Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells
Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogene...
Saved in:
Published in | Nano letters Vol. 19; no. 10; pp. 7201 - 7209 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/acs.nanolett.9b02790 |
Cover
Abstract | Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment. |
---|---|
AbstractList | Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment. Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment. Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment. |
Author | Wang, Ji Feng, Jianming Li, Chunwei He, Gen Xie, Xi Yang, Jiang Zhang, Aihua Zhou, Lingfei Wu, Jiangming Chen, Demeng Wen, Rui Yang, Chengduan Hu, Ning |
AuthorAffiliation | The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine |
AuthorAffiliation_xml | – name: Sun Yat-sen University Cancer Center – name: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – name: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine |
Author_xml | – sequence: 1 givenname: Gen orcidid: 0000-0003-1394-0053 surname: He fullname: He, Gen organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 2 givenname: Jianming surname: Feng fullname: Feng, Jianming organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 3 givenname: Aihua surname: Zhang fullname: Zhang, Aihua organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 4 givenname: Lingfei surname: Zhou fullname: Zhou, Lingfei organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 5 givenname: Rui surname: Wen fullname: Wen, Rui organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 6 givenname: Jiangming surname: Wu fullname: Wu, Jiangming organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 7 givenname: Chengduan surname: Yang fullname: Yang, Chengduan organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 8 givenname: Jiang surname: Yang fullname: Yang, Jiang organization: Sun Yat-sen University Cancer Center – sequence: 9 givenname: Chunwei surname: Li fullname: Li, Chunwei organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 10 givenname: Demeng surname: Chen fullname: Chen, Demeng organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 11 givenname: Ji surname: Wang fullname: Wang, Ji organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 12 givenname: Ning surname: Hu fullname: Hu, Ning organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology – sequence: 13 givenname: Xi orcidid: 0000-0001-7406-8444 surname: Xie fullname: Xie, Xi email: xiexi27@mail.sysu.edu.cn organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31557044$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vFSEUhompsR_6D4xh2c3cAgNzL-70prZNWjWmrskZBioNA1dg0nTrLy_3q4su7AIO5DzvGzjvMToIMRiEPlIyo4TRM9B5FiBEb0qZyZ6wuSRv0BEVLWk6KdnB83nBD9FxzveEENkK8g4dtlSIOeH8CP27mXxxdgq6uBjA468Jgv5jBvy9eueS4KE590aXFFcxwRrCPz0UG9OI64avQmW08X7ykPAvc1frhoIw4JsYXInJhTscLV66pDfder2dxipeVl1-j95a8Nl82NUT9Pvb-e3ysrn-cXG1_HLdQMsXpemEodpKIWGuuaa9NUIMnSS86yUz8wXtFrwHOlgASVknOmJ7XRcDOTBtaXuCTre-qxT_TiYXNbq8fjkEE6esGJOS8k60oqKfdujUj2ZQq-RGSI9qP7cKfN4COsWck7FKu7L5d52G84oStQ5J1ZDUPiS1C6mK-Qvx3v8VGdnK1t37OKUaV_6_5AnvLK7p |
CitedBy_id | crossref_primary_10_1016_j_bios_2024_116204 crossref_primary_10_1021_acsami_0c18419 crossref_primary_10_1186_s12951_021_00795_7 crossref_primary_10_1039_D2RA06339E crossref_primary_10_1002_adfm_202104828 crossref_primary_10_1021_acs_biochem_2c00431 crossref_primary_10_3390_pharmaceutics15010280 crossref_primary_10_1039_D1NR05461A crossref_primary_10_1016_j_cej_2022_137761 crossref_primary_10_1038_s41578_022_00464_7 crossref_primary_10_1038_s41378_021_00238_1 crossref_primary_10_1038_s41596_021_00600_7 crossref_primary_10_3390_bios14050242 crossref_primary_10_1002_adfm_202311920 crossref_primary_10_1002_smtd_202301300 crossref_primary_10_1039_D0NR00153H crossref_primary_10_1002_adma_202304122 crossref_primary_10_1039_D1FD00057H crossref_primary_10_1021_acs_chemrev_1c00677 crossref_primary_10_1039_D3CP00387F crossref_primary_10_1016_S1872_2040_21_60089_0 crossref_primary_10_1021_acsmaterialslett_0c00428 crossref_primary_10_1039_D2MH00892K crossref_primary_10_1063_10_0005649 crossref_primary_10_1002_adma_202001668 crossref_primary_10_1016_j_bioelechem_2022_108197 crossref_primary_10_1186_s12951_023_02056_1 crossref_primary_10_1002_adhm_202300012 crossref_primary_10_1016_j_mtbio_2021_100193 crossref_primary_10_1002_adfm_201909890 crossref_primary_10_1002_smll_202303088 crossref_primary_10_1021_acsanm_1c03783 crossref_primary_10_1039_D2LC00122E crossref_primary_10_1186_s12951_024_02392_w crossref_primary_10_1042_BST20190039 crossref_primary_10_1002_bio_70047 crossref_primary_10_1016_j_ebiom_2022_104237 crossref_primary_10_3390_mi11080774 crossref_primary_10_1002_smll_202310605 crossref_primary_10_1021_acsnano_0c04624 crossref_primary_10_1038_s41596_021_00631_0 crossref_primary_10_1002_adfm_202107997 crossref_primary_10_1002_anbr_202100002 crossref_primary_10_1002_smll_202000146 crossref_primary_10_1021_acsami_0c06978 crossref_primary_10_1039_D0MH01016B crossref_primary_10_1039_D0TB00990C crossref_primary_10_1016_j_mattod_2023_12_008 crossref_primary_10_1016_j_trac_2022_116822 crossref_primary_10_1016_j_ajps_2025_101015 crossref_primary_10_1016_j_bios_2021_113583 crossref_primary_10_1016_j_nantod_2021_101361 crossref_primary_10_1186_s12951_022_01618_z crossref_primary_10_1021_acsami_3c10939 crossref_primary_10_1039_D1NA00775K crossref_primary_10_2139_ssrn_4049609 crossref_primary_10_1007_s40820_022_00818_4 crossref_primary_10_1002_adma_202314184 crossref_primary_10_1126_sciadv_abn7637 crossref_primary_10_1016_j_jconrel_2022_12_038 crossref_primary_10_3390_bios12070522 crossref_primary_10_1002_smll_202102150 crossref_primary_10_1039_D0SC05112H crossref_primary_10_1002_adhm_202303543 crossref_primary_10_1021_acs_accounts_4c00190 crossref_primary_10_1016_j_trac_2022_116835 crossref_primary_10_1039_D4RA02791D |
Cites_doi | 10.1038/nnano.2017.3 10.1039/C6CS00458J 10.1038/nmat4249 10.1002/adma.201600658 10.1038/nbt.3235 10.1002/anie.201409376 10.1021/acs.chemrev.7b00258 10.1038/nbt.2282 10.1039/C7CS00016B 10.1002/adhm.201200009 10.1039/C6SC04671A 10.1016/j.addr.2016.02.006 10.1002/adma.201300082 10.1016/S0169-409X(02)00046-7 10.1021/nl3042917 10.1021/acssensors.7b00350 10.1021/nn400874a 10.1038/sj.bjc.6600541 10.1039/C6CS00803H 10.1016/j.addr.2012.01.005 10.1002/smtd.201800544 10.1038/s41576-018-0071-5 10.1021/nl3037068 10.1021/ac902041h 10.1038/nature19328 10.1158/1078-0432.CCR-07-1441 10.1038/nnano.2016.239 10.1038/s41551-018-0190-5 10.1073/pnas.1615375114 10.1021/acssensors.8b00367 10.1016/j.molonc.2015.05.009 10.1126/sciadv.aat8131 10.1088/0034-4885/80/1/016701 10.1038/nature11217 10.1021/acs.chemrev.7b00678 10.1002/1873-3468.12662 10.1038/nrd.2016.246 10.1021/acs.nanolett.5b04731 10.1039/C6LC00840B 10.1002/adfm.201806484 10.1038/nbt.3471 10.1002/adma.201805344 10.1038/nbt.2892 10.1016/j.celrep.2016.09.080 10.1038/nm.4015 10.1038/sj.cdd.4400476 10.1038/nature19764 10.1038/cgt.2015.58 10.1038/ncomms14622 10.1146/annurev-bioeng-062117-120947 10.1038/nrc3950 10.1021/acsnano.8b05473 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.9b02790 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 7209 |
ExternalDocumentID | 31557044 10_1021_acs_nanolett_9b02790 c340327527 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a348t-65e1cf959a7c4c1bfe55d69046b92e781684ba1dfaa9126560fbc0fb2a9d2cf13 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 12:35:53 EDT 2025 Mon Jul 21 06:06:41 EDT 2025 Tue Jul 01 03:14:09 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Thu Aug 27 13:43:30 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Branched nanostraws intracellular sensing cancer cells capture nanoelectroporation intracellular regulation |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-65e1cf959a7c4c1bfe55d69046b92e781684ba1dfaa9126560fbc0fb2a9d2cf13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7406-8444 0000-0003-1394-0053 |
PMID | 31557044 |
PQID | 2299146535 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2299146535 pubmed_primary_31557044 crossref_citationtrail_10_1021_acs_nanolett_9b02790 crossref_primary_10_1021_acs_nanolett_9b02790 acs_journals_10_1021_acs_nanolett_9b02790 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-09 |
PublicationDateYYYYMMDD | 2019-10-09 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref39/cit39 doi: 10.1038/nnano.2017.3 – ident: ref21/cit21 doi: 10.1039/C6CS00458J – ident: ref40/cit40 doi: 10.1038/nmat4249 – ident: ref17/cit17 doi: 10.1002/adma.201600658 – ident: ref25/cit25 doi: 10.1038/nbt.3235 – ident: ref7/cit7 doi: 10.1002/anie.201409376 – ident: ref29/cit29 doi: 10.1021/acs.chemrev.7b00258 – ident: ref2/cit2 doi: 10.1038/nbt.2282 – ident: ref8/cit8 doi: 10.1039/C7CS00016B – ident: ref15/cit15 doi: 10.1002/adhm.201200009 – ident: ref12/cit12 doi: 10.1039/C6SC04671A – ident: ref30/cit30 doi: 10.1016/j.addr.2016.02.006 – ident: ref16/cit16 doi: 10.1002/adma.201300082 – ident: ref31/cit31 doi: 10.1016/S0169-409X(02)00046-7 – ident: ref41/cit41 doi: 10.1021/nl3042917 – ident: ref42/cit42 doi: 10.1021/acssensors.7b00350 – ident: ref44/cit44 doi: 10.1021/nn400874a – ident: ref52/cit52 doi: 10.1038/sj.bjc.6600541 – ident: ref9/cit9 doi: 10.1039/C6CS00803H – ident: ref33/cit33 doi: 10.1016/j.addr.2012.01.005 – ident: ref18/cit18 doi: 10.1002/smtd.201800544 – ident: ref14/cit14 doi: 10.1038/s41576-018-0071-5 – ident: ref43/cit43 doi: 10.1021/nl3037068 – ident: ref48/cit48 doi: 10.1021/ac902041h – ident: ref4/cit4 doi: 10.1038/nature19328 – ident: ref28/cit28 doi: 10.1158/1078-0432.CCR-07-1441 – ident: ref6/cit6 doi: 10.1038/nnano.2016.239 – ident: ref10/cit10 doi: 10.1038/s41551-018-0190-5 – ident: ref46/cit46 doi: 10.1073/pnas.1615375114 – ident: ref47/cit47 doi: 10.1021/acssensors.8b00367 – ident: ref36/cit36 doi: 10.1016/j.molonc.2015.05.009 – ident: ref45/cit45 doi: 10.1126/sciadv.aat8131 – ident: ref38/cit38 doi: 10.1088/0034-4885/80/1/016701 – ident: ref1/cit1 doi: 10.1038/nature11217 – ident: ref35/cit35 doi: 10.1021/acs.chemrev.7b00678 – ident: ref5/cit5 doi: 10.1002/1873-3468.12662 – ident: ref24/cit24 doi: 10.1038/nrd.2016.246 – ident: ref19/cit19 doi: 10.1021/acs.nanolett.5b04731 – ident: ref49/cit49 doi: 10.1039/C6LC00840B – ident: ref20/cit20 doi: 10.1002/adfm.201806484 – ident: ref32/cit32 doi: 10.1038/nbt.3471 – ident: ref11/cit11 doi: 10.1002/adma.201805344 – ident: ref3/cit3 doi: 10.1038/nbt.2892 – ident: ref27/cit27 doi: 10.1016/j.celrep.2016.09.080 – ident: ref22/cit22 doi: 10.1038/nm.4015 – ident: ref51/cit51 doi: 10.1038/sj.cdd.4400476 – ident: ref34/cit34 doi: 10.1038/nature19764 – ident: ref23/cit23 doi: 10.1038/cgt.2015.58 – ident: ref37/cit37 doi: 10.1038/ncomms14622 – ident: ref13/cit13 doi: 10.1146/annurev-bioeng-062117-120947 – ident: ref26/cit26 doi: 10.1038/nrc3950 – ident: ref50/cit50 doi: 10.1021/acsnano.8b05473 |
SSID | ssj0009350 |
Score | 2.5565352 |
Snippet | Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7201 |
Title | Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells |
URI | http://dx.doi.org/10.1021/acs.nanolett.9b02790 https://www.ncbi.nlm.nih.gov/pubmed/31557044 https://www.proquest.com/docview/2299146535 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQeYGHDRiMjg95Ei88uNSO3caPpeo0kBhoH1LfIn9qE11SNakm8chfzl0-VhiqBg-JlMTnyJe73P1s3x0h77zyMpqhYSJJBJMq9Sz10jFjjRo6wBthjNHIX05Gxxfy81zNN0Dx7gq-4B-MKwe5yQsYRjXQFmCUBoj-UIxSjmBrMj3bJNlN6oqsoMQAiXQqu1C5Lb2gQXLlnwZpi5dZW5ujXfK1i9lpNpl8H6wrO3A__k7h-I8DeUJ2WseTThpJeUoehPwZefxbOsI98rOOxkVL10wQ0o9YdeMyeAr_4ALnRG7YrCmbs2wlh35bmAr9Xgon-glninEpAPe20tOmzD22Mrmnzd8D30SLSKdXK1c_hcvz9TUQT4GufE4ujmbn02PW1mhgJpFpxUYqcBe10mbspOM2BqU8IG45slqEMVb1kNZwH43RXGCmn2gdHMJoL1zkyQvSy4s8vCRU-cSPlR_GGGq3JgVkBQRWGWgWrOuT98DCrNWxMquXzwXP8GbH16zla58k3UfNXJvsHGtuLO6hYrdUyybZxz3tDzt5yUArkb8mD8W6zARYeY6p61Sf7DeCdNtjwjHtmZQH_zGeV-QReGq63kWoX5NetVqHN-ANVfZtrQK_AHIMC6c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5QAcKM-y5WUkLhy8rBN7Nz7CqtUW2grBFvUW-SkQJamarJA48suZcZItIFVVD4kUx-PYzoxnxo9vAF555WU0E8OzPM-4VIXnhZeOG2vUxKG_EWZ0GvnwaLo4lu9P1MkGqOEsDFaiwZKatIh_gS4g3lBaZaoaW9OOtUVvSqOnfiOBoZBFNP98gbWbp8CsKMvoGelCDifmLimF9JJr_tVLlxibSensbcGXdXXTXpPv41Vrx-7Xf0iO127PXbjTm6Hsbcc392AjVPfh9l_ghA_gdzqbS3qvmy5k7ygGx9fgGY7INc2Q_OS7XRCds56P2MdT05IVzPDG9mnemBYGaKcr-9QFvadcpvKsG0voS6yObP7t3KW3-Lhc_UDiOdI1D-F4b3c5X_A-YgM3uSxaPlVBuKiVNjMnnbAxKOXR_5ZTq7Mwoxgf0hrhozFaZIT7E63DKzPaZy6K_BFsVnUVHgNTPvcz5ScxhmTkFOhnIYFVBrMF60bwGruw7CWuKdNieiZKShz6tez7dQT58G9L10OfUwSO0yuo-JrqrIP-uCL_y4FtSpRR6l9ThXrVlBnqfEFAdmoE2x0_rUvMBYGgSblzjfa8gJuL5eFBebB_9OEJ3EIbTqf9hfopbLbnq_AM7aTWPk9S8QdrnBQS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqkFB7KI-2dHm0rtRLD96uE3s3PsLCClqKUAsS6iXyE6pCsiJZIXHklzPjZBdaCaH2kEhxPI498Xhm_PiGkI9OOhF0T7MkTRMmZOZY5oRl2mjZs-Bv-AGeRv522N87EV9O5emDUF9QiQpKquIiPkr12IUWYYB_xvRCFyW0qO4qAx6VAm99XiIKHFpFwx_3eLtpDM4K8gzekcrE9NTcI6WgbrLVn7rpEYMzKp7RIvk5q3Lcb_K7O6lN1978heb4X21aIi9bc5RuNf1nmTzzxQp58QCk8BW5jWd0Uf8104Z0G2NxnHtHYWQucabkmu02wXTGbX-iRxe6RmuYwo3u4_wxLhDgjlf63Z-1EcOoLhxtxhT8Ei0DHf66svEtPB5PLoF4CHTVa3Iy2j0e7rE2cgPTqchq1pee26Ck0gMrLDfBS-nADxd9oxI_wFgfwmjugtaKJ4j_E4yFK9HKJTbw9A2ZK8rCvyVUutQNpOuF4KOxk4G_BQRGasjmje2QT8DCvJW8Ko-L6gnPMXHK17zla4ek0_-b2xYCHSNxXDxBxWZU4wYC5In8H6ZdJwdZRf7qwpeTKk9A93MEtJMdstr0qVmJKUcwNCHW_qE978nC0c4oP9g__LpOnoMpp-I2Q7VB5uqrid8Ec6k276Jg3AH-qBaM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Branched+Nanostraw-Electroporation+Platform+for+Intracellular+Regulation+and+Monitoring+of+Circulating+Tumor+Cells&rft.jtitle=Nano+letters&rft.au=He%2C+Gen&rft.au=Feng%2C+Jianming&rft.au=Zhang%2C+Aihua&rft.au=Zhou%2C+Lingfei&rft.date=2019-10-09&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=19&rft.issue=10&rft.spage=7201&rft_id=info:doi/10.1021%2Facs.nanolett.9b02790&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |