Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride
We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range th...
Saved in:
Published in | Nano letters Vol. 16; no. 10; pp. 6052 - 6057 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 |
DOI | 10.1021/acs.nanolett.6b01987 |
Cover
Abstract | We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly. |
---|---|
AbstractList | We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly. |
Author | Spencer, Michael G Calderon, Brian Jungwirth, Nicholas R Ji, Yanxin Fuchs, Gregory D Flatté, Michael E |
AuthorAffiliation | Cornell University University of Iowa |
AuthorAffiliation_xml | – name: Cornell University – name: University of Iowa |
Author_xml | – sequence: 1 givenname: Nicholas R surname: Jungwirth fullname: Jungwirth, Nicholas R – sequence: 2 givenname: Brian surname: Calderon fullname: Calderon, Brian – sequence: 3 givenname: Yanxin surname: Ji fullname: Ji, Yanxin – sequence: 4 givenname: Michael G surname: Spencer fullname: Spencer, Michael G – sequence: 5 givenname: Michael E surname: Flatté fullname: Flatté, Michael E – sequence: 6 givenname: Gregory D surname: Fuchs fullname: Fuchs, Gregory D email: gdf9@cornell.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27580074$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuPFCEUhYkZ4zz0HxjD0k21UFAFuNNxHiYTNZkxJm4IRd3qYUJBD1BG_710utuFC11xEr5zcu89p-goxAAIvaRkRUlL3xibV8GE6KGUVT8QqqR4gk5ox0jTK9Ue_dGSH6PTnB8IIYp15Bk6bkUnCRH8BOU7mDeQTFkS4A-wgTBCsIDjhL-ZH-AhrMs9vq3CFjN4wN8hxebLfazT4IvZ5eyqmFKc8a0La78NmSqbsQv4Gn6adQzG4_cxVeyTK8mN8Bw9nYzP8GL_nqGvlxd359fNzeerj-fvbhrDuCzNoAxIsLKTlI-KdHYydGKd6gdORkkFH0fGOJXCGjLZXnAphOrbfhSm7Qah2Bl6vcvdpPi4QC66zmvBexMgLllTyTqmKOeyoq_26DLMMOpNcrNJv_ThUBV4uwNsijknmLR1xZS6fEnGeU2J3raiayv60Iret1LN_C_zIf8_NrKzbX8f4pLqJfO_Lb8BIXem3w |
CitedBy_id | crossref_primary_10_1515_nanoph_2019_0136 crossref_primary_10_1038_s41598_021_90804_4 crossref_primary_10_1103_PhysRevApplied_11_041001 crossref_primary_10_1103_PhysRevB_98_081414 crossref_primary_10_1088_2053_1583_abe4bb crossref_primary_10_1088_0256_307X_37_4_044204 crossref_primary_10_1021_acs_nanolett_7b00444 crossref_primary_10_1021_acs_nanolett_3c03628 crossref_primary_10_1038_s41524_023_01111_7 crossref_primary_10_1002_qute_202400648 crossref_primary_10_1063_5_0008271 crossref_primary_10_1088_2399_1984_ad285b crossref_primary_10_1016_j_ultramic_2019_112912 crossref_primary_10_1021_acsami_4c02601 crossref_primary_10_1021_acsphotonics_4c02245 crossref_primary_10_1002_aelm_202001177 crossref_primary_10_1016_j_physb_2019_411959 crossref_primary_10_1021_acsnano_6b03602 crossref_primary_10_1103_PhysRevA_111_022616 crossref_primary_10_1364_OE_386629 crossref_primary_10_1038_s41467_024_53880_4 crossref_primary_10_1088_2053_1583_abeca2 crossref_primary_10_1021_acs_nanolett_0c00751 crossref_primary_10_1021_acsphotonics_3c01282 crossref_primary_10_1002_adom_201900397 crossref_primary_10_1021_acsami_0c05735 crossref_primary_10_1103_PhysRevLett_122_023602 crossref_primary_10_1515_nanoph_2024_0702 crossref_primary_10_1088_2515_7639_abf1ab crossref_primary_10_3788_LOP232222 crossref_primary_10_1038_s41524_020_0305_x crossref_primary_10_1021_acsphotonics_6b00736 crossref_primary_10_1016_j_mssp_2024_108932 crossref_primary_10_1088_2053_1583_ab1188 crossref_primary_10_1364_OL_43_003778 crossref_primary_10_1103_PRXQuantum_3_030331 crossref_primary_10_1016_j_mattod_2017_04_027 crossref_primary_10_1103_PhysRevB_105_184101 crossref_primary_10_1063_5_0006075 crossref_primary_10_1038_s41563_020_0619_6 crossref_primary_10_1021_acsnano_4c02178 crossref_primary_10_1021_acs_nanolett_8b00632 crossref_primary_10_1002_adom_201901132 crossref_primary_10_1177_1847980420949349 crossref_primary_10_1002_smll_202006760 crossref_primary_10_1038_s41467_018_03290_0 crossref_primary_10_1021_acs_nanolett_9b00178 crossref_primary_10_1021_acsnano_4c17676 crossref_primary_10_1515_nanoph_2016_0165 crossref_primary_10_1038_s41467_022_31743_0 crossref_primary_10_1016_j_micron_2024_103747 crossref_primary_10_1088_1361_6633_ab6310 crossref_primary_10_1021_acsnano_7b00665 crossref_primary_10_1021_acs_nanolett_4c01333 crossref_primary_10_1063_5_0179610 crossref_primary_10_1002_qute_202200059 crossref_primary_10_1021_acs_nanolett_8b01030 crossref_primary_10_1021_acs_nanolett_8b02804 crossref_primary_10_1021_acsaelm_2c01083 crossref_primary_10_1063_5_0234673 crossref_primary_10_1088_1361_6528_aca984 crossref_primary_10_1021_acsami_1c11060 crossref_primary_10_1063_5_0134858 crossref_primary_10_1103_PhysRevB_98_155203 crossref_primary_10_1016_j_nanoen_2021_106528 crossref_primary_10_1021_acs_nanolett_1c04647 crossref_primary_10_1103_PhysRevLett_119_233602 crossref_primary_10_1021_acsphotonics_7b00025 crossref_primary_10_1103_PhysRevB_101_081401 crossref_primary_10_1088_2053_1583_ac9a59 crossref_primary_10_1002_adma_201908316 crossref_primary_10_1021_acsami_0c09740 crossref_primary_10_1038_s41534_020_00312_y crossref_primary_10_1021_acsami_1c14863 crossref_primary_10_1103_PhysRevB_100_081407 crossref_primary_10_1063_5_0230736 crossref_primary_10_1364_OPTICA_406184 crossref_primary_10_1038_s41563_020_0616_9 crossref_primary_10_1021_acs_chemrev_0c00620 crossref_primary_10_1103_PhysRevB_99_020101 crossref_primary_10_1002_adma_202006761 crossref_primary_10_1016_j_nanoms_2021_03_002 crossref_primary_10_1103_PhysRevB_96_121202 crossref_primary_10_1088_1361_6528_acbeb6 crossref_primary_10_1063_5_0046080 crossref_primary_10_1002_adom_202400908 crossref_primary_10_1021_acs_jpca_0c07339 crossref_primary_10_2139_ssrn_4046477 crossref_primary_10_1088_2053_1583_ab7fc3 crossref_primary_10_1126_sciadv_aba6038 crossref_primary_10_1134_S0021364024602884 crossref_primary_10_1021_acsnano_8b02970 crossref_primary_10_1021_acsnano_9b01996 crossref_primary_10_1063_5_0040780 crossref_primary_10_1038_s41467_021_24725_1 crossref_primary_10_1002_adom_202302083 crossref_primary_10_3390_nano14110918 crossref_primary_10_1103_PhysRevB_100_125305 crossref_primary_10_1063_1_5093299 crossref_primary_10_1002_adma_202107362 crossref_primary_10_1021_acsami_8b07506 crossref_primary_10_1515_nanoph_2020_0225 crossref_primary_10_3390_molecules29235594 crossref_primary_10_1021_acsphotonics_0c01917 crossref_primary_10_1021_acsnano_8b08511 crossref_primary_10_1364_OE_381286 crossref_primary_10_1557_s43580_021_00059_4 crossref_primary_10_1103_PhysRevB_94_121405 crossref_primary_10_1021_acs_jpcc_1c07729 crossref_primary_10_1021_acsphotonics_7b01442 crossref_primary_10_1038_s41563_024_01887_z crossref_primary_10_1002_adma_202109894 crossref_primary_10_1002_adma_202414846 crossref_primary_10_1103_PhysRevApplied_15_014036 crossref_primary_10_1016_j_jlumin_2021_117944 crossref_primary_10_1103_PRXQuantum_5_010330 crossref_primary_10_1016_j_jlumin_2024_120756 crossref_primary_10_1364_PRJ_517734 crossref_primary_10_1103_PhysRevLett_119_057401 crossref_primary_10_1016_j_flatc_2022_100366 crossref_primary_10_1002_adfm_202303399 crossref_primary_10_1021_acsphotonics_5c00105 crossref_primary_10_1038_s42005_019_0217_6 crossref_primary_10_1021_acsphotonics_4c00594 crossref_primary_10_1515_nanoph_2020_0593 crossref_primary_10_1134_S0021364019070051 crossref_primary_10_1016_j_optmat_2021_111630 crossref_primary_10_7498_aps_70_20201364 crossref_primary_10_1002_adom_201801344 crossref_primary_10_1088_1361_648X_acde2b crossref_primary_10_1063_5_0021093 crossref_primary_10_1038_s41598_019_47288_0 crossref_primary_10_1515_nanoph_2019_0099 crossref_primary_10_1039_C8CS00332G crossref_primary_10_1038_s43246_023_00345_8 crossref_primary_10_1088_2633_4356_ac7e9f crossref_primary_10_1039_C7NR04270A crossref_primary_10_1021_acsphotonics_9b01707 crossref_primary_10_1038_s41467_022_30772_z crossref_primary_10_1038_s41578_019_0136_x crossref_primary_10_1103_PhysRevB_97_165202 crossref_primary_10_1109_JSTQE_2023_3332889 crossref_primary_10_1021_acs_nanolett_2c03001 crossref_primary_10_1063_5_0045506 crossref_primary_10_1021_acs_nanolett_1c02640 crossref_primary_10_1016_j_mcat_2017_04_008 crossref_primary_10_1038_s41467_023_38672_6 crossref_primary_10_1038_nphoton_2016_186 crossref_primary_10_1364_OPTICA_6_001084 crossref_primary_10_1038_s41467_022_28169_z crossref_primary_10_1021_acs_nanolett_9b00357 crossref_primary_10_1038_s41524_019_0182_3 crossref_primary_10_1002_adma_202109621 crossref_primary_10_1021_acsphotonics_4c02616 crossref_primary_10_1039_D1NR08193D crossref_primary_10_1134_S1063782620030082 crossref_primary_10_1088_1361_6463_ad53db crossref_primary_10_1088_1361_648X_abf37f crossref_primary_10_1021_acsenergylett_0c02427 crossref_primary_10_1002_pssb_202100566 crossref_primary_10_1103_PhysRevB_98_094106 crossref_primary_10_1186_s43074_023_00103_6 crossref_primary_10_1103_PhysRevB_110_045430 crossref_primary_10_1063_5_0243547 crossref_primary_10_1021_acs_nanolett_8b04956 crossref_primary_10_3762_bjnano_11_61 crossref_primary_10_1088_1674_4926_40_7_071903 crossref_primary_10_1021_acsami_6b09875 crossref_primary_10_1063_5_0218367 crossref_primary_10_1103_PhysRevResearch_2_022050 crossref_primary_10_1021_acsnano_3c02348 crossref_primary_10_1364_OPTICA_5_001128 crossref_primary_10_1038_s41598_023_35003_z crossref_primary_10_1021_acs_nanolett_4c02702 crossref_primary_10_1021_acs_nanolett_1c04366 crossref_primary_10_1021_acsnano_3c10403 crossref_primary_10_1021_acsphotonics_0c00405 crossref_primary_10_1021_acsnano_2c04386 crossref_primary_10_1080_23746149_2023_2206049 crossref_primary_10_1002_advs_202102128 crossref_primary_10_1063_5_0054116 crossref_primary_10_1016_j_optcom_2017_10_083 crossref_primary_10_1021_acsnano_7b00638 crossref_primary_10_1103_PhysRevApplied_10_044031 crossref_primary_10_1103_PhysRevMaterials_3_064001 crossref_primary_10_1103_PhysRevMaterials_6_064008 crossref_primary_10_1515_nanoph_2019_0211 crossref_primary_10_1016_j_fmre_2024_01_019 crossref_primary_10_35848_1882_0786_ac917a crossref_primary_10_1364_OL_545237 crossref_primary_10_1002_smll_202300144 crossref_primary_10_1038_s41467_018_08185_8 crossref_primary_10_1021_acs_jpclett_9b02863 crossref_primary_10_1002_adom_202202759 crossref_primary_10_1063_5_0164457 crossref_primary_10_1146_annurev_physchem_042018_052628 crossref_primary_10_1038_s41598_021_03703_z crossref_primary_10_1021_acsnano_1c04467 crossref_primary_10_1002_adom_202300737 crossref_primary_10_1088_1361_6528_ac5283 crossref_primary_10_31857_S0370274X24090034 crossref_primary_10_1021_acsphotonics_9b01103 crossref_primary_10_1021_acs_nanolett_6b03268 crossref_primary_10_1039_C7NR08249E crossref_primary_10_1103_PhysRevB_97_214104 crossref_primary_10_1021_acsami_1c14591 crossref_primary_10_1149_2162_8777_ac1d29 crossref_primary_10_1039_C8CS00450A crossref_primary_10_1364_OL_454450 crossref_primary_10_1021_acsphotonics_7b00086 crossref_primary_10_1515_nanoph_2017_0041 crossref_primary_10_1038_s42005_018_0097_1 crossref_primary_10_1002_adom_201600939 crossref_primary_10_1515_nanoph_2020_0187 crossref_primary_10_1002_qute_202200009 crossref_primary_10_1021_acsphotonics_1c00320 crossref_primary_10_1103_PhysRevMaterials_5_095201 crossref_primary_10_1038_s41578_019_0124_1 crossref_primary_10_1021_acsnano_3c08940 crossref_primary_10_1364_OPTICA_6_000542 crossref_primary_10_1039_C7NR08222C crossref_primary_10_1021_acs_jctc_0c00809 crossref_primary_10_1126_science_aax9406 crossref_primary_10_1038_s41524_021_00544_2 crossref_primary_10_1021_acsnano_9b00274 crossref_primary_10_1515_nanoph_2019_0123 crossref_primary_10_1021_acsphotonics_7b00977 crossref_primary_10_1002_qute_202100032 crossref_primary_10_3762_bjnano_9_12 crossref_primary_10_1063_5_0072091 crossref_primary_10_1002_adom_202302700 crossref_primary_10_1007_s10853_018_2390_5 crossref_primary_10_1021_acs_jpclett_0c00511 crossref_primary_10_1063_5_0074946 crossref_primary_10_1515_nanoph_2024_0569 crossref_primary_10_1038_s41467_018_05117_4 crossref_primary_10_1103_PhysRevB_102_144104 crossref_primary_10_1021_acs_nanolett_2c03743 |
Cites_doi | 10.1038/ncomms2818 10.1038/nmat4145 10.1098/rspa.1950.0184 10.1063/1.4866335 10.1103/PhysRevApplied.5.034005 10.1038/nnano.2016.3 10.1038/nnano.2015.242 10.1364/OE.21.029679 10.1021/nl204010e 10.1103/PhysRevB.93.041413 10.1016/j.ssc.2008.02.024 10.1021/am403789c 10.1063/1.3141450 10.1103/PhysRevB.73.064304 10.1038/ncomms10546 10.1103/PhysRevLett.103.256404 10.1088/1367-2630/16/2/023021 10.1021/acsami.5b03967 10.1088/1367-2630/15/4/043005 10.1038/nature10562 10.1073/pnas.1306825110 10.1038/nphoton.2015.58 10.1103/PhysRevLett.85.290 10.1038/nature12385 10.1039/C5NR06722G 10.1364/OL.25.001294 10.1063/1.4872268 10.1038/nmat4218 10.1038/nmat4144 10.1063/1.4890979 10.1126/science.1235126 10.1093/acprof:oso/9780198507802.001.0001 10.1103/PhysRevB.83.144115 10.1038/nature07279 10.1021/acsnano.5b06515 10.1063/1.3578264 10.1038/nature12373 10.1038/nnano.2015.70 10.1364/OPTICA.3.000768 10.1038/nature12952 10.1021/acsnano.6b03602 10.1088/1367-2630/16/7/073026 10.1073/pnas.1003052107 10.1038/nature15759 10.1021/nl504941q 10.1038/nmat3806 10.1038/ncomms8578 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.6b01987 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 6057 |
ExternalDocumentID | 27580074 10_1021_acs_nanolett_6b01987 a371744098 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a348t-b9ae8ec85814d905cfa1f3596b40d8174dd334187ca0fc6748779626d7a25b793 |
IEDL.DBID | ACS |
ISSN | 1530-6984 |
IngestDate | Thu Jul 10 22:05:50 EDT 2025 Sat Sep 28 08:49:12 EDT 2024 Tue Jul 01 03:13:51 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | zero-phonon line 2D material point defect Single-photon source hexagonal boron nitride line width |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-b9ae8ec85814d905cfa1f3596b40d8174dd334187ca0fc6748779626d7a25b793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27580074 |
PQID | 1835391448 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1835391448 pubmed_primary_27580074 crossref_citationtrail_10_1021_acs_nanolett_6b01987 crossref_primary_10_1021_acs_nanolett_6b01987 acs_journals_10_1021_acs_nanolett_6b01987 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-12 |
PublicationDateYYYYMMDD | 2016-10-12 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 Dresselhaus M. S. (ref49/cit49) 2007 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 Stoneham A. M. (ref45/cit45) 2001 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1038/ncomms2818 – ident: ref35/cit35 doi: 10.1038/nmat4145 – ident: ref44/cit44 doi: 10.1098/rspa.1950.0184 – ident: ref5/cit5 doi: 10.1063/1.4866335 – ident: ref21/cit21 doi: 10.1103/PhysRevApplied.5.034005 – ident: ref9/cit9 doi: 10.1038/nnano.2016.3 – ident: ref20/cit20 doi: 10.1038/nnano.2015.242 – ident: ref27/cit27 doi: 10.1364/OE.21.029679 – ident: ref39/cit39 doi: 10.1021/nl204010e – ident: ref10/cit10 doi: 10.1103/PhysRevB.93.041413 – ident: ref3/cit3 doi: 10.1016/j.ssc.2008.02.024 – ident: ref8/cit8 doi: 10.1021/am403789c – ident: ref19/cit19 – ident: ref26/cit26 doi: 10.1063/1.3141450 – ident: ref47/cit47 doi: 10.1103/PhysRevB.73.064304 – ident: ref2/cit2 doi: 10.1038/ncomms10546 – ident: ref25/cit25 doi: 10.1103/PhysRevLett.103.256404 – ident: ref30/cit30 doi: 10.1088/1367-2630/16/2/023021 – ident: ref6/cit6 doi: 10.1021/acsami.5b03967 – ident: ref28/cit28 doi: 10.1088/1367-2630/15/4/043005 – ident: ref33/cit33 doi: 10.1038/nature10562 – ident: ref18/cit18 doi: 10.1073/pnas.1306825110 – ident: ref29/cit29 doi: 10.1038/nphoton.2015.58 – ident: ref23/cit23 doi: 10.1103/PhysRevLett.85.290 – ident: ref11/cit11 doi: 10.1038/nature12385 – ident: ref43/cit43 doi: 10.1039/C5NR06722G – ident: ref24/cit24 doi: 10.1364/OL.25.001294 – volume-title: Group Theory: Application to the Physics of Condensed Matter year: 2007 ident: ref49/cit49 – ident: ref40/cit40 doi: 10.1063/1.4872268 – ident: ref12/cit12 doi: 10.1038/nmat4218 – ident: ref36/cit36 doi: 10.1038/nmat4144 – ident: ref15/cit15 doi: 10.1063/1.4890979 – ident: ref1/cit1 doi: 10.1126/science.1235126 – volume-title: Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors year: 2001 ident: ref45/cit45 doi: 10.1093/acprof:oso/9780198507802.001.0001 – ident: ref48/cit48 doi: 10.1103/PhysRevB.83.144115 – ident: ref17/cit17 doi: 10.1038/nature07279 – ident: ref42/cit42 doi: 10.1021/acsnano.5b06515 – ident: ref32/cit32 doi: 10.1063/1.3578264 – ident: ref16/cit16 doi: 10.1038/nature12373 – ident: ref13/cit13 doi: 10.1038/nnano.2015.70 – ident: ref38/cit38 doi: 10.1364/OPTICA.3.000768 – ident: ref4/cit4 doi: 10.1038/nature12952 – ident: ref22/cit22 doi: 10.1021/acsnano.6b03602 – ident: ref46/cit46 doi: 10.1088/1367-2630/16/7/073026 – ident: ref14/cit14 doi: 10.1073/pnas.1003052107 – ident: ref31/cit31 doi: 10.1038/nature15759 – ident: ref41/cit41 doi: 10.1021/nl504941q – ident: ref34/cit34 doi: 10.1038/nmat3806 – ident: ref37/cit37 doi: 10.1038/ncomms8578 |
SSID | ssj0009350 |
Score | 2.6438127 |
Snippet | We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6052 |
Title | Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride |
URI | http://dx.doi.org/10.1021/acs.nanolett.6b01987 https://www.ncbi.nlm.nih.gov/pubmed/27580074 https://www.proquest.com/docview/1835391448 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYLnBgX8omI3HhkJI99pFVFRKL1FYgLpHt2G1FlaA2lRBfz0wWViHgGsUjL-PMe7FnHiEHjjFGw2JbMkIJMxZyi_vAUgxLQmlzQNACk5OvrsNW17-8D-7fieLXE3zXORJq3ExFmsEw8ia0R5Y8TWbdEEINQqHT9nuRXa9QZIVNDJSIM79OlfvBCgYkNf4ckH5AmUW0uVgkN3XOTnnJ5LE5yWVTvXwv4fjHgSyRhQp40uPSU5bJlE5XyPyHcoSrZNzRAKLLIsv0rFLHVZpmht4JFKhIe3mftgvlHMy4og96lFm3_SzNUnoODoN_3igmrNA2GByikeK2CB2ktKWfRQ9hPz3Bogn0epCPBoleI92L885py6pEGSzh-Sy3JBeaacUC5vgJtwNlhGO8gIfStxMG_CZJPIiMLFLCNgqlTKKIA2tKIuEGEr4G62QGeqU3CZX420mZAEh44pvAkVFglO1rz0gVajtskEOYs7jaVOO4OC93nRgf1hMZVxPZIF69irGqqpujyMbwl1bWW6unsrrHL-_v1w4Sw6zi2YpIdTaBvgGS9TiwU9YgG6XnvFl0gZMhVNv6x3i2yRxAs9Aq7s7skJl8NNG7AH9yuVf4_CtX0wMx |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOlDdLeRiJC4csySZ27GPpQwu0K6TdQsUlsh27XVElaJOVEL-eGW-yLUhV1asVj8b2ODOf7ZkP4F3ivXe42JHJicJMChWpDFGKl6UwscIIWlNy8tFEjI-zzyf8ZAN4nwuDSjQoqQmX-BfVBZIP1FbpqsbRtEMUQ2D5FtzmIhPE2LCzO72otZsGYlbcy4iMlMz6jLkrpJBfss2_fumKYDM4nYMt-LZWN7w1-TlctmZo__xXyfHG43kA97swlO2s7OYhbLjqEdy7VJzwMTQzhyH1quQy2-u4cq1jtWffNdFVVKftGZsGHh3Kv2I_3KKOvp7VVV2xfTQfOodjlL7CpijwnISEtyNsXrGx-61PCQSwj1RCgU3m7WJeuidwfLA_2x1HHUVDpNNMtpFR2klnJZdJVqqYW68Tn3IlTBaXEtFOWaboJ2VudewtEZvkuUIMVeZ6xA3-G57CJmrlngMzdAhlPUdIXmaeJybn3saZS72xwsViAO9xzopuizVFuD0fJQU19hNZdBM5gLRfzMJ2tc6JcuP8ml7RutevVa2Pa75_29tJgbNKNy26cvUSdcO4NlWIVeUAnq0MaC1xhAiNArcXNxjPG7gznh0dFoefJl-24S4GbSIKr2pewma7WLpXGBi15nXYBn8BdXMLkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4VKiF6oC2lJX3AVuqlB6d2_No9UiAKtI2QAiriYu0zRCAbxY6E-us7s3FSWgkhel15R7OP8X7fPuYD-BQ55ywOdqBykjDjmQhEgizFcZOpUCCClvQ4-ccwG5wlx-fp-R2pL3SiRku1P8SnqL4xrs0wEH2h8lKWFbao6aIpIswr8BQxSUSqDXv7oz_5dmMvzorxjOxI8GTxau4eK7Q26frvtekewOkXnv5zuFi67O-bXHVnjerqX_9kc_yvNr2AjRaOsr35_HkJT2y5Cc_uJCl8BfWpRWg9T73MDlrNXG1Z5dhPSbIV5bi5ZCOvp0PvsNiFnVbByWVVViU7xGlE-3GMnrGwERq8JiP-DgmblGxgb-WYyAD7SqkU2HDSTCfGbsFZ__B0fxC0Ug2BjBPeBEpIy63mKY8SI8JUOxm5OBWZSkLDkfUYE-N6yXMtQ6dJ4CTPBXIpk8teqvAf8RpW0Su7DUzRZpR2KVJzk7g0UnnqdJjY2Cmd2TDrwGfss6INtbrwp-i9qKDCRUcWbUd2IF4MaKHbnOckvXH9QK1gWetmnvPjge8_LuZKgb1KJy6ytNUMfUN8GwvkrLwDb-aTaGmxh0yNANzbR7RnF9ZODvrF96Pht3ewjtgtC_zlmvew2kxn9gPio0bt-Ej4DeFLDg0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+Dependence+of+Wavelength+Selectable+Zero-Phonon+Emission+from+Single+Defects+in+Hexagonal+Boron+Nitride&rft.jtitle=Nano+letters&rft.au=Jungwirth%2C+Nicholas+R&rft.au=Calderon%2C+Brian&rft.au=Ji%2C+Yanxin&rft.au=Spencer%2C+Michael+G&rft.date=2016-10-12&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=16&rft.issue=10&rft.spage=6052&rft.epage=6057&rft_id=info:doi/10.1021%2Facs.nanolett.6b01987&rft.externalDocID=a371744098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |