Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride

We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range th...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 16; no. 10; pp. 6052 - 6057
Main Authors Jungwirth, Nicholas R, Calderon, Brian, Ji, Yanxin, Spencer, Michael G, Flatté, Michael E, Fuchs, Gregory D
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.10.2016
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
DOI10.1021/acs.nanolett.6b01987

Cover

Abstract We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
AbstractList We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.
Author Spencer, Michael G
Calderon, Brian
Jungwirth, Nicholas R
Ji, Yanxin
Fuchs, Gregory D
Flatté, Michael E
AuthorAffiliation Cornell University
University of Iowa
AuthorAffiliation_xml – name: Cornell University
– name: University of Iowa
Author_xml – sequence: 1
  givenname: Nicholas R
  surname: Jungwirth
  fullname: Jungwirth, Nicholas R
– sequence: 2
  givenname: Brian
  surname: Calderon
  fullname: Calderon, Brian
– sequence: 3
  givenname: Yanxin
  surname: Ji
  fullname: Ji, Yanxin
– sequence: 4
  givenname: Michael G
  surname: Spencer
  fullname: Spencer, Michael G
– sequence: 5
  givenname: Michael E
  surname: Flatté
  fullname: Flatté, Michael E
– sequence: 6
  givenname: Gregory D
  surname: Fuchs
  fullname: Fuchs, Gregory D
  email: gdf9@cornell.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27580074$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuPFCEUhYkZ4zz0HxjD0k21UFAFuNNxHiYTNZkxJm4IRd3qYUJBD1BG_710utuFC11xEr5zcu89p-goxAAIvaRkRUlL3xibV8GE6KGUVT8QqqR4gk5ox0jTK9Ue_dGSH6PTnB8IIYp15Bk6bkUnCRH8BOU7mDeQTFkS4A-wgTBCsIDjhL-ZH-AhrMs9vq3CFjN4wN8hxebLfazT4IvZ5eyqmFKc8a0La78NmSqbsQv4Gn6adQzG4_cxVeyTK8mN8Bw9nYzP8GL_nqGvlxd359fNzeerj-fvbhrDuCzNoAxIsLKTlI-KdHYydGKd6gdORkkFH0fGOJXCGjLZXnAphOrbfhSm7Qah2Bl6vcvdpPi4QC66zmvBexMgLllTyTqmKOeyoq_26DLMMOpNcrNJv_ThUBV4uwNsijknmLR1xZS6fEnGeU2J3raiayv60Iret1LN_C_zIf8_NrKzbX8f4pLqJfO_Lb8BIXem3w
CitedBy_id crossref_primary_10_1515_nanoph_2019_0136
crossref_primary_10_1038_s41598_021_90804_4
crossref_primary_10_1103_PhysRevApplied_11_041001
crossref_primary_10_1103_PhysRevB_98_081414
crossref_primary_10_1088_2053_1583_abe4bb
crossref_primary_10_1088_0256_307X_37_4_044204
crossref_primary_10_1021_acs_nanolett_7b00444
crossref_primary_10_1021_acs_nanolett_3c03628
crossref_primary_10_1038_s41524_023_01111_7
crossref_primary_10_1002_qute_202400648
crossref_primary_10_1063_5_0008271
crossref_primary_10_1088_2399_1984_ad285b
crossref_primary_10_1016_j_ultramic_2019_112912
crossref_primary_10_1021_acsami_4c02601
crossref_primary_10_1021_acsphotonics_4c02245
crossref_primary_10_1002_aelm_202001177
crossref_primary_10_1016_j_physb_2019_411959
crossref_primary_10_1021_acsnano_6b03602
crossref_primary_10_1103_PhysRevA_111_022616
crossref_primary_10_1364_OE_386629
crossref_primary_10_1038_s41467_024_53880_4
crossref_primary_10_1088_2053_1583_abeca2
crossref_primary_10_1021_acs_nanolett_0c00751
crossref_primary_10_1021_acsphotonics_3c01282
crossref_primary_10_1002_adom_201900397
crossref_primary_10_1021_acsami_0c05735
crossref_primary_10_1103_PhysRevLett_122_023602
crossref_primary_10_1515_nanoph_2024_0702
crossref_primary_10_1088_2515_7639_abf1ab
crossref_primary_10_3788_LOP232222
crossref_primary_10_1038_s41524_020_0305_x
crossref_primary_10_1021_acsphotonics_6b00736
crossref_primary_10_1016_j_mssp_2024_108932
crossref_primary_10_1088_2053_1583_ab1188
crossref_primary_10_1364_OL_43_003778
crossref_primary_10_1103_PRXQuantum_3_030331
crossref_primary_10_1016_j_mattod_2017_04_027
crossref_primary_10_1103_PhysRevB_105_184101
crossref_primary_10_1063_5_0006075
crossref_primary_10_1038_s41563_020_0619_6
crossref_primary_10_1021_acsnano_4c02178
crossref_primary_10_1021_acs_nanolett_8b00632
crossref_primary_10_1002_adom_201901132
crossref_primary_10_1177_1847980420949349
crossref_primary_10_1002_smll_202006760
crossref_primary_10_1038_s41467_018_03290_0
crossref_primary_10_1021_acs_nanolett_9b00178
crossref_primary_10_1021_acsnano_4c17676
crossref_primary_10_1515_nanoph_2016_0165
crossref_primary_10_1038_s41467_022_31743_0
crossref_primary_10_1016_j_micron_2024_103747
crossref_primary_10_1088_1361_6633_ab6310
crossref_primary_10_1021_acsnano_7b00665
crossref_primary_10_1021_acs_nanolett_4c01333
crossref_primary_10_1063_5_0179610
crossref_primary_10_1002_qute_202200059
crossref_primary_10_1021_acs_nanolett_8b01030
crossref_primary_10_1021_acs_nanolett_8b02804
crossref_primary_10_1021_acsaelm_2c01083
crossref_primary_10_1063_5_0234673
crossref_primary_10_1088_1361_6528_aca984
crossref_primary_10_1021_acsami_1c11060
crossref_primary_10_1063_5_0134858
crossref_primary_10_1103_PhysRevB_98_155203
crossref_primary_10_1016_j_nanoen_2021_106528
crossref_primary_10_1021_acs_nanolett_1c04647
crossref_primary_10_1103_PhysRevLett_119_233602
crossref_primary_10_1021_acsphotonics_7b00025
crossref_primary_10_1103_PhysRevB_101_081401
crossref_primary_10_1088_2053_1583_ac9a59
crossref_primary_10_1002_adma_201908316
crossref_primary_10_1021_acsami_0c09740
crossref_primary_10_1038_s41534_020_00312_y
crossref_primary_10_1021_acsami_1c14863
crossref_primary_10_1103_PhysRevB_100_081407
crossref_primary_10_1063_5_0230736
crossref_primary_10_1364_OPTICA_406184
crossref_primary_10_1038_s41563_020_0616_9
crossref_primary_10_1021_acs_chemrev_0c00620
crossref_primary_10_1103_PhysRevB_99_020101
crossref_primary_10_1002_adma_202006761
crossref_primary_10_1016_j_nanoms_2021_03_002
crossref_primary_10_1103_PhysRevB_96_121202
crossref_primary_10_1088_1361_6528_acbeb6
crossref_primary_10_1063_5_0046080
crossref_primary_10_1002_adom_202400908
crossref_primary_10_1021_acs_jpca_0c07339
crossref_primary_10_2139_ssrn_4046477
crossref_primary_10_1088_2053_1583_ab7fc3
crossref_primary_10_1126_sciadv_aba6038
crossref_primary_10_1134_S0021364024602884
crossref_primary_10_1021_acsnano_8b02970
crossref_primary_10_1021_acsnano_9b01996
crossref_primary_10_1063_5_0040780
crossref_primary_10_1038_s41467_021_24725_1
crossref_primary_10_1002_adom_202302083
crossref_primary_10_3390_nano14110918
crossref_primary_10_1103_PhysRevB_100_125305
crossref_primary_10_1063_1_5093299
crossref_primary_10_1002_adma_202107362
crossref_primary_10_1021_acsami_8b07506
crossref_primary_10_1515_nanoph_2020_0225
crossref_primary_10_3390_molecules29235594
crossref_primary_10_1021_acsphotonics_0c01917
crossref_primary_10_1021_acsnano_8b08511
crossref_primary_10_1364_OE_381286
crossref_primary_10_1557_s43580_021_00059_4
crossref_primary_10_1103_PhysRevB_94_121405
crossref_primary_10_1021_acs_jpcc_1c07729
crossref_primary_10_1021_acsphotonics_7b01442
crossref_primary_10_1038_s41563_024_01887_z
crossref_primary_10_1002_adma_202109894
crossref_primary_10_1002_adma_202414846
crossref_primary_10_1103_PhysRevApplied_15_014036
crossref_primary_10_1016_j_jlumin_2021_117944
crossref_primary_10_1103_PRXQuantum_5_010330
crossref_primary_10_1016_j_jlumin_2024_120756
crossref_primary_10_1364_PRJ_517734
crossref_primary_10_1103_PhysRevLett_119_057401
crossref_primary_10_1016_j_flatc_2022_100366
crossref_primary_10_1002_adfm_202303399
crossref_primary_10_1021_acsphotonics_5c00105
crossref_primary_10_1038_s42005_019_0217_6
crossref_primary_10_1021_acsphotonics_4c00594
crossref_primary_10_1515_nanoph_2020_0593
crossref_primary_10_1134_S0021364019070051
crossref_primary_10_1016_j_optmat_2021_111630
crossref_primary_10_7498_aps_70_20201364
crossref_primary_10_1002_adom_201801344
crossref_primary_10_1088_1361_648X_acde2b
crossref_primary_10_1063_5_0021093
crossref_primary_10_1038_s41598_019_47288_0
crossref_primary_10_1515_nanoph_2019_0099
crossref_primary_10_1039_C8CS00332G
crossref_primary_10_1038_s43246_023_00345_8
crossref_primary_10_1088_2633_4356_ac7e9f
crossref_primary_10_1039_C7NR04270A
crossref_primary_10_1021_acsphotonics_9b01707
crossref_primary_10_1038_s41467_022_30772_z
crossref_primary_10_1038_s41578_019_0136_x
crossref_primary_10_1103_PhysRevB_97_165202
crossref_primary_10_1109_JSTQE_2023_3332889
crossref_primary_10_1021_acs_nanolett_2c03001
crossref_primary_10_1063_5_0045506
crossref_primary_10_1021_acs_nanolett_1c02640
crossref_primary_10_1016_j_mcat_2017_04_008
crossref_primary_10_1038_s41467_023_38672_6
crossref_primary_10_1038_nphoton_2016_186
crossref_primary_10_1364_OPTICA_6_001084
crossref_primary_10_1038_s41467_022_28169_z
crossref_primary_10_1021_acs_nanolett_9b00357
crossref_primary_10_1038_s41524_019_0182_3
crossref_primary_10_1002_adma_202109621
crossref_primary_10_1021_acsphotonics_4c02616
crossref_primary_10_1039_D1NR08193D
crossref_primary_10_1134_S1063782620030082
crossref_primary_10_1088_1361_6463_ad53db
crossref_primary_10_1088_1361_648X_abf37f
crossref_primary_10_1021_acsenergylett_0c02427
crossref_primary_10_1002_pssb_202100566
crossref_primary_10_1103_PhysRevB_98_094106
crossref_primary_10_1186_s43074_023_00103_6
crossref_primary_10_1103_PhysRevB_110_045430
crossref_primary_10_1063_5_0243547
crossref_primary_10_1021_acs_nanolett_8b04956
crossref_primary_10_3762_bjnano_11_61
crossref_primary_10_1088_1674_4926_40_7_071903
crossref_primary_10_1021_acsami_6b09875
crossref_primary_10_1063_5_0218367
crossref_primary_10_1103_PhysRevResearch_2_022050
crossref_primary_10_1021_acsnano_3c02348
crossref_primary_10_1364_OPTICA_5_001128
crossref_primary_10_1038_s41598_023_35003_z
crossref_primary_10_1021_acs_nanolett_4c02702
crossref_primary_10_1021_acs_nanolett_1c04366
crossref_primary_10_1021_acsnano_3c10403
crossref_primary_10_1021_acsphotonics_0c00405
crossref_primary_10_1021_acsnano_2c04386
crossref_primary_10_1080_23746149_2023_2206049
crossref_primary_10_1002_advs_202102128
crossref_primary_10_1063_5_0054116
crossref_primary_10_1016_j_optcom_2017_10_083
crossref_primary_10_1021_acsnano_7b00638
crossref_primary_10_1103_PhysRevApplied_10_044031
crossref_primary_10_1103_PhysRevMaterials_3_064001
crossref_primary_10_1103_PhysRevMaterials_6_064008
crossref_primary_10_1515_nanoph_2019_0211
crossref_primary_10_1016_j_fmre_2024_01_019
crossref_primary_10_35848_1882_0786_ac917a
crossref_primary_10_1364_OL_545237
crossref_primary_10_1002_smll_202300144
crossref_primary_10_1038_s41467_018_08185_8
crossref_primary_10_1021_acs_jpclett_9b02863
crossref_primary_10_1002_adom_202202759
crossref_primary_10_1063_5_0164457
crossref_primary_10_1146_annurev_physchem_042018_052628
crossref_primary_10_1038_s41598_021_03703_z
crossref_primary_10_1021_acsnano_1c04467
crossref_primary_10_1002_adom_202300737
crossref_primary_10_1088_1361_6528_ac5283
crossref_primary_10_31857_S0370274X24090034
crossref_primary_10_1021_acsphotonics_9b01103
crossref_primary_10_1021_acs_nanolett_6b03268
crossref_primary_10_1039_C7NR08249E
crossref_primary_10_1103_PhysRevB_97_214104
crossref_primary_10_1021_acsami_1c14591
crossref_primary_10_1149_2162_8777_ac1d29
crossref_primary_10_1039_C8CS00450A
crossref_primary_10_1364_OL_454450
crossref_primary_10_1021_acsphotonics_7b00086
crossref_primary_10_1515_nanoph_2017_0041
crossref_primary_10_1038_s42005_018_0097_1
crossref_primary_10_1002_adom_201600939
crossref_primary_10_1515_nanoph_2020_0187
crossref_primary_10_1002_qute_202200009
crossref_primary_10_1021_acsphotonics_1c00320
crossref_primary_10_1103_PhysRevMaterials_5_095201
crossref_primary_10_1038_s41578_019_0124_1
crossref_primary_10_1021_acsnano_3c08940
crossref_primary_10_1364_OPTICA_6_000542
crossref_primary_10_1039_C7NR08222C
crossref_primary_10_1021_acs_jctc_0c00809
crossref_primary_10_1126_science_aax9406
crossref_primary_10_1038_s41524_021_00544_2
crossref_primary_10_1021_acsnano_9b00274
crossref_primary_10_1515_nanoph_2019_0123
crossref_primary_10_1021_acsphotonics_7b00977
crossref_primary_10_1002_qute_202100032
crossref_primary_10_3762_bjnano_9_12
crossref_primary_10_1063_5_0072091
crossref_primary_10_1002_adom_202302700
crossref_primary_10_1007_s10853_018_2390_5
crossref_primary_10_1021_acs_jpclett_0c00511
crossref_primary_10_1063_5_0074946
crossref_primary_10_1515_nanoph_2024_0569
crossref_primary_10_1038_s41467_018_05117_4
crossref_primary_10_1103_PhysRevB_102_144104
crossref_primary_10_1021_acs_nanolett_2c03743
Cites_doi 10.1038/ncomms2818
10.1038/nmat4145
10.1098/rspa.1950.0184
10.1063/1.4866335
10.1103/PhysRevApplied.5.034005
10.1038/nnano.2016.3
10.1038/nnano.2015.242
10.1364/OE.21.029679
10.1021/nl204010e
10.1103/PhysRevB.93.041413
10.1016/j.ssc.2008.02.024
10.1021/am403789c
10.1063/1.3141450
10.1103/PhysRevB.73.064304
10.1038/ncomms10546
10.1103/PhysRevLett.103.256404
10.1088/1367-2630/16/2/023021
10.1021/acsami.5b03967
10.1088/1367-2630/15/4/043005
10.1038/nature10562
10.1073/pnas.1306825110
10.1038/nphoton.2015.58
10.1103/PhysRevLett.85.290
10.1038/nature12385
10.1039/C5NR06722G
10.1364/OL.25.001294
10.1063/1.4872268
10.1038/nmat4218
10.1038/nmat4144
10.1063/1.4890979
10.1126/science.1235126
10.1093/acprof:oso/9780198507802.001.0001
10.1103/PhysRevB.83.144115
10.1038/nature07279
10.1021/acsnano.5b06515
10.1063/1.3578264
10.1038/nature12373
10.1038/nnano.2015.70
10.1364/OPTICA.3.000768
10.1038/nature12952
10.1021/acsnano.6b03602
10.1088/1367-2630/16/7/073026
10.1073/pnas.1003052107
10.1038/nature15759
10.1021/nl504941q
10.1038/nmat3806
10.1038/ncomms8578
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.6b01987
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 6057
ExternalDocumentID 27580074
10_1021_acs_nanolett_6b01987
a371744098
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a348t-b9ae8ec85814d905cfa1f3596b40d8174dd334187ca0fc6748779626d7a25b793
IEDL.DBID ACS
ISSN 1530-6984
IngestDate Thu Jul 10 22:05:50 EDT 2025
Sat Sep 28 08:49:12 EDT 2024
Tue Jul 01 03:13:51 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords zero-phonon line
2D material
point defect
Single-photon source
hexagonal boron nitride
line width
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-b9ae8ec85814d905cfa1f3596b40d8174dd334187ca0fc6748779626d7a25b793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27580074
PQID 1835391448
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1835391448
pubmed_primary_27580074
crossref_citationtrail_10_1021_acs_nanolett_6b01987
crossref_primary_10_1021_acs_nanolett_6b01987
acs_journals_10_1021_acs_nanolett_6b01987
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-12
PublicationDateYYYYMMDD 2016-10-12
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
Dresselhaus M. S. (ref49/cit49) 2007
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
Stoneham A. M. (ref45/cit45) 2001
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1038/ncomms2818
– ident: ref35/cit35
  doi: 10.1038/nmat4145
– ident: ref44/cit44
  doi: 10.1098/rspa.1950.0184
– ident: ref5/cit5
  doi: 10.1063/1.4866335
– ident: ref21/cit21
  doi: 10.1103/PhysRevApplied.5.034005
– ident: ref9/cit9
  doi: 10.1038/nnano.2016.3
– ident: ref20/cit20
  doi: 10.1038/nnano.2015.242
– ident: ref27/cit27
  doi: 10.1364/OE.21.029679
– ident: ref39/cit39
  doi: 10.1021/nl204010e
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.93.041413
– ident: ref3/cit3
  doi: 10.1016/j.ssc.2008.02.024
– ident: ref8/cit8
  doi: 10.1021/am403789c
– ident: ref19/cit19
– ident: ref26/cit26
  doi: 10.1063/1.3141450
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.73.064304
– ident: ref2/cit2
  doi: 10.1038/ncomms10546
– ident: ref25/cit25
  doi: 10.1103/PhysRevLett.103.256404
– ident: ref30/cit30
  doi: 10.1088/1367-2630/16/2/023021
– ident: ref6/cit6
  doi: 10.1021/acsami.5b03967
– ident: ref28/cit28
  doi: 10.1088/1367-2630/15/4/043005
– ident: ref33/cit33
  doi: 10.1038/nature10562
– ident: ref18/cit18
  doi: 10.1073/pnas.1306825110
– ident: ref29/cit29
  doi: 10.1038/nphoton.2015.58
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.85.290
– ident: ref11/cit11
  doi: 10.1038/nature12385
– ident: ref43/cit43
  doi: 10.1039/C5NR06722G
– ident: ref24/cit24
  doi: 10.1364/OL.25.001294
– volume-title: Group Theory: Application to the Physics of Condensed Matter
  year: 2007
  ident: ref49/cit49
– ident: ref40/cit40
  doi: 10.1063/1.4872268
– ident: ref12/cit12
  doi: 10.1038/nmat4218
– ident: ref36/cit36
  doi: 10.1038/nmat4144
– ident: ref15/cit15
  doi: 10.1063/1.4890979
– ident: ref1/cit1
  doi: 10.1126/science.1235126
– volume-title: Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors
  year: 2001
  ident: ref45/cit45
  doi: 10.1093/acprof:oso/9780198507802.001.0001
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.83.144115
– ident: ref17/cit17
  doi: 10.1038/nature07279
– ident: ref42/cit42
  doi: 10.1021/acsnano.5b06515
– ident: ref32/cit32
  doi: 10.1063/1.3578264
– ident: ref16/cit16
  doi: 10.1038/nature12373
– ident: ref13/cit13
  doi: 10.1038/nnano.2015.70
– ident: ref38/cit38
  doi: 10.1364/OPTICA.3.000768
– ident: ref4/cit4
  doi: 10.1038/nature12952
– ident: ref22/cit22
  doi: 10.1021/acsnano.6b03602
– ident: ref46/cit46
  doi: 10.1088/1367-2630/16/7/073026
– ident: ref14/cit14
  doi: 10.1073/pnas.1003052107
– ident: ref31/cit31
  doi: 10.1038/nature15759
– ident: ref41/cit41
  doi: 10.1021/nl504941q
– ident: ref34/cit34
  doi: 10.1038/nmat3806
– ident: ref37/cit37
  doi: 10.1038/ncomms8578
SSID ssj0009350
Score 2.6438127
Snippet We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6052
Title Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride
URI http://dx.doi.org/10.1021/acs.nanolett.6b01987
https://www.ncbi.nlm.nih.gov/pubmed/27580074
https://www.proquest.com/docview/1835391448
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYLnBgX8omI3HhkJI99pFVFRKL1FYgLpHt2G1FlaA2lRBfz0wWViHgGsUjL-PMe7FnHiEHjjFGw2JbMkIJMxZyi_vAUgxLQmlzQNACk5OvrsNW17-8D-7fieLXE3zXORJq3ExFmsEw8ia0R5Y8TWbdEEINQqHT9nuRXa9QZIVNDJSIM79OlfvBCgYkNf4ckH5AmUW0uVgkN3XOTnnJ5LE5yWVTvXwv4fjHgSyRhQp40uPSU5bJlE5XyPyHcoSrZNzRAKLLIsv0rFLHVZpmht4JFKhIe3mftgvlHMy4og96lFm3_SzNUnoODoN_3igmrNA2GByikeK2CB2ktKWfRQ9hPz3Bogn0epCPBoleI92L885py6pEGSzh-Sy3JBeaacUC5vgJtwNlhGO8gIfStxMG_CZJPIiMLFLCNgqlTKKIA2tKIuEGEr4G62QGeqU3CZX420mZAEh44pvAkVFglO1rz0gVajtskEOYs7jaVOO4OC93nRgf1hMZVxPZIF69irGqqpujyMbwl1bWW6unsrrHL-_v1w4Sw6zi2YpIdTaBvgGS9TiwU9YgG6XnvFl0gZMhVNv6x3i2yRxAs9Aq7s7skJl8NNG7AH9yuVf4_CtX0wMx
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOlDdLeRiJC4csySZ27GPpQwu0K6TdQsUlsh27XVElaJOVEL-eGW-yLUhV1asVj8b2ODOf7ZkP4F3ivXe42JHJicJMChWpDFGKl6UwscIIWlNy8tFEjI-zzyf8ZAN4nwuDSjQoqQmX-BfVBZIP1FbpqsbRtEMUQ2D5FtzmIhPE2LCzO72otZsGYlbcy4iMlMz6jLkrpJBfss2_fumKYDM4nYMt-LZWN7w1-TlctmZo__xXyfHG43kA97swlO2s7OYhbLjqEdy7VJzwMTQzhyH1quQy2-u4cq1jtWffNdFVVKftGZsGHh3Kv2I_3KKOvp7VVV2xfTQfOodjlL7CpijwnISEtyNsXrGx-61PCQSwj1RCgU3m7WJeuidwfLA_2x1HHUVDpNNMtpFR2klnJZdJVqqYW68Tn3IlTBaXEtFOWaboJ2VudewtEZvkuUIMVeZ6xA3-G57CJmrlngMzdAhlPUdIXmaeJybn3saZS72xwsViAO9xzopuizVFuD0fJQU19hNZdBM5gLRfzMJ2tc6JcuP8ml7RutevVa2Pa75_29tJgbNKNy26cvUSdcO4NlWIVeUAnq0MaC1xhAiNArcXNxjPG7gznh0dFoefJl-24S4GbSIKr2pewma7WLpXGBi15nXYBn8BdXMLkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4VKiF6oC2lJX3AVuqlB6d2_No9UiAKtI2QAiriYu0zRCAbxY6E-us7s3FSWgkhel15R7OP8X7fPuYD-BQ55ywOdqBykjDjmQhEgizFcZOpUCCClvQ4-ccwG5wlx-fp-R2pL3SiRku1P8SnqL4xrs0wEH2h8lKWFbao6aIpIswr8BQxSUSqDXv7oz_5dmMvzorxjOxI8GTxau4eK7Q26frvtekewOkXnv5zuFi67O-bXHVnjerqX_9kc_yvNr2AjRaOsr35_HkJT2y5Cc_uJCl8BfWpRWg9T73MDlrNXG1Z5dhPSbIV5bi5ZCOvp0PvsNiFnVbByWVVViU7xGlE-3GMnrGwERq8JiP-DgmblGxgb-WYyAD7SqkU2HDSTCfGbsFZ__B0fxC0Ug2BjBPeBEpIy63mKY8SI8JUOxm5OBWZSkLDkfUYE-N6yXMtQ6dJ4CTPBXIpk8teqvAf8RpW0Su7DUzRZpR2KVJzk7g0UnnqdJjY2Cmd2TDrwGfss6INtbrwp-i9qKDCRUcWbUd2IF4MaKHbnOckvXH9QK1gWetmnvPjge8_LuZKgb1KJy6ytNUMfUN8GwvkrLwDb-aTaGmxh0yNANzbR7RnF9ZODvrF96Pht3ewjtgtC_zlmvew2kxn9gPio0bt-Ej4DeFLDg0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+Dependence+of+Wavelength+Selectable+Zero-Phonon+Emission+from+Single+Defects+in+Hexagonal+Boron+Nitride&rft.jtitle=Nano+letters&rft.au=Jungwirth%2C+Nicholas+R&rft.au=Calderon%2C+Brian&rft.au=Ji%2C+Yanxin&rft.au=Spencer%2C+Michael+G&rft.date=2016-10-12&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=16&rft.issue=10&rft.spage=6052&rft.epage=6057&rft_id=info:doi/10.1021%2Facs.nanolett.6b01987&rft.externalDocID=a371744098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon