a Gneissic formation (Varzo tunnel)
  publication-title: Rock Mech. Rock Eng.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0050
  article-title: A fast and elitist multi objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 80
  start-page: 308
  year: 2015
  end-page: 315
  ident: b0200
  article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 19
  start-page: 597
  year: 2004
  end-page: 605
  ident: b0020
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunn. Undergr. Space Technol.
– volume: 18
  start-page: 213
  year: 2003
  end-page: 221
  ident: b0205
  article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data
  publication-title: Tunn. Undergr. Space Technol.
– volume: 38
  start-page: 8316
  year: 2011
  end-page: 8326
  ident: b0210
  article-title: Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 123
  year: 2007
  end-page: 128
  ident: b0225
  article-title: Prediction model of tunnel boring machine performance by ensemble neural networks
  publication-title: Geomech. Geoeng. Int. J.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b0180
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 5
  start-page: 251
  year: 2011
  end-page: 262
  ident: b0035
  article-title: Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel
  publication-title: Prod. Eng. Res. Devel.
– volume: 98
  start-page: 225
  year: 2019
  end-page: 235
  ident: b0080
  article-title: Recurrent neural networks for real-time prediction of TBM operating parameters
  publication-title: Autom. Constr.
– volume: 22
  start-page: 317
  year: 2007
  end-page: 324
  ident: b0085
  article-title: Influence of rock brittleness on TBM penetration rate in Singapore granite
  publication-title: Tunn. Undergr. Space Technol.
– volume: 27
  start-page: 3523
  year: 2013
  end-page: 3537
  ident: b0060
  article-title: Experimental study and modeling of ultrafiltration of refinery effluents using a hybrid intelligent approach
  publication-title: Energy Fuels
– volume: 92
  start-page: 23
  year: 2018
  end-page: 34
  ident: b0185
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom. Constr.
– volume: 48
  start-page: 427
  year: 2011
  end-page: 1423
  ident: b0195
  article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 46
  start-page: 8
  year: 2009
  end-page: 18
  ident: b0090
  article-title: Development of a rock mass characteristics model for TBM penetration rate prediction
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 1
  start-page: 18
  year: 2008
  end-page: 28
  ident: b0170
  article-title: Hard rock TBM cutterhead modeling for design and performance prediction
  publication-title: Geomech. Tunnel. (Aust. J. Geotech. Eng.)
– volume: 36
  start-page: 305
  year: 2003
  end-page: 322
  ident: b0155
  article-title: Expert systems for applicability of tunnel boring machine in Japan
  publication-title: Rock Mech. Rock Eng.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b0130
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 37
  start-page: 7147
  year: 2010
  end-page: 7153
  ident: b0045
  article-title: Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 333
  year: 2010
  end-page: 345
  ident: b0095
  article-title: Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system
  publication-title: Tunn. Undergr. Space Technol.
– volume: 74
  start-page: 119
  year: 2015
  end-page: 127
  ident: b0025
  article-title: Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 1998
  ident: b0030
  article-title: Hard rock tunnel boring
– volume: 88
  start-page: 23
  year: 2013
  end-page: 30
  ident: b0230
  article-title: Obliquely incident wave propagation across rock joints with virtual wave source method
  publication-title: J. Appl. Geophys.
– volume: 7
  start-page: 60
  year: 2017
  end-page: 68
  ident: b0145
  article-title: Regression models and fuzzy logic prediction of TBM penetration rate
  publication-title: Open Eng.
– volume: 129
  start-page: 428
  year: 2014
  ident: 10.1016/j.tust.2019.103103_b0125
  article-title: Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.016
– volume: 88
  start-page: 23
  year: 2013
  ident: 10.1016/j.tust.2019.103103_b0230
  article-title: Obliquely incident wave propagation across rock joints with virtual wave source method
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2012.10.002
– volume: 38
  start-page: 8316
  issue: 7
  year: 2011
  ident: 10.1016/j.tust.2019.103103_b0210
  article-title: Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.019
– volume: 73
  start-page: 5933
  issue: 10
  year: 2015
  ident: 10.1016/j.tust.2019.103103_b0115
  article-title: Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4106-3
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.tust.2019.103103_b0135
  article-title: Equation of state calculations by fast computing machines
  publication-title: The J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 59
  start-page: 443
  issue: 4
  year: 2008
  ident: 10.1016/j.tust.2019.103103_b0190
  article-title: A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/palgrave.jors.2602436
– volume: 19
  start-page: 597
  issue: 6
  year: 2004
  ident: 10.1016/j.tust.2019.103103_b0020
  article-title: Modelling TBM performance with artificial neural networks
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2004.02.128
– volume: 48
  start-page: 427
  year: 2011
  ident: 10.1016/j.tust.2019.103103_b0195
  article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2011.02.013
– volume: 7
  start-page: 75
  issue: 1
  year: 2016
  ident: 10.1016/j.tust.2019.103103_b0075
  article-title: Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2014.10.004
– volume: 38
  start-page: 105
  issue: 2
  year: 2005
  ident: 10.1016/j.tust.2019.103103_b0165
  article-title: Influence of rock mass parameters on the performance of a TBM in a Gneissic formation (Varzo tunnel)
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-004-0032-5
– volume: 48
  start-page: 1305
  issue: 3
  year: 2015
  ident: 10.1016/j.tust.2019.103103_b0065
  article-title: Application of RMR for estimating rock-mass–related TBM utilization and performance parameters: A case study
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-014-0619-4
– volume: 7
  start-page: 60
  issue: 1
  year: 2017
  ident: 10.1016/j.tust.2019.103103_b0145
  article-title: Regression models and fuzzy logic prediction of TBM penetration rate
  publication-title: Open Eng.
  doi: 10.1515/eng-2017-0012
– year: 2000
  ident: 10.1016/j.tust.2019.103103_b0010
– volume: 36
  start-page: 2391
  issue: 2
  year: 2009
  ident: 10.1016/j.tust.2019.103103_b0040
  article-title: Classification of overcurrent and inrush current for power system reliability using Slantlet transform and artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.024
– volume: 80
  start-page: 308
  year: 2015
  ident: 10.1016/j.tust.2019.103103_b0200
  article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2015.09.019
– volume: 41
  start-page: 125
  issue: 1–4
  year: 2001
  ident: 10.1016/j.tust.2019.103103_b0110
  article-title: Learning efficiency improvement of back propagation algorithm by error saturation prevention method
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00352-0
– volume: 22
  start-page: 317
  issue: 3
  year: 2007
  ident: 10.1016/j.tust.2019.103103_b0085
  article-title: Influence of rock brittleness on TBM penetration rate in Singapore granite
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2006.07.004
– volume: 36
  start-page: 305
  year: 2003
  ident: 10.1016/j.tust.2019.103103_b0155
  article-title: Expert systems for applicability of tunnel boring machine in Japan
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-002-0049-6
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.tust.2019.103103_b0130
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 92
  start-page: 23
  year: 2018
  ident: 10.1016/j.tust.2019.103103_b0185
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.030
– volume: 74
  start-page: 119
  year: 2015
  ident: 10.1016/j.tust.2019.103103_b0025
  article-title: Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2014.12.007
– volume: 27
  start-page: 3523
  year: 2013
  ident: 10.1016/j.tust.2019.103103_b0060
  article-title: Experimental study and modeling of ultrafiltration of refinery effluents using a hybrid intelligent approach
  publication-title: Energy Fuels
  doi: 10.1021/ef400179b
– ident: 10.1016/j.tust.2019.103103_b0100
  doi: 10.1016/0893-6080(88)90469-8
– volume: 65
  start-page: 122
  year: 2014
  ident: 10.1016/j.tust.2019.103103_b0215
  article-title: Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2013.10.024
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.tust.2019.103103_b0180
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.tust.2019.103103_b0175
– volume: 25
  start-page: 333
  year: 2010
  ident: 10.1016/j.tust.2019.103103_b0095
  article-title: Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2010.01.008
– volume: 37
  start-page: 7147
  issue: 10
  year: 2010
  ident: 10.1016/j.tust.2019.103103_b0045
  article-title: Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.04.020
– volume: 18
  start-page: 213
  issue: 2
  year: 2003
  ident: 10.1016/j.tust.2019.103103_b0205
  article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/S0886-7798(03)00030-0
– volume: 69
  start-page: 46
  issue: 3
  year: 2014
  ident: 10.1016/j.tust.2019.103103_b0150
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 98
  start-page: 225
  year: 2019
  ident: 10.1016/j.tust.2019.103103_b0080
  article-title: Recurrent neural networks for real-time prediction of TBM operating parameters
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.11.013
– volume: 2
  start-page: 123
  issue: 2
  year: 2007
  ident: 10.1016/j.tust.2019.103103_b0225
  article-title: Prediction model of tunnel boring machine performance by ensemble neural networks
  publication-title: Geomech. Geoeng. Int. J.
  doi: 10.1080/17486020701377140
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.tust.2019.103103_b0050
  article-title: A fast and elitist multi objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 137
  start-page: 1129
  year: 2016
  ident: 10.1016/j.tust.2019.103103_b0005
  article-title: Prediction of pyrite oxidation in a coal washing waste pile using a hybrid method, coupling artificial neural networks and simulated annealing (ANN/SA)
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2016.08.005
– volume: 46
  start-page: 8
  issue: 1
  year: 2009
  ident: 10.1016/j.tust.2019.103103_b0090
  article-title: Development of a rock mass characteristics model for TBM penetration rate prediction
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2008.03.003
– volume: 72
  start-page: 214
  year: 2014
  ident: 10.1016/j.tust.2019.103103_b0120
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 100
  start-page: 73
  year: 2019
  ident: 10.1016/j.tust.2019.103103_b0220
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.12.022
– volume: 46
  start-page: 897
  issue: 4
  year: 2013
  ident: 10.1016/j.tust.2019.103103_b0015
  article-title: Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-012-0314-2
– volume: 70
  start-page: 114
  year: 2017
  ident: 10.1016/j.tust.2019.103103_b0055
  article-title: Applying improved artificial neural network models to evaluate drilling rate index
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.07.017
– volume: 21
  issue: 3
  year: 2006
  ident: 10.1016/j.tust.2019.103103_b0160
  article-title: Rock mass excavability indicator: New way to selecting the optimum tunnel construction method
  publication-title: Tunn. Undergr. Space Technol.
– volume: 1
  start-page: 18
  year: 2008
  ident: 10.1016/j.tust.2019.103103_b0170
  article-title: Hard rock TBM cutterhead modeling for design and performance prediction
  publication-title: Geomech. Tunnel. (Aust. J. Geotech. Eng.)
– year: 1998
  ident: 10.1016/j.tust.2019.103103_b0030
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.tust.2019.103103_b0105
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 5
  start-page: 251
  issue: 3
  year: 2011
  ident: 10.1016/j.tust.2019.103103_b0035
  article-title: Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel
  publication-title: Prod. Eng. Res. Devel.
  doi: 10.1007/s11740-011-0298-x
– volume: 24
  start-page: 500
  issue: 5
  year: 2009
  ident: 10.1016/j.tust.2019.103103_b0140
  article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2008.12.007
SSID ssj0005229
Score 2.5946233
Snippet •A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for...
The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103103
SubjectTerms Algorithms
Artificial neural networks
Boring machines
BP neural network
Compressive strength
Computer simulation
Datasets
Lithology
Mathematical models
Model accuracy
Model testing
Neural networks
Optimization
Parameters
Predictions
Rock masses
Rocks
Simulated annealing
TBM
Tunnel construction
Tunnels
Underground construction
Title Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm
URI https://dx.doi.org/10.1016/j.tust.2019.103103
https://www.proquest.com/docview/2330024163
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: SD Complete Freedom Collection
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AKRWK
  dateStart: 19860101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUSQ_ezAr73h6BSFADIRESbk277eoqLASWxJO_3Zl9EB8JB2-bTbuPTne-r9uZbwi50YyFLeEqQzFHGk4gTYNJpQ1tC5ggqIieJdIOhl5_4jxO3WmFdMtcGAyrLHx_7tMzb12caRaj2VzGcfMZvg_P9xlAmg0LCTbFDHbHxyoGd5_fwzyySmXY2MDWReJMHuOVYloDQCDD3HOzLJz1F5x-uekMe3pH5LAgjbSdP9cxqejkhBx8kxI8JR-jFW654DDTRUQBlt7pHIgxRW3vOca8rGmcUKB7dNwZ0HSD8S0UMUxR6NIZUVS2hJskeVw43epIKLqO51jkC44E9BKYwE7F7GWxitPX-RmZ9O7H3b5RVFUwhO2aqQGe0dVAemQQSaaYAgoQulHoA3iHnuX7sICKWpGIfDt0pAgsKT3dErbADTxHARs5J9VkkegLQpWjhfaFZoGjUOgtMLUWlimYbFnSdnWNmOVw8rCQHMfKFzNexpa9cTQBRxPw3AQ1crvts8wFN3a2dksr8R_ThgMi7OxXL03Ki492zS3bxncEhnr5z8tekX0L1-PZL5o6qaarjb4G0pLKRjYrG2Sv_fDUH34BpEbs4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RlR1D14MxX6ot2jEA0qEBIh4bbZ7W61CoVASTz5253pg_hIOHhrmp0-ZrbzfdudByFXmrGgLlxlKOZIw_GlaTCptKFtARMEK6KnibTdXqM9dB5H7qhEWkUuDIZV5r4_8-mpt87P1HJt1mZRVHuG76PheQwgzYaFBBttkE3HtTxcgd18fo_zSFuV4WgDh-eZM1mQV4J5DYCBDJPPzaJz1l90-uWnU_C53yO7OWukt9mD7ZOSjg_Izrdagofkoz_HPRfUM52GFHDpnU6AGVMs7j3BoJcFjWIKfI8Oml2aLDHAhSKIKQoizT7F0pZwkzgLDKerQhKKLqIJdvmCIwFSAjPYqRi_TOdR8jo5IsP7u0GrbeRtFQxhu2ZigGt0NbAe6YeSKaaAAwRuGHiA3kED9AcrqLAeitCzA0cK35KyoevCFriD5yigI8ekHE9jfUKocrTQntDMdxRWevNNrYVlCibrlrRdXSFmoU4e5DXHsfXFmBfBZW8cTcDRBDwzQYVcr2RmWcWNtaPdwkr8x7zhAAlr5aqFSXn-1S64Zdv4jkBRT_952Uuy1R50O7zz0Hs6I9sWLs7T_zVVUk7mS30ODCaRF-kM_QIpw-52
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+rock+mass+parameters+in+the+TBM+tunnel+based+on+BP+neural+network+integrated+simulated+annealing+algorithm&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Liu%2C+B&rft.au=Wang%2C+R&rft.au=Zhao%2C+G&rft.au=Guo%2C+X&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=95&rft.spage=1&rft_id=info:doi/10.1016%2Fj.tust.2019.103103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon