Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm
•A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for predicting rock mass parameters, including UCS, Bi, DPW, and α.•The inputs of these models are TBM driving data, including Th, Tor, PR and CP.•Th...
Saved in:
| Published in | Tunnelling and underground space technology Vol. 95; p. 103103 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.01.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0886-7798 1878-4364 |
| DOI | 10.1016/j.tust.2019.103103 |
Cover
| Abstract | •A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for predicting rock mass parameters, including UCS, Bi, DPW, and α.•The inputs of these models are TBM driving data, including Th, Tor, PR and CP.•These prediction models are established based on 360 samples collected from the Water Supply Project from Songhua River.•The models predict more accurate results for rock mass parameters than common BPNN method.
The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction. Previous studies have confirmed the existence of a relationship between TBM driving parameters and rock mass parameters. In this work, we attempt to utilize the TBM driving parameters to predict rock mass parameters, including uniaxial compressive strength (UCS), brittleness index (Bi), distance between plane of weakness (DPW), and the orientation of discontinuities (α). We propose a hybrid algorithm (SA-BPNN) which integrates the back propagation neural network (BPNN) with simulated annealing (SA). A three-layer BPNN model was trained, using TBM driving and rock mass parameters from the Songhua River water conveyance project. We collected 320 samples, and randomly selected 280 of these to train the model, while the remaining 40 samples made up the first dataset to test the model. The predicted mean absolute percentage errors (MAPEs) of α, UCS, DPW, and Bi were 7.7%, 13.9%, 12.9%, and 11.0%, respectively, with the corresponding determination coefficient (R2) of 0.845, 0.737, 0.731, and 0.657, respectively. Another 40 samples with different lithology were collected to verify the model. Although the prediction results were not as good as those from the first dataset, they were still acceptable. The results reveal that the SA-BPNN model has a relatively high accuracy. To verify the optimization effect of the SA method on the BPNN algorithm, a BPNN model was established and tested. The results of the SA-BPNN model were more accurate than those of the BPNN model. |
|---|---|
| AbstractList | •A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for predicting rock mass parameters, including UCS, Bi, DPW, and α.•The inputs of these models are TBM driving data, including Th, Tor, PR and CP.•These prediction models are established based on 360 samples collected from the Water Supply Project from Songhua River.•The models predict more accurate results for rock mass parameters than common BPNN method.
The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction. Previous studies have confirmed the existence of a relationship between TBM driving parameters and rock mass parameters. In this work, we attempt to utilize the TBM driving parameters to predict rock mass parameters, including uniaxial compressive strength (UCS), brittleness index (Bi), distance between plane of weakness (DPW), and the orientation of discontinuities (α). We propose a hybrid algorithm (SA-BPNN) which integrates the back propagation neural network (BPNN) with simulated annealing (SA). A three-layer BPNN model was trained, using TBM driving and rock mass parameters from the Songhua River water conveyance project. We collected 320 samples, and randomly selected 280 of these to train the model, while the remaining 40 samples made up the first dataset to test the model. The predicted mean absolute percentage errors (MAPEs) of α, UCS, DPW, and Bi were 7.7%, 13.9%, 12.9%, and 11.0%, respectively, with the corresponding determination coefficient (R2) of 0.845, 0.737, 0.731, and 0.657, respectively. Another 40 samples with different lithology were collected to verify the model. Although the prediction results were not as good as those from the first dataset, they were still acceptable. The results reveal that the SA-BPNN model has a relatively high accuracy. To verify the optimization effect of the SA method on the BPNN algorithm, a BPNN model was established and tested. The results of the SA-BPNN model were more accurate than those of the BPNN model. The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction. Previous studies have confirmed the existence of a relationship between TBM driving parameters and rock mass parameters. In this work, we attempt to utilize the TBM driving parameters to predict rock mass parameters, including uniaxial compressive strength (UCS), brittleness index (Bi), distance between plane of weakness (DPW), and the orientation of discontinuities (α). We propose a hybrid algorithm (SA-BPNN) which integrates the back propagation neural network (BPNN) with simulated annealing (SA). A three-layer BPNN model was trained, using TBM driving and rock mass parameters from the Songhua River water conveyance project. We collected 320 samples, and randomly selected 280 of these to train the model, while the remaining 40 samples made up the first dataset to test the model. The predicted mean absolute percentage errors (MAPEs) of α, UCS, DPW, and Bi were 7.7%, 13.9%, 12.9%, and 11.0%, respectively, with the corresponding determination coefficient (R2) of 0.845, 0.737, 0.731, and 0.657, respectively. Another 40 samples with different lithology were collected to verify the model. Although the prediction results were not as good as those from the first dataset, they were still acceptable. The results reveal that the SA-BPNN model has a relatively high accuracy. To verify the optimization effect of the SA method on the BPNN algorithm, a BPNN model was established and tested. The results of the SA-BPNN model were more accurate than those of the BPNN model. |
| ArticleNumber | 103103 |
| Author | Liu, B. Wang, R. Wang, S. Guo, X. Li, J. Wang, Y. Zhao, G. |
| Author_xml | – sequence: 1 givenname: B. surname: Liu fullname: Liu, B. organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China – sequence: 2 givenname: R. surname: Wang fullname: Wang, R. organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China – sequence: 3 givenname: G. surname: Zhao fullname: Zhao, G. organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China – sequence: 4 givenname: X. surname: Guo fullname: Guo, X. organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China – sequence: 5 givenname: Y. surname: Wang fullname: Wang, Y. organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China – sequence: 6 givenname: J. surname: Li fullname: Li, J. organization: China Railway Engineering Equipment Group, Henan, China – sequence: 7 givenname: S. surname: Wang fullname: Wang, S. email: sdgeowsg@gmail.com organization: Geotechnical and Structural Engineering Research Center, Shandong University, Shandong, China |
| BookMark | eNp9kU1v3CAQhlGVSt2k_QM9IfXsDR9ewFIvTdQvKVVzSM9ojMcbNjZsAaftvw_u9tRDJKRBw_uA5uGcnIUYkJC3nG054-rysC1LLlvBeFcbsq4XZMONNk0rVXtGNswY1WjdmVfkPOcDY2wnRLchv28TDt4VHwONI03RPdAZcqZHSDBjwZSpD7TcI727-kbLEgJOtIeMA63I1S0NuCSYaim_Ynqo4YL7BKWeZz8v098dVAomH_YUpn1MvtzPr8nLEaaMb_7VC_Lj08e76y_NzffPX68_3DQgd7w0rdI7VEL2Zuy7oRuMYG43Os2EdEporbka2Qijlq7twYi-V8hAgmJMtIMw8oK8O917TPHngrnYQ1xSqE9aIeWa4krWlDmlXIo5Jxyt8wVWKyWBnyxndvVsD3b1bFfP9uS5ouI_9Jj8DOnP89D7E4R19EePyWbnMbj6FwldsUP0z-FPTw-aXQ |
| CitedBy_id | crossref_primary_10_1016_j_tust_2023_105211 crossref_primary_10_3390_buildings14082454 crossref_primary_10_1007_s00603_024_03903_9 crossref_primary_10_1016_j_earscirev_2022_103991 crossref_primary_10_1016_j_gsf_2020_09_020 crossref_primary_10_3390_app12178468 crossref_primary_10_1016_j_autcon_2024_105425 crossref_primary_10_1155_2021_8819393 crossref_primary_10_1016_j_jocs_2024_102266 crossref_primary_10_3390_eng4020087 crossref_primary_10_1007_s10706_023_02663_7 crossref_primary_10_1016_j_trgeo_2023_101022 crossref_primary_10_1016_j_measurement_2021_109545 crossref_primary_10_1016_j_eswa_2023_120100 crossref_primary_10_1680_jsmic_20_00011 crossref_primary_10_1049_ipr2_12204 crossref_primary_10_1515_aut_2023_0034 crossref_primary_10_3390_app122312334 crossref_primary_10_1016_j_undsp_2024_01_008 crossref_primary_10_1155_2021_8336887 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1016_j_tust_2022_104654 crossref_primary_10_1016_j_solener_2024_112785 crossref_primary_10_1016_j_tust_2023_105040 crossref_primary_10_1016_j_tust_2022_104497 crossref_primary_10_1016_j_jrmge_2021_11_008 crossref_primary_10_1016_j_tust_2020_103677 crossref_primary_10_1007_s00366_021_01393_9 crossref_primary_10_1007_s10668_024_04767_3 crossref_primary_10_12677_mos_2024_134419 crossref_primary_10_3390_math10101746 crossref_primary_10_1007_s10706_023_02536_z crossref_primary_10_1007_s11440_023_01871_y crossref_primary_10_3390_app131810026 crossref_primary_10_1007_s12205_023_2475_9 crossref_primary_10_1016_j_engappai_2022_104842 crossref_primary_10_1016_j_autcon_2022_104310 crossref_primary_10_1016_j_autcon_2022_104711 crossref_primary_10_1016_j_jrmge_2021_05_004 crossref_primary_10_54097_hset_v67i_11524 crossref_primary_10_1007_s40515_025_00572_1 crossref_primary_10_1016_j_tust_2024_106045 crossref_primary_10_1016_j_ymssp_2021_108035 crossref_primary_10_1007_s11709_023_0044_4 crossref_primary_10_1061_JCEMD4_COENG_14788 crossref_primary_10_1007_s10706_023_02739_4 crossref_primary_10_1007_s11709_022_0908_z crossref_primary_10_1038_s41598_023_28243_6 crossref_primary_10_1016_j_resconrec_2022_106272 crossref_primary_10_1007_s10064_022_02594_2 crossref_primary_10_1016_j_undsp_2023_01_001 crossref_primary_10_1016_j_autcon_2022_104326 crossref_primary_10_1016_j_undsp_2023_01_004 crossref_primary_10_1016_j_tust_2021_104054 crossref_primary_10_1016_j_undsp_2023_01_002 crossref_primary_10_1007_s11356_022_22793_4 crossref_primary_10_1038_s41598_022_05027_y crossref_primary_10_1155_2021_5554215 crossref_primary_10_1007_s11440_022_01779_z crossref_primary_10_1007_s12065_021_00606_w crossref_primary_10_1007_s13369_023_07805_w crossref_primary_10_1007_s11440_023_01850_3 crossref_primary_10_1061__ASCE_GM_1943_5622_0002245 crossref_primary_10_1007_s12205_022_1388_3 crossref_primary_10_1007_s00603_024_04032_z crossref_primary_10_1016_j_jrmge_2023_02_014 crossref_primary_10_1016_j_measurement_2024_115596 crossref_primary_10_3390_app132312887 crossref_primary_10_1016_j_measurement_2024_114268 crossref_primary_10_1016_j_engfracmech_2021_107750 crossref_primary_10_1016_j_tust_2020_103595 crossref_primary_10_1007_s12205_023_0719_3 crossref_primary_10_1016_j_tust_2021_103871 crossref_primary_10_1016_j_tust_2023_105096 crossref_primary_10_1007_s40808_024_02093_1 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_1007_s13201_023_01913_6 crossref_primary_10_1016_j_tust_2021_104285 crossref_primary_10_1016_j_jrmge_2021_09_004 crossref_primary_10_1155_2022_8506273 crossref_primary_10_3390_fractalfract7070546 crossref_primary_10_1016_j_geoderma_2022_115749 crossref_primary_10_1061_JCCEE5_CPENG_6041 crossref_primary_10_1007_s10846_022_01664_7 crossref_primary_10_1007_s11440_022_01651_0 crossref_primary_10_3390_app14083240 crossref_primary_10_1007_s11356_022_24420_8 crossref_primary_10_1007_s40098_024_01065_7 crossref_primary_10_1007_s10064_023_03095_6 crossref_primary_10_1016_j_inffus_2024_102705 crossref_primary_10_1007_s00500_022_06735_3 crossref_primary_10_1007_s11600_024_01320_8 crossref_primary_10_1016_j_engappai_2020_104015 crossref_primary_10_1007_s00603_025_04501_z crossref_primary_10_1016_j_tust_2022_104852 crossref_primary_10_1007_s12205_024_1432_6 crossref_primary_10_1016_j_tust_2022_104451 crossref_primary_10_3390_buildings14124027 crossref_primary_10_3390_rs12223811 crossref_primary_10_1007_s11440_023_01902_8 crossref_primary_10_1007_s11431_022_2290_7 crossref_primary_10_1016_j_gsf_2022_101519 crossref_primary_10_1016_j_tust_2022_104448 crossref_primary_10_1016_j_tust_2024_105937 crossref_primary_10_1016_j_advengsoft_2024_103853 crossref_primary_10_1038_s41598_024_65556_6 crossref_primary_10_1002_dug2_12081 crossref_primary_10_1002_dug2_12082 crossref_primary_10_1088_1755_1315_570_5_052056 crossref_primary_10_1016_j_tust_2023_105317 crossref_primary_10_1007_s12205_022_0128_z crossref_primary_10_1007_s11368_024_03886_8 crossref_primary_10_1016_j_measurement_2023_112942 crossref_primary_10_3390_app11031060 crossref_primary_10_1016_j_undsp_2021_12_003 crossref_primary_10_1038_s41598_024_73742_9 crossref_primary_10_1016_j_jrmge_2021_07_012 crossref_primary_10_1007_s10064_021_02527_5 crossref_primary_10_1016_j_ymssp_2021_108353 crossref_primary_10_1038_s41598_022_05727_5 crossref_primary_10_1016_j_aei_2023_102130 crossref_primary_10_3390_app13127060 crossref_primary_10_3390_app112110264 crossref_primary_10_1016_j_trgeo_2022_100837 crossref_primary_10_1016_j_tust_2024_105960 crossref_primary_10_1177_14759217241289066 crossref_primary_10_1155_2020_8838216 crossref_primary_10_1016_j_rsma_2022_102719 crossref_primary_10_1016_j_tust_2022_104794 crossref_primary_10_1007_s11440_023_02048_3 crossref_primary_10_1016_j_autcon_2021_103647 crossref_primary_10_1080_15376494_2022_2051780 crossref_primary_10_3390_rs15112812 crossref_primary_10_3390_su15075768 crossref_primary_10_1016_j_jrmge_2022_06_015 crossref_primary_10_1007_s10064_023_03406_x crossref_primary_10_1016_j_undsp_2022_11_001 crossref_primary_10_1142_S021812662450230X crossref_primary_10_3390_su142013420 crossref_primary_10_1007_s11440_022_01685_4 |
| Cites_doi | 10.1016/j.neucom.2013.09.016 10.1016/j.jappgeo.2012.10.002 10.1016/j.eswa.2011.01.019 10.1007/s12665-015-4106-3 10.1063/1.1699114 10.1057/palgrave.jors.2602436 10.1016/j.tust.2004.02.128 10.1016/j.ijrmms.2011.02.013 10.1016/j.gsf.2014.10.004 10.1007/s00603-004-0032-5 10.1007/s00603-014-0619-4 10.1515/eng-2017-0012 10.1016/j.eswa.2007.12.024 10.1016/j.ijrmms.2015.09.019 10.1016/S0925-2312(00)00352-0 10.1016/j.tust.2006.07.004 10.1007/s00603-002-0049-6 10.1007/BF02478259 10.1016/j.autcon.2018.03.030 10.1016/j.ijrmms.2014.12.007 10.1021/ef400179b 10.1016/0893-6080(88)90469-8 10.1016/j.anucene.2013.10.024 10.1038/323533a0 10.1016/j.tust.2010.01.008 10.1016/j.eswa.2010.04.020 10.1016/S0886-7798(03)00030-0 10.1016/j.advengsoft.2013.12.007 10.1016/j.autcon.2018.11.013 10.1080/17486020701377140 10.1109/4235.996017 10.1016/j.jclepro.2016.08.005 10.1016/j.ijrmms.2008.03.003 10.1016/j.ijrmms.2014.09.012 10.1016/j.autcon.2018.12.022 10.1007/s00603-012-0314-2 10.1016/j.tust.2017.07.017 10.1126/science.220.4598.671 10.1007/s11740-011-0298-x 10.1016/j.tust.2008.12.007 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Jan 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2020 |
| DBID | AAYXX CITATION 8FD FR3 KR7 |
| DOI | 10.1016/j.tust.2019.103103 |
| DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-4364 |
| ExternalDocumentID | 10_1016_j_tust_2019_103103 S088677981930269X |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 8FD AFXIZ AGCQF AGRNS BNPGV FR3 KR7 SSH |
| ID | FETCH-LOGICAL-a351t-4675e623b8fb9d9d820c5fc7023c6277716f0faf73c4ba82bb6e0a3a60024d283 |
| IEDL.DBID | .~1 |
| ISSN | 0886-7798 |
| IngestDate | Mon Jul 14 10:35:55 EDT 2025 Thu Oct 16 04:43:41 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Tue Jul 16 04:31:22 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | BP neural network TBM Simulated annealing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a351t-4675e623b8fb9d9d820c5fc7023c6277716f0faf73c4ba82bb6e0a3a60024d283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2330024163 |
| PQPubID | 2045384 |
| ParticipantIDs | proquest_journals_2330024163 crossref_citationtrail_10_1016_j_tust_2019_103103 crossref_primary_10_1016_j_tust_2019_103103 elsevier_sciencedirect_doi_10_1016_j_tust_2019_103103 |
| PublicationCentury | 2000 |
| PublicationDate | January 2020 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Chaki, Ghosal (b0035) 2011; 5 Bahrami, Doulati Ardejani (b0005) 2016; 137 Matias, Souza, Araújo, Antunes (b0125) 2014; 129 Hamidi, Shahriar, Rezai, Rostami (b0095) 2010; 25 Zhao, Gong, Zhang, Zhao (b0225) 2007; 2 Lee, Chen, Huang (b0110) 2001; 41 Deb, Pratap, Agarwal, Meyarivan (b0050) 2002; 6 Rumelhart, Hinton, Williams (b0180) 1986; 323 Sun, Shi, Zhang, Zhao, Song (b0185) 2018; 92 Zameer, Mirza, Mirza (b0215) 2014; 65 Gandomi, Soltanpour, Zolfaghari, Gandomi (b0075) 2016; 7 Yagiz, Karahan (b0200) 2015; 80 Zain, Haron, Sharif (b0210) 2011; 38 Bruland (b0030) 1998 Hechtnielsen, R., 1988. Theory of the backpropagation neural network. Neural networks for perception, vol 1, pp. 445. Chatterjee, Maitra, Goswami (b0040) 2009; 36 Gong, Zhao (b0090) 2009; 46 Fazeli, Soleimani, Ahmadi, Badrnezhad, Mohammadi (b0060) 2013; 27 Mahdevari, Shahriar, Yagiz, Shirazi (b0120) 2014; 72 Mikaeil, Naghadehi, Sereshki (b0140) 2009; 24 Kirkpatrick, Gelatt, Vecchi (b0105) 1983; 220 Minh, Katushin, Antonov, Veinthal (b0145) 2017; 7 Zhang, Liu, Tan (b0220) 2019; 100 Bejari (b0015) 2013; 46 Fattahi, Bazdar (b0055) 2017; 70 Frough, Torabi, Yagiz (b0065) 2015; 48 Gong, Zhao (b0085) 2007; 22 Mirjalili, Mirjalili, Lewis (b0150) 2014; 69 Benato, Oreste (b0025) 2015; 74 Okubo, Kfukie, Chen (b0155) 2003; 36 Liu, Dai, Zhang, Liu (b0115) 2015; 73 Barton (b0010) 2000 Gao, Shi, Song, Zhang, Zhang (b0080) 2019; 98 Yagiz, Karahan (b0195) 2011; 48 Mcculloch, Pitts (b0130) 1943; 5 Preinl (b0160) 2006; 21 Tavakkoli-Moghaddam, Safaei, Sassani (b0190) 2008; 59 Yamamoto, Shirasagi, Yamamoto, Mito, Aoki (b0205) 2003; 18 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b0135) 1953; 21 Rostami (b0170) 2008; 1 Ribacchi, Fazio (b0165) 2005; 38 Benardos, Kaliampakos (b0020) 2004; 19 Zhu, Zhao (b0230) 2013; 88 Rostami, J., Ozdemir, L., Nilsen, B., 1977. Comparison between CSM and NTH hard rock TBM performance prediction models. In: Proceedings of the annual technical meeting: Institute of Shaft Drilling. Chen, Lin, Yang, Tsai (b0045) 2010; 37 Mahdevari (10.1016/j.tust.2019.103103_b0120) 2014; 72 Ribacchi (10.1016/j.tust.2019.103103_b0165) 2005; 38 Chen (10.1016/j.tust.2019.103103_b0045) 2010; 37 Gao (10.1016/j.tust.2019.103103_b0080) 2019; 98 Metropolis (10.1016/j.tust.2019.103103_b0135) 1953; 21 10.1016/j.tust.2019.103103_b0100 Yagiz (10.1016/j.tust.2019.103103_b0200) 2015; 80 Yamamoto (10.1016/j.tust.2019.103103_b0205) 2003; 18 10.1016/j.tust.2019.103103_b0175 Chaki (10.1016/j.tust.2019.103103_b0035) 2011; 5 Gandomi (10.1016/j.tust.2019.103103_b0075) 2016; 7 Mikaeil (10.1016/j.tust.2019.103103_b0140) 2009; 24 Liu (10.1016/j.tust.2019.103103_b0115) 2015; 73 Deb (10.1016/j.tust.2019.103103_b0050) 2002; 6 Bejari (10.1016/j.tust.2019.103103_b0015) 2013; 46 Hamidi (10.1016/j.tust.2019.103103_b0095) 2010; 25 Tavakkoli-Moghaddam (10.1016/j.tust.2019.103103_b0190) 2008; 59 Frough (10.1016/j.tust.2019.103103_b0065) 2015; 48 Okubo (10.1016/j.tust.2019.103103_b0155) 2003; 36 Rumelhart (10.1016/j.tust.2019.103103_b0180) 1986; 323 Benato (10.1016/j.tust.2019.103103_b0025) 2015; 74 Zain (10.1016/j.tust.2019.103103_b0210) 2011; 38 Matias (10.1016/j.tust.2019.103103_b0125) 2014; 129 Preinl (10.1016/j.tust.2019.103103_b0160) 2006; 21 Mirjalili (10.1016/j.tust.2019.103103_b0150) 2014; 69 Barton (10.1016/j.tust.2019.103103_b0010) 2000 Fazeli (10.1016/j.tust.2019.103103_b0060) 2013; 27 Zhang (10.1016/j.tust.2019.103103_b0220) 2019; 100 Gong (10.1016/j.tust.2019.103103_b0090) 2009; 46 Benardos (10.1016/j.tust.2019.103103_b0020) 2004; 19 Zameer (10.1016/j.tust.2019.103103_b0215) 2014; 65 Bahrami (10.1016/j.tust.2019.103103_b0005) 2016; 137 Fattahi (10.1016/j.tust.2019.103103_b0055) 2017; 70 Sun (10.1016/j.tust.2019.103103_b0185) 2018; 92 Bruland (10.1016/j.tust.2019.103103_b0030) 1998 Yagiz (10.1016/j.tust.2019.103103_b0195) 2011; 48 Lee (10.1016/j.tust.2019.103103_b0110) 2001; 41 Kirkpatrick (10.1016/j.tust.2019.103103_b0105) 1983; 220 Mcculloch (10.1016/j.tust.2019.103103_b0130) 1943; 5 Minh (10.1016/j.tust.2019.103103_b0145) 2017; 7 Zhu (10.1016/j.tust.2019.103103_b0230) 2013; 88 Zhao (10.1016/j.tust.2019.103103_b0225) 2007; 2 Rostami (10.1016/j.tust.2019.103103_b0170) 2008; 1 Chatterjee (10.1016/j.tust.2019.103103_b0040) 2009; 36 Gong (10.1016/j.tust.2019.103103_b0085) 2007; 22 |
| References_xml | – volume: 129 start-page: 428 year: 2014 end-page: 436 ident: b0125 article-title: Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine publication-title: Neurocomputing – reference: Hechtnielsen, R., 1988. Theory of the backpropagation neural network. Neural networks for perception, vol 1, pp. 445. – volume: 7 start-page: 75 year: 2016 end-page: 82 ident: b0075 article-title: Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique publication-title: Geosci. Front. – volume: 24 start-page: 500 year: 2009 end-page: 505 ident: b0140 article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions publication-title: Tunn. Undergr. Space Technol. – volume: 70 start-page: 114 year: 2017 end-page: 124 ident: b0055 article-title: Applying improved artificial neural network models to evaluate drilling rate index publication-title: Tunn. Undergr. Space Technol. – volume: 21 year: 2006 ident: b0160 article-title: Rock mass excavability indicator: New way to selecting the optimum tunnel construction method publication-title: Tunn. Undergr. Space Technol. – volume: 48 start-page: 1305 year: 2015 end-page: 1312 ident: b0065 article-title: Application of RMR for estimating rock-mass–related TBM utilization and performance parameters: A case study publication-title: Rock Mech. Rock Eng. – volume: 46 start-page: 897 year: 2013 end-page: 907 ident: b0015 article-title: Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses publication-title: Rock Mech. Rock Eng. – volume: 41 start-page: 125 year: 2001 end-page: 143 ident: b0110 article-title: Learning efficiency improvement of back propagation algorithm by error saturation prevention method publication-title: Neurocomputing – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b0105 article-title: Optimization by simulated annealing publication-title: Science – volume: 59 start-page: 443 year: 2008 end-page: 454 ident: b0190 article-title: A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing publication-title: J. Oper. Res. Soc. – volume: 21 start-page: 1087 year: 1953 end-page: 1091 ident: b0135 article-title: Equation of state calculations by fast computing machines publication-title: The J. Chem. Phys. – reference: Rostami, J., Ozdemir, L., Nilsen, B., 1977. Comparison between CSM and NTH hard rock TBM performance prediction models. In: Proceedings of the annual technical meeting: Institute of Shaft Drilling. – volume: 137 start-page: 1129 year: 2016 end-page: 1137 ident: b0005 article-title: Prediction of pyrite oxidation in a coal washing waste pile using a hybrid method, coupling artificial neural networks and simulated annealing (ANN/SA) publication-title: J. Clean Prod. – volume: 65 start-page: 122 year: 2014 end-page: 131 ident: b0215 article-title: Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes publication-title: Ann. Nucl. Energy – volume: 72 start-page: 214 year: 2014 end-page: 229 ident: b0120 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int. J. Rock Mech. Min. Sci. – year: 2000 ident: b0010 article-title: TBM tunnelling in jointed and faulted rock – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0150 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 100 start-page: 73 year: 2019 end-page: 83 ident: b0220 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom. Constr. – volume: 73 start-page: 5933 year: 2015 end-page: 5949 ident: b0115 article-title: Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity publication-title: Environ. Earth Sci. – volume: 36 start-page: 2391 year: 2009 end-page: 2399 ident: b0040 article-title: Classification of overcurrent and inrush current for power system reliability using Slantlet transform and artificial neural network publication-title: Expert Syst. Appl. – volume: 38 start-page: 105 year: 2005 end-page: 127 ident: b0165 article-title: Influence of rock mass parameters on the performance of a TBM in a Gneissic formation (Varzo tunnel) publication-title: Rock Mech. Rock Eng. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0050 article-title: A fast and elitist multi objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 80 start-page: 308 year: 2015 end-page: 315 ident: b0200 article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass publication-title: Int. J. Rock Mech. Min. Sci. – volume: 19 start-page: 597 year: 2004 end-page: 605 ident: b0020 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunn. Undergr. Space Technol. – volume: 18 start-page: 213 year: 2003 end-page: 221 ident: b0205 article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data publication-title: Tunn. Undergr. Space Technol. – volume: 38 start-page: 8316 year: 2011 end-page: 8326 ident: b0210 article-title: Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA publication-title: Expert Syst. Appl. – volume: 2 start-page: 123 year: 2007 end-page: 128 ident: b0225 article-title: Prediction model of tunnel boring machine performance by ensemble neural networks publication-title: Geomech. Geoeng. Int. J. – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: b0180 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 5 start-page: 251 year: 2011 end-page: 262 ident: b0035 article-title: Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel publication-title: Prod. Eng. Res. Devel. – volume: 98 start-page: 225 year: 2019 end-page: 235 ident: b0080 article-title: Recurrent neural networks for real-time prediction of TBM operating parameters publication-title: Autom. Constr. – volume: 22 start-page: 317 year: 2007 end-page: 324 ident: b0085 article-title: Influence of rock brittleness on TBM penetration rate in Singapore granite publication-title: Tunn. Undergr. Space Technol. – volume: 27 start-page: 3523 year: 2013 end-page: 3537 ident: b0060 article-title: Experimental study and modeling of ultrafiltration of refinery effluents using a hybrid intelligent approach publication-title: Energy Fuels – volume: 92 start-page: 23 year: 2018 end-page: 34 ident: b0185 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom. Constr. – volume: 48 start-page: 427 year: 2011 end-page: 1423 ident: b0195 article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization publication-title: Int. J. Rock Mech. Min. Sci. – volume: 46 start-page: 8 year: 2009 end-page: 18 ident: b0090 article-title: Development of a rock mass characteristics model for TBM penetration rate prediction publication-title: Int. J. Rock Mech. Min. Sci. – volume: 1 start-page: 18 year: 2008 end-page: 28 ident: b0170 article-title: Hard rock TBM cutterhead modeling for design and performance prediction publication-title: Geomech. Tunnel. (Aust. J. Geotech. Eng.) – volume: 36 start-page: 305 year: 2003 end-page: 322 ident: b0155 article-title: Expert systems for applicability of tunnel boring machine in Japan publication-title: Rock Mech. Rock Eng. – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b0130 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 37 start-page: 7147 year: 2010 end-page: 7153 ident: b0045 article-title: Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach publication-title: Expert Syst. Appl. – volume: 25 start-page: 333 year: 2010 end-page: 345 ident: b0095 article-title: Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system publication-title: Tunn. Undergr. Space Technol. – volume: 74 start-page: 119 year: 2015 end-page: 127 ident: b0025 article-title: Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics publication-title: Int. J. Rock Mech. Min. Sci. – year: 1998 ident: b0030 article-title: Hard rock tunnel boring – volume: 88 start-page: 23 year: 2013 end-page: 30 ident: b0230 article-title: Obliquely incident wave propagation across rock joints with virtual wave source method publication-title: J. Appl. Geophys. – volume: 7 start-page: 60 year: 2017 end-page: 68 ident: b0145 article-title: Regression models and fuzzy logic prediction of TBM penetration rate publication-title: Open Eng. – volume: 129 start-page: 428 year: 2014 ident: 10.1016/j.tust.2019.103103_b0125 article-title: Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.016 – volume: 88 start-page: 23 year: 2013 ident: 10.1016/j.tust.2019.103103_b0230 article-title: Obliquely incident wave propagation across rock joints with virtual wave source method publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2012.10.002 – volume: 38 start-page: 8316 issue: 7 year: 2011 ident: 10.1016/j.tust.2019.103103_b0210 article-title: Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.019 – volume: 73 start-page: 5933 issue: 10 year: 2015 ident: 10.1016/j.tust.2019.103103_b0115 article-title: Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4106-3 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.tust.2019.103103_b0135 article-title: Equation of state calculations by fast computing machines publication-title: The J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 59 start-page: 443 issue: 4 year: 2008 ident: 10.1016/j.tust.2019.103103_b0190 article-title: A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing publication-title: J. Oper. Res. Soc. doi: 10.1057/palgrave.jors.2602436 – volume: 19 start-page: 597 issue: 6 year: 2004 ident: 10.1016/j.tust.2019.103103_b0020 article-title: Modelling TBM performance with artificial neural networks publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2004.02.128 – volume: 48 start-page: 427 year: 2011 ident: 10.1016/j.tust.2019.103103_b0195 article-title: Prediction of hard rock TBM penetration rate using particle swarm optimization publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2011.02.013 – volume: 7 start-page: 75 issue: 1 year: 2016 ident: 10.1016/j.tust.2019.103103_b0075 article-title: Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique publication-title: Geosci. Front. doi: 10.1016/j.gsf.2014.10.004 – volume: 38 start-page: 105 issue: 2 year: 2005 ident: 10.1016/j.tust.2019.103103_b0165 article-title: Influence of rock mass parameters on the performance of a TBM in a Gneissic formation (Varzo tunnel) publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-004-0032-5 – volume: 48 start-page: 1305 issue: 3 year: 2015 ident: 10.1016/j.tust.2019.103103_b0065 article-title: Application of RMR for estimating rock-mass–related TBM utilization and performance parameters: A case study publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-014-0619-4 – volume: 7 start-page: 60 issue: 1 year: 2017 ident: 10.1016/j.tust.2019.103103_b0145 article-title: Regression models and fuzzy logic prediction of TBM penetration rate publication-title: Open Eng. doi: 10.1515/eng-2017-0012 – year: 2000 ident: 10.1016/j.tust.2019.103103_b0010 – volume: 36 start-page: 2391 issue: 2 year: 2009 ident: 10.1016/j.tust.2019.103103_b0040 article-title: Classification of overcurrent and inrush current for power system reliability using Slantlet transform and artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.024 – volume: 80 start-page: 308 year: 2015 ident: 10.1016/j.tust.2019.103103_b0200 article-title: Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2015.09.019 – volume: 41 start-page: 125 issue: 1–4 year: 2001 ident: 10.1016/j.tust.2019.103103_b0110 article-title: Learning efficiency improvement of back propagation algorithm by error saturation prevention method publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00352-0 – volume: 22 start-page: 317 issue: 3 year: 2007 ident: 10.1016/j.tust.2019.103103_b0085 article-title: Influence of rock brittleness on TBM penetration rate in Singapore granite publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2006.07.004 – volume: 36 start-page: 305 year: 2003 ident: 10.1016/j.tust.2019.103103_b0155 article-title: Expert systems for applicability of tunnel boring machine in Japan publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-002-0049-6 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 10.1016/j.tust.2019.103103_b0130 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 92 start-page: 23 year: 2018 ident: 10.1016/j.tust.2019.103103_b0185 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.030 – volume: 74 start-page: 119 year: 2015 ident: 10.1016/j.tust.2019.103103_b0025 article-title: Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2014.12.007 – volume: 27 start-page: 3523 year: 2013 ident: 10.1016/j.tust.2019.103103_b0060 article-title: Experimental study and modeling of ultrafiltration of refinery effluents using a hybrid intelligent approach publication-title: Energy Fuels doi: 10.1021/ef400179b – ident: 10.1016/j.tust.2019.103103_b0100 doi: 10.1016/0893-6080(88)90469-8 – volume: 65 start-page: 122 year: 2014 ident: 10.1016/j.tust.2019.103103_b0215 article-title: Core loading pattern optimization of a typical two-loop 300 MWe PWR using Simulated Annealing (SA), novel crossover Genetic Algorithms (GA) and hybrid GA(SA) schemes publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.10.024 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.tust.2019.103103_b0180 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – ident: 10.1016/j.tust.2019.103103_b0175 – volume: 25 start-page: 333 year: 2010 ident: 10.1016/j.tust.2019.103103_b0095 article-title: Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2010.01.008 – volume: 37 start-page: 7147 issue: 10 year: 2010 ident: 10.1016/j.tust.2019.103103_b0045 article-title: Optimization of wire electrical discharge machining for pure tungsten using a neural network integrated simulated annealing approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.04.020 – volume: 18 start-page: 213 issue: 2 year: 2003 ident: 10.1016/j.tust.2019.103103_b0205 article-title: Evaluation of the geological condition ahead of the tunnel face by geostatistical techniques using TBM driving data publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/S0886-7798(03)00030-0 – volume: 69 start-page: 46 issue: 3 year: 2014 ident: 10.1016/j.tust.2019.103103_b0150 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 98 start-page: 225 year: 2019 ident: 10.1016/j.tust.2019.103103_b0080 article-title: Recurrent neural networks for real-time prediction of TBM operating parameters publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.11.013 – volume: 2 start-page: 123 issue: 2 year: 2007 ident: 10.1016/j.tust.2019.103103_b0225 article-title: Prediction model of tunnel boring machine performance by ensemble neural networks publication-title: Geomech. Geoeng. Int. J. doi: 10.1080/17486020701377140 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.tust.2019.103103_b0050 article-title: A fast and elitist multi objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 137 start-page: 1129 year: 2016 ident: 10.1016/j.tust.2019.103103_b0005 article-title: Prediction of pyrite oxidation in a coal washing waste pile using a hybrid method, coupling artificial neural networks and simulated annealing (ANN/SA) publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2016.08.005 – volume: 46 start-page: 8 issue: 1 year: 2009 ident: 10.1016/j.tust.2019.103103_b0090 article-title: Development of a rock mass characteristics model for TBM penetration rate prediction publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2008.03.003 – volume: 72 start-page: 214 year: 2014 ident: 10.1016/j.tust.2019.103103_b0120 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2014.09.012 – volume: 100 start-page: 73 year: 2019 ident: 10.1016/j.tust.2019.103103_b0220 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.12.022 – volume: 46 start-page: 897 issue: 4 year: 2013 ident: 10.1016/j.tust.2019.103103_b0015 article-title: Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-012-0314-2 – volume: 70 start-page: 114 year: 2017 ident: 10.1016/j.tust.2019.103103_b0055 article-title: Applying improved artificial neural network models to evaluate drilling rate index publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2017.07.017 – volume: 21 issue: 3 year: 2006 ident: 10.1016/j.tust.2019.103103_b0160 article-title: Rock mass excavability indicator: New way to selecting the optimum tunnel construction method publication-title: Tunn. Undergr. Space Technol. – volume: 1 start-page: 18 year: 2008 ident: 10.1016/j.tust.2019.103103_b0170 article-title: Hard rock TBM cutterhead modeling for design and performance prediction publication-title: Geomech. Tunnel. (Aust. J. Geotech. Eng.) – year: 1998 ident: 10.1016/j.tust.2019.103103_b0030 – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.tust.2019.103103_b0105 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 5 start-page: 251 issue: 3 year: 2011 ident: 10.1016/j.tust.2019.103103_b0035 article-title: Application of an optimized SA-ANN hybrid model for parametric modeling and optimization of LASOX cutting of mild steel publication-title: Prod. Eng. Res. Devel. doi: 10.1007/s11740-011-0298-x – volume: 24 start-page: 500 issue: 5 year: 2009 ident: 10.1016/j.tust.2019.103103_b0140 article-title: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2008.12.007 |
| SSID | ssj0005229 |
| Score | 2.5946233 |
| Snippet | •A hybrid algorithm (SA-BPNN) which integrates a back propagation neural network with simulated annealing is developed.•SA-BPNN models are established for... The prediction of rock mass parameters is of great significance in ensuring the safety and efficiency of tunnel boring machine (TBM) tunnel construction.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103103 |
| SubjectTerms | Algorithms Artificial neural networks Boring machines BP neural network Compressive strength Computer simulation Datasets Lithology Mathematical models Model accuracy Model testing Neural networks Optimization Parameters Predictions Rock masses Rocks Simulated annealing TBM Tunnel construction Tunnels Underground construction |
| Title | Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm |
| URI | https://dx.doi.org/10.1016/j.tust.2019.103103 https://www.proquest.com/docview/2330024163 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: SD Complete Freedom Collection customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-4364 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AKRWK dateStart: 19860101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEYUSQ_ezAr73h6BSFADIRESbk277eoqLASWxJO_3Zl9EB8JB2-bTbuPTne-r9uZbwi50YyFLeEqQzFHGk4gTYNJpQ1tC5ggqIieJdIOhl5_4jxO3WmFdMtcGAyrLHx_7tMzb12caRaj2VzGcfMZvg_P9xlAmg0LCTbFDHbHxyoGd5_fwzyySmXY2MDWReJMHuOVYloDQCDD3HOzLJz1F5x-uekMe3pH5LAgjbSdP9cxqejkhBx8kxI8JR-jFW654DDTRUQBlt7pHIgxRW3vOca8rGmcUKB7dNwZ0HSD8S0UMUxR6NIZUVS2hJskeVw43epIKLqO51jkC44E9BKYwE7F7GWxitPX-RmZ9O7H3b5RVFUwhO2aqQGe0dVAemQQSaaYAgoQulHoA3iHnuX7sICKWpGIfDt0pAgsKT3dErbADTxHARs5J9VkkegLQpWjhfaFZoGjUOgtMLUWlimYbFnSdnWNmOVw8rCQHMfKFzNexpa9cTQBRxPw3AQ1crvts8wFN3a2dksr8R_ThgMi7OxXL03Ki492zS3bxncEhnr5z8tekX0L1-PZL5o6qaarjb4G0pLKRjYrG2Sv_fDUH34BpEbs4Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RlR1D14MxX6ot2jEA0qEBIh4bbZ7W61CoVASTz5253pg_hIOHhrmp0-ZrbzfdudByFXmrGgLlxlKOZIw_GlaTCptKFtARMEK6KnibTdXqM9dB5H7qhEWkUuDIZV5r4_8-mpt87P1HJt1mZRVHuG76PheQwgzYaFBBttkE3HtTxcgd18fo_zSFuV4WgDh-eZM1mQV4J5DYCBDJPPzaJz1l90-uWnU_C53yO7OWukt9mD7ZOSjg_Izrdagofkoz_HPRfUM52GFHDpnU6AGVMs7j3BoJcFjWIKfI8Oml2aLDHAhSKIKQoizT7F0pZwkzgLDKerQhKKLqIJdvmCIwFSAjPYqRi_TOdR8jo5IsP7u0GrbeRtFQxhu2ZigGt0NbAe6YeSKaaAAwRuGHiA3kED9AcrqLAeitCzA0cK35KyoevCFriD5yigI8ekHE9jfUKocrTQntDMdxRWevNNrYVlCibrlrRdXSFmoU4e5DXHsfXFmBfBZW8cTcDRBDwzQYVcr2RmWcWNtaPdwkr8x7zhAAlr5aqFSXn-1S64Zdv4jkBRT_952Uuy1R50O7zz0Hs6I9sWLs7T_zVVUk7mS30ODCaRF-kM_QIpw-52 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+rock+mass+parameters+in+the+TBM+tunnel+based+on+BP+neural+network+integrated+simulated+annealing+algorithm&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Liu%2C+B&rft.au=Wang%2C+R&rft.au=Zhao%2C+G&rft.au=Guo%2C+X&rft.date=2020-01-01&rft.pub=Elsevier+BV&rft.issn=0886-7798&rft.eissn=1878-4364&rft.volume=95&rft.spage=1&rft_id=info:doi/10.1016%2Fj.tust.2019.103103&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |