A Progressive Hedging-Based Solution Approach for Integrated Planning and Scheduling Problems under Demand Uncertainty
Progressive hedging (PH) is a classical decomposition algorithm for solving multistage stochastic problems. However, due to the exponentially growing model size of real-world enterprise-wide optimization problems, critical issues arise when implementing PH in practice. In this work, we propose a nov...
Saved in:
| Published in | Industrial & engineering chemistry research Vol. 58; no. 32; pp. 14880 - 14896 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
American Chemical Society
14.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0888-5885 1520-5045 1520-5045 |
| DOI | 10.1021/acs.iecr.9b02620 |
Cover
| Abstract | Progressive hedging (PH) is a classical decomposition algorithm for solving multistage stochastic problems. However, due to the exponentially growing model size of real-world enterprise-wide optimization problems, critical issues arise when implementing PH in practice. In this work, we propose a novel PH-based algorithm to address integrated planning and scheduling problems under demand uncertainty in a general mathematical formulation. Strategies are proposed to accelerate and guarantee the convergence of the algorithm. Through application of the enhanced PH to solve variants of a typical state–task network example and a real-world ethylene plant case, computational results demonstrate that the proposed algorithm outperforms directly invoking commercial solvers and gets a better solution within nearly two-thirds of the direct solution time on a serial computer. The advantage of the multistage stochastic programming method is also demonstrated by comparing the model solution with the counterparts of an expected value-based deterministic model and a two-stage stochastic model. |
|---|---|
| AbstractList | Progressive hedging (PH) is a classical decomposition algorithm for solving multistage stochastic problems. However, due to the exponentially growing model size of real-world enterprise-wide optimization problems, critical issues arise when implementing PH in practice. In this work, we propose a novel PH-based algorithm to address integrated planning and scheduling problems under demand uncertainty in a general mathematical formulation. Strategies are proposed to accelerate and guarantee the convergence of the algorithm. Through application of the enhanced PH to solve variants of a typical state–task network example and a real-world ethylene plant case, computational results demonstrate that the proposed algorithm outperforms directly invoking commercial solvers and gets a better solution within nearly two-thirds of the direct solution time on a serial computer. The advantage of the multistage stochastic programming method is also demonstrated by comparing the model solution with the counterparts of an expected value-based deterministic model and a two-stage stochastic model. |
| Author | Peng, Zedong Rong, Gang Zhang, Yi Su, Hongye Feng, Yiping |
| AuthorAffiliation | Zhejiang University State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering |
| AuthorAffiliation_xml | – name: State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering – name: Zhejiang University |
| Author_xml | – sequence: 1 givenname: Zedong orcidid: 0000-0001-6001-1738 surname: Peng fullname: Peng, Zedong – sequence: 2 givenname: Yi orcidid: 0000-0002-0249-0547 surname: Zhang fullname: Zhang, Yi – sequence: 3 givenname: Yiping surname: Feng fullname: Feng, Yiping email: ypfeng@zju.edu.cn – sequence: 4 givenname: Gang orcidid: 0000-0002-6779-2968 surname: Rong fullname: Rong, Gang – sequence: 5 givenname: Hongye surname: Su fullname: Su, Hongye |
| BookMark | eNp9kE1LAzEQhoMoWD_uHnP04NZJdrPdHuu3ULCgPS_ZZLambJOaZAv-e7O0J0FPwzDP-zI8Z-TYOouEXDEYM-DsVqowNqj8eNoALzkckRETHDIBhTgmI6iqKhNVJU7JWQhrABCiKEZkN6ML71YeQzA7pC-oV8ausjsZUNN31_XROEtn2613Un3S1nn6aiOuvIwJWHTS2sRTaROtPlH33bCmyqbDTaC91ejpA24GYGkV-iiNjd8X5KSVXcDLwzwny6fHj_uXbP72_Ho_m2cyFxCzybQqsBSKi4rzhiO0XBQNhzIvNGMVx7zVSufIylIxJVqGqmV8yjVynYPK83Nyve9N_3_1GGK9MUFhl_5G14ea5yDYhIspSyjsUeVdCB7beuvNRvrvmkE9KK6T4npQXB8Up0j5K6JMlIOx6KXp_gve7IPDZe16b5OEv_EfJ4mVbA |
| CitedBy_id | crossref_primary_10_1109_TITS_2023_3342319 crossref_primary_10_1002_net_22007 crossref_primary_10_1016_j_cie_2024_110393 |
| Cites_doi | 10.1007/s10287-010-0125-4 10.1007/BF00247208 10.1002/aic.11167 10.1007/BF00934810 10.1561/2200000016 10.1007/s12532-011-0026-8 10.1016/j.epsr.2011.09.006 10.1021/ie970927g 10.1007/s10107-016-1000-z 10.1007/s00291-002-0101-7 10.1016/j.compchemeng.2016.04.009 10.1007/s12532-012-0036-1 10.1016/j.compchemeng.2009.11.016 10.1021/ie8001414 10.1016/j.compchemeng.2016.11.011 10.1007/s10107-007-0197-2 10.1007/978-3-319-58821-6 10.1016/j.compchemeng.2014.02.023 10.1007/978-1-4614-0237-4 10.1016/j.compchemeng.2017.02.006 10.1007/s10287-015-0229-y 10.1016/j.ejor.2016.03.007 10.1002/aic.10617 10.1016/0098-1354(95)00184-0 10.1016/j.cep.2007.02.021 10.1002/net.20456 10.1109/CONTROL.2018.8516834 10.1021/ie100790t 10.1016/j.tre.2018.01.015 10.1016/j.compchemeng.2016.03.002 10.1021/ie050778z 10.1287/moor.16.1.119 10.1021/ie800646q 10.1016/j.compchemeng.2009.06.007 10.1137/1.9780898718751 10.1016/j.compchemeng.2012.06.038 10.1021/ie070835j 10.1016/j.compchemeng.2010.06.011 10.1007/s10479-014-1608-4 10.1021/ie501986d 10.1137/0117061 10.1016/S0167-6377(98)00050-9 10.1016/S0007-8506(07)60720-3 10.1021/acs.iecr.5b04973 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1021/acs.iecr.9b02620 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1520-5045 |
| EndPage | 14896 |
| ExternalDocumentID | 10_1021_acs_iecr_9b02620 a995915384 |
| GroupedDBID | 02 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 4.4 5VS 6TJ AAYXX ABBLG ABLBI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ~02 7S9 L.6 |
| ID | FETCH-LOGICAL-a350t-7984e65c25822b2e0f254b20634d1182e3fdcd3e166c1c5f1ecf1292de2d30c33 |
| IEDL.DBID | ACS |
| ISSN | 0888-5885 1520-5045 |
| IngestDate | Thu Oct 02 11:27:05 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Tue Jul 01 00:49:07 EDT 2025 Thu Aug 27 13:43:33 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 32 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a350t-7984e65c25822b2e0f254b20634d1182e3fdcd3e166c1c5f1ecf1292de2d30c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6001-1738 0000-0002-6779-2968 0000-0002-0249-0547 |
| PQID | 2305172591 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2305172591 crossref_primary_10_1021_acs_iecr_9b02620 crossref_citationtrail_10_1021_acs_iecr_9b02620 acs_journals_10_1021_acs_iecr_9b02620 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-14 |
| PublicationDateYYYYMMDD | 2019-08-14 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationTitle | Industrial & engineering chemistry research |
| PublicationTitleAlternate | Ind. Eng. Chem. Res |
| PublicationYear | 2019 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 Birge J. R. (ref43/cit43) 2011 |
| References_xml | – ident: ref29/cit29 doi: 10.1007/s10287-010-0125-4 – ident: ref25/cit25 doi: 10.1007/BF00247208 – ident: ref13/cit13 doi: 10.1002/aic.11167 – ident: ref22/cit22 doi: 10.1007/BF00934810 – ident: ref23/cit23 doi: 10.1561/2200000016 – ident: ref41/cit41 doi: 10.1007/s12532-011-0026-8 – ident: ref27/cit27 doi: 10.1016/j.epsr.2011.09.006 – ident: ref42/cit42 doi: 10.1021/ie970927g – ident: ref31/cit31 doi: 10.1007/s10107-016-1000-z – ident: ref34/cit34 doi: 10.1007/s00291-002-0101-7 – ident: ref37/cit37 doi: 10.1016/j.compchemeng.2016.04.009 – ident: ref40/cit40 doi: 10.1007/s12532-012-0036-1 – ident: ref8/cit8 doi: 10.1016/j.compchemeng.2009.11.016 – ident: ref11/cit11 doi: 10.1021/ie8001414 – ident: ref14/cit14 doi: 10.1016/j.compchemeng.2016.11.011 – ident: ref33/cit33 doi: 10.1007/s10107-007-0197-2 – ident: ref38/cit38 doi: 10.1007/978-3-319-58821-6 – ident: ref18/cit18 doi: 10.1016/j.compchemeng.2014.02.023 – volume-title: Introduction to Stochastic Programming year: 2011 ident: ref43/cit43 doi: 10.1007/978-1-4614-0237-4 – ident: ref3/cit3 doi: 10.1016/j.compchemeng.2017.02.006 – ident: ref30/cit30 doi: 10.1007/s10287-015-0229-y – ident: ref28/cit28 doi: 10.1016/j.ejor.2016.03.007 – ident: ref1/cit1 doi: 10.1002/aic.10617 – ident: ref5/cit5 doi: 10.1016/0098-1354(95)00184-0 – ident: ref17/cit17 doi: 10.1016/j.cep.2007.02.021 – ident: ref26/cit26 doi: 10.1002/net.20456 – ident: ref39/cit39 doi: 10.1109/CONTROL.2018.8516834 – ident: ref35/cit35 doi: 10.1021/ie100790t – ident: ref44/cit44 doi: 10.1016/j.tre.2018.01.015 – ident: ref16/cit16 doi: 10.1016/j.compchemeng.2016.03.002 – ident: ref7/cit7 doi: 10.1021/ie050778z – ident: ref21/cit21 doi: 10.1287/moor.16.1.119 – ident: ref36/cit36 doi: 10.1021/ie800646q – ident: ref4/cit4 doi: 10.1016/j.compchemeng.2009.06.007 – ident: ref32/cit32 doi: 10.1137/1.9780898718751 – ident: ref2/cit2 doi: 10.1016/j.compchemeng.2012.06.038 – ident: ref6/cit6 doi: 10.1021/ie070835j – ident: ref12/cit12 doi: 10.1016/j.compchemeng.2010.06.011 – ident: ref24/cit24 doi: 10.1007/s10479-014-1608-4 – ident: ref10/cit10 doi: 10.1021/ie501986d – ident: ref19/cit19 doi: 10.1137/0117061 – ident: ref20/cit20 doi: 10.1016/S0167-6377(98)00050-9 – ident: ref9/cit9 doi: 10.1016/S0007-8506(07)60720-3 – ident: ref15/cit15 doi: 10.1021/acs.iecr.5b04973 |
| SSID | ssj0005544 |
| Score | 2.327696 |
| Snippet | Progressive hedging (PH) is a classical decomposition algorithm for solving multistage stochastic problems. However, due to the exponentially growing model... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 14880 |
| SubjectTerms | algorithms computers deterministic models ethylene planning process design stochastic processes uncertainty |
| Title | A Progressive Hedging-Based Solution Approach for Integrated Planning and Scheduling Problems under Demand Uncertainty |
| URI | http://dx.doi.org/10.1021/acs.iecr.9b02620 https://www.proquest.com/docview/2305172591 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5045 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005544 issn: 0888-5885 databaseCode: ACS dateStart: 19870101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gXODAGzFeChIcOHRr0qZdj-OlwQEhwSRuVZq4CAEdWrtJ8Ouxu5a3Jo6pnChKnPpz7Hxm7CAFkEaGxklt4ju-0MrRqQuOK41yTQfbScn2eRX0-v7lnbr7pMn5GcGXoq1N3npACNWKEpfY02fZnAzCkNL3uic3n-kcqizcioeGXhJ1VBWS_GsEMkQm_26Ivv-HS-NyvjSpUpSXnISUU_LYGhVJy7z9Zmz8x7yX2WKFMXl3ohQrbAayVbbwhXlwjY27_JoysygJdgy8B5aKFTnHaNMsr6_KeLciHOeIbPlFTSxheV3piOsMpXHbLeWz39OQVJ0m5_QybchP4ZkE-qhXZd5B8brO-udntyc9pyrB4GhPuYUTRh0fAmWkQiCRSHBTdCgTibjGt-SagJdaYz0QQWCEUakAkyKCkBak9VzjeRuskQ0y2GQ8EamKiCANQuOjsNZRRwVgsKUDHfpNdohLFldHKI_L6LgUMX2kdYyrdWyydr1vsal4zKmcxtOUHkcfPV4mHB5TZPdrVYjxoFH0RGcwGOUx-mo4efQWxdY_Z7rN5hFeRXQDLfwd1iiGI9hFCFMke6XuvgMAI-4t |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5ROLQceBQQ77pSe-CQJXbs7Oa4vLQUiqqWlbhFjj1BCAiIZJHaX89MSKAghOBoy7ZGzjjzjWf8DcC3HFE51XVB7jMdaGlNYPMQg1A5E7oetbOa7fMoHgz1jxNzMgayfQtDQpS0UlkH8R_ZBeQm950RkuokWcgk6h9gwsRasr_V3_7zmNVh6vqtdHb4QVHPNJHJl1Zge-TKp_bo6e-4tjF70_D7Qbo6teS8M6qyjvv3jLjxXeLPwFSDOEX_XkVmYQyLzzD5Hw_hHNz2xS_O0-KU2FsUA_RcuijYIgvnRXtxJvoN_bggnCv2W5oJL9q6R8IWNJqUwHN2-ykvybVqSsHv1G7EDl7ygCFpWZ2FUP2dh-He7vH2IGgKMgQ2MmEVdJOextg4ZQhWZArDnNzLTBHK0Z4dFYxy73yEMo6ddCaX6HLCE8qj8lHoomgBxourAhdBZDI3CdOlYddpGmxt0jMxOmrZ2Hb1EnynLUubA1WmdaxcyZQ7eR_TZh-XYLP9fKlrWM25uMbFKzM2HmZc3zN6vDL2a6sRKR07jqXYAq9GZUqeGwlPvqNcfqOkX-Dj4PjnYXq4f3SwAp8IeCV8Ny31KoxXNyNcI3BTZeu1Ot8B6vr2jw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkCp6KKWAoKXFSHDgkCV24uzmuEBXy0MIqSziFjn2GCFoQCSLBL--MyGBUlUIjrFsa-LMZD57xt8ArHtEZVXXBt7lcRBLowPjQwxCZXVoe_Sc12yfR8lwFO-f6bMJ0O1dGBKipJnKOojPVn3jfMMwILe4_YLQVCfNQyZSn4RpnZClMyLa-fWc2aHrGq5kP3ypqKeb6OT_ZmCfZMuXPunlL7n2M4NZOH2SsE4vueyMq7xjH_4hb3z3K3yGTw3yFP1HVZmDCSy-wMe_-Ajn4a4vjjlfi1Nj71AM0XEJo2CbPJ0T7QGa6Dc05ILwrthr6SacaOsfCVNQb1IGx1nu5zwl16wpBd9XuxW7-Js7jEjb6myE6n4BRoOfJzvDoCnMEJhIh1XQTXsxJtoqTfAiVxh62mbmitBO7HjDgpF31kUok8RKq71E6wlXKIfKRaGNokWYKq4LXAKRS69Tpk3Dro2pszFpTydo6ckkphsvwwYtWdYYVpnVMXMlM27kdcyadVyGrfYTZrZhN-ciG1evjNh8GnHzyOzxSt-1VisyMj-OqZgCr8dlRjs4Ep72kPLrGyVdhQ_Hu4PscO_o4BvMEP5K-YhaxiswVd2O8TthnCr_UWv0H-L1-RI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Progressive+Hedging-Based+Solution+Approach+for+Integrated+Planning+and+Scheduling+Problems+under+Demand+Uncertainty&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Peng%2C+Zedong&rft.au=Zhang%2C+Yi&rft.au=Feng%2C+Yiping&rft.au=Rong%2C+Gang&rft.date=2019-08-14&rft.issn=1520-5045&rft.volume=58&rft.issue=32+p.14880-14896&rft.spage=14880&rft.epage=14896&rft_id=info:doi/10.1021%2Facs.iecr.9b02620&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |