Optimization for Engineering Problems

Optimization is central to any problem involving decision-making in engineering. Optimization theory and methods deal with selecting the best option regarding the given objective function or performance index. New algorithmic and theoretical techniques have been developed for this purpose, and have...

Full description

Saved in:
Bibliographic Details
Main Authors Kumar, Kaushik, Davim, J. Paulo
Format eBook
LanguageEnglish
Published Newark John Wiley & Sons, Incorporated 2019
Wiley-Blackwell
Edition1
Subjects
Online AccessGet full text
ISBN1786304740
9781786304742
DOI10.1002/9781119644552

Cover

Table of Contents:
  • 4.4. Materials and methods -- 4.4.1. Experimental setup -- 4.4.2. Optimization procedure -- 4.5. Results -- 4.5.1. Experimental results -- 4.5.2. GP results -- 4.5.3. Optimization results -- 4.6. Conclusion -- 4.7. References -- 5. Development of a Multi-objective Salp Swarm Algorithm for Benchmark Functions and Real-world Problems -- 5.1. Introduction -- 5.2. Salp swarm algorithm -- 5.2.1. Single-objective salp swarm algorithm (SSA) -- 5.2.2. Multi-objective salp swarm algorithm (MSSA) -- 5.3. Constraint handling techniques -- 5.4. Experimental results and discussion -- 5.4.1. Single-objective unconstrained test functions -- 5.4.2. Single-objective constrained test functions -- 5.4.3. Multi-objective unconstrained test functions -- 5.4.4. Multi-objective constrained test functions -- 5.4.5. Real-world application -- 5.5. Conclusion -- 5.6. References -- 6. Water Quality Index: is it Possible to Measure with Fuzzy Logic? -- 6.1. Introduction -- 6.2. Data and methodology -- 6.2.1. Data and description of the case study -- 6.2.2. Parameters -- 6.2.3. Water quality index -- 6.2.4. Construction of the water quality index by fuzzy logic (WQF) -- 6.3. Results and discussion -- 6.3.1. Water quality analysis -- 6.3.2. Index validation -- 6.4. Conclusions -- 6.5. Appendix -- 6.6. References -- List of Authors -- Index -- Other titles from iSTE in Systems and Industrial Engineering - Robotics -- EULA
  • Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1. Review of some Constrained Optimization Schemes -- 1.1. Introduction -- 1.2. Constrained optimization problems -- 1.3. Direct solution techniques -- 1.3.1. Complex search method -- 1.3.2. Random search techniques -- 1.3.3. Method of feasible directions -- 1.4. Indirect solution techniques -- 1.4.1. Penalty function approach -- 1.4.2. Multipliers method -- 1.4.3. Simulated annealing search -- 1.5. Constrained multi-objective optimization -- 1.6. Conclusions -- 1.7. References -- 2. Application of Flower Pollination Algorithm for Optimization of ECM Process Parameters -- 2.1. Introduction -- 2.2. Flower pollination algorithm -- 2.3. Optimization of the ECM process: results and discussions -- 2.3.1. Experimental data and empirical models -- 2.3.2. Single-objective optimization -- 2.3.3. Multi-objective optimization -- 2.4. Conclusion -- 2.5. References -- 3. Machinability and Multi-response Optimization of EDM of Al7075/SIC/WS2 Hybrid Composite Using the PROMETHEE Method -- 3.1. Introduction -- 3.1.1. Overview of metal matrix composites -- 3.1.2. CNC EDM machine -- 3.2. Literature review -- 3.2.1. Metal removing rate -- 3.2.2. Tool wear process -- 3.2.3. Radial overcut -- 3.2.4. Surface topography or surface finish -- 3.3. Optimization process -- 3.3.1. Analytic hierarchy process method -- 3.3.2. PROMETHEE method -- 3.3.3. Ranking relations for improved PROMETHEE -- 3.4. Result and discussion -- 3.4.1. The effect of EDM parameters on machining characteristics of EDM machine -- 3.4.2. Optimization of EDM parameters -- 3.5. Conclusion -- 3.6. References -- 4. Optimization of Cutting Parameters during Hard Turning using Evolutionary Algorithms -- 4.1. Introduction -- 4.2. Genetic programming -- 4.3. Particle swarm optimization