Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells

Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogene...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 19; no. 10; pp. 7201 - 7209
Main Authors He, Gen, Feng, Jianming, Zhang, Aihua, Zhou, Lingfei, Wen, Rui, Wu, Jiangming, Yang, Chengduan, Yang, Jiang, Li, Chunwei, Chen, Demeng, Wang, Ji, Hu, Ning, Xie, Xi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.10.2019
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/acs.nanolett.9b02790

Cover

Abstract Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.
AbstractList Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.
Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.
Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.
Author Wang, Ji
Feng, Jianming
Li, Chunwei
He, Gen
Xie, Xi
Yang, Jiang
Zhang, Aihua
Zhou, Lingfei
Wu, Jiangming
Chen, Demeng
Wen, Rui
Yang, Chengduan
Hu, Ning
AuthorAffiliation The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
Sun Yat-sen University Cancer Center
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
AuthorAffiliation_xml – name: Sun Yat-sen University Cancer Center
– name: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– name: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
Author_xml – sequence: 1
  givenname: Gen
  orcidid: 0000-0003-1394-0053
  surname: He
  fullname: He, Gen
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 2
  givenname: Jianming
  surname: Feng
  fullname: Feng, Jianming
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 3
  givenname: Aihua
  surname: Zhang
  fullname: Zhang, Aihua
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 4
  givenname: Lingfei
  surname: Zhou
  fullname: Zhou, Lingfei
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 5
  givenname: Rui
  surname: Wen
  fullname: Wen, Rui
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 6
  givenname: Jiangming
  surname: Wu
  fullname: Wu, Jiangming
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 7
  givenname: Chengduan
  surname: Yang
  fullname: Yang, Chengduan
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 8
  givenname: Jiang
  surname: Yang
  fullname: Yang, Jiang
  organization: Sun Yat-sen University Cancer Center
– sequence: 9
  givenname: Chunwei
  surname: Li
  fullname: Li, Chunwei
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 10
  givenname: Demeng
  surname: Chen
  fullname: Chen, Demeng
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 11
  givenname: Ji
  surname: Wang
  fullname: Wang, Ji
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 12
  givenname: Ning
  surname: Hu
  fullname: Hu, Ning
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
– sequence: 13
  givenname: Xi
  orcidid: 0000-0001-7406-8444
  surname: Xie
  fullname: Xie, Xi
  email: xiexi27@mail.sysu.edu.cn
  organization: The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31557044$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vFSEUhompsR_6D4xh2c3cAgNzL-70prZNWjWmrskZBioNA1dg0nTrLy_3q4su7AIO5DzvGzjvMToIMRiEPlIyo4TRM9B5FiBEb0qZyZ6wuSRv0BEVLWk6KdnB83nBD9FxzveEENkK8g4dtlSIOeH8CP27mXxxdgq6uBjA468Jgv5jBvy9eueS4KE590aXFFcxwRrCPz0UG9OI64avQmW08X7ykPAvc1frhoIw4JsYXInJhTscLV66pDfder2dxipeVl1-j95a8Nl82NUT9Pvb-e3ysrn-cXG1_HLdQMsXpemEodpKIWGuuaa9NUIMnSS86yUz8wXtFrwHOlgASVknOmJ7XRcDOTBtaXuCTre-qxT_TiYXNbq8fjkEE6esGJOS8k60oqKfdujUj2ZQq-RGSI9qP7cKfN4COsWck7FKu7L5d52G84oStQ5J1ZDUPiS1C6mK-Qvx3v8VGdnK1t37OKUaV_6_5AnvLK7p
CitedBy_id crossref_primary_10_1016_j_bios_2024_116204
crossref_primary_10_1021_acsami_0c18419
crossref_primary_10_1186_s12951_021_00795_7
crossref_primary_10_1039_D2RA06339E
crossref_primary_10_1002_adfm_202104828
crossref_primary_10_1021_acs_biochem_2c00431
crossref_primary_10_3390_pharmaceutics15010280
crossref_primary_10_1039_D1NR05461A
crossref_primary_10_1016_j_cej_2022_137761
crossref_primary_10_1038_s41578_022_00464_7
crossref_primary_10_1038_s41378_021_00238_1
crossref_primary_10_1038_s41596_021_00600_7
crossref_primary_10_3390_bios14050242
crossref_primary_10_1002_adfm_202311920
crossref_primary_10_1002_smtd_202301300
crossref_primary_10_1039_D0NR00153H
crossref_primary_10_1002_adma_202304122
crossref_primary_10_1039_D1FD00057H
crossref_primary_10_1021_acs_chemrev_1c00677
crossref_primary_10_1039_D3CP00387F
crossref_primary_10_1016_S1872_2040_21_60089_0
crossref_primary_10_1021_acsmaterialslett_0c00428
crossref_primary_10_1039_D2MH00892K
crossref_primary_10_1063_10_0005649
crossref_primary_10_1002_adma_202001668
crossref_primary_10_1016_j_bioelechem_2022_108197
crossref_primary_10_1186_s12951_023_02056_1
crossref_primary_10_1002_adhm_202300012
crossref_primary_10_1016_j_mtbio_2021_100193
crossref_primary_10_1002_adfm_201909890
crossref_primary_10_1002_smll_202303088
crossref_primary_10_1021_acsanm_1c03783
crossref_primary_10_1039_D2LC00122E
crossref_primary_10_1186_s12951_024_02392_w
crossref_primary_10_1042_BST20190039
crossref_primary_10_1002_bio_70047
crossref_primary_10_1016_j_ebiom_2022_104237
crossref_primary_10_3390_mi11080774
crossref_primary_10_1002_smll_202310605
crossref_primary_10_1021_acsnano_0c04624
crossref_primary_10_1038_s41596_021_00631_0
crossref_primary_10_1002_adfm_202107997
crossref_primary_10_1002_anbr_202100002
crossref_primary_10_1002_smll_202000146
crossref_primary_10_1021_acsami_0c06978
crossref_primary_10_1039_D0MH01016B
crossref_primary_10_1039_D0TB00990C
crossref_primary_10_1016_j_mattod_2023_12_008
crossref_primary_10_1016_j_trac_2022_116822
crossref_primary_10_1016_j_ajps_2025_101015
crossref_primary_10_1016_j_bios_2021_113583
crossref_primary_10_1016_j_nantod_2021_101361
crossref_primary_10_1186_s12951_022_01618_z
crossref_primary_10_1021_acsami_3c10939
crossref_primary_10_1039_D1NA00775K
crossref_primary_10_2139_ssrn_4049609
crossref_primary_10_1007_s40820_022_00818_4
crossref_primary_10_1002_adma_202314184
crossref_primary_10_1126_sciadv_abn7637
crossref_primary_10_1016_j_jconrel_2022_12_038
crossref_primary_10_3390_bios12070522
crossref_primary_10_1002_smll_202102150
crossref_primary_10_1039_D0SC05112H
crossref_primary_10_1002_adhm_202303543
crossref_primary_10_1021_acs_accounts_4c00190
crossref_primary_10_1016_j_trac_2022_116835
crossref_primary_10_1039_D4RA02791D
Cites_doi 10.1038/nnano.2017.3
10.1039/C6CS00458J
10.1038/nmat4249
10.1002/adma.201600658
10.1038/nbt.3235
10.1002/anie.201409376
10.1021/acs.chemrev.7b00258
10.1038/nbt.2282
10.1039/C7CS00016B
10.1002/adhm.201200009
10.1039/C6SC04671A
10.1016/j.addr.2016.02.006
10.1002/adma.201300082
10.1016/S0169-409X(02)00046-7
10.1021/nl3042917
10.1021/acssensors.7b00350
10.1021/nn400874a
10.1038/sj.bjc.6600541
10.1039/C6CS00803H
10.1016/j.addr.2012.01.005
10.1002/smtd.201800544
10.1038/s41576-018-0071-5
10.1021/nl3037068
10.1021/ac902041h
10.1038/nature19328
10.1158/1078-0432.CCR-07-1441
10.1038/nnano.2016.239
10.1038/s41551-018-0190-5
10.1073/pnas.1615375114
10.1021/acssensors.8b00367
10.1016/j.molonc.2015.05.009
10.1126/sciadv.aat8131
10.1088/0034-4885/80/1/016701
10.1038/nature11217
10.1021/acs.chemrev.7b00678
10.1002/1873-3468.12662
10.1038/nrd.2016.246
10.1021/acs.nanolett.5b04731
10.1039/C6LC00840B
10.1002/adfm.201806484
10.1038/nbt.3471
10.1002/adma.201805344
10.1038/nbt.2892
10.1016/j.celrep.2016.09.080
10.1038/nm.4015
10.1038/sj.cdd.4400476
10.1038/nature19764
10.1038/cgt.2015.58
10.1038/ncomms14622
10.1146/annurev-bioeng-062117-120947
10.1038/nrc3950
10.1021/acsnano.8b05473
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.9b02790
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 7209
ExternalDocumentID 31557044
10_1021_acs_nanolett_9b02790
c340327527
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a348t-65e1cf959a7c4c1bfe55d69046b92e781684ba1dfaa9126560fbc0fb2a9d2cf13
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 12:35:53 EDT 2025
Mon Jul 21 06:06:41 EDT 2025
Tue Jul 01 03:14:09 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Thu Aug 27 13:43:30 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Branched nanostraws
intracellular sensing
cancer cells capture
nanoelectroporation
intracellular regulation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-65e1cf959a7c4c1bfe55d69046b92e781684ba1dfaa9126560fbc0fb2a9d2cf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7406-8444
0000-0003-1394-0053
PMID 31557044
PQID 2299146535
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2299146535
pubmed_primary_31557044
crossref_citationtrail_10_1021_acs_nanolett_9b02790
crossref_primary_10_1021_acs_nanolett_9b02790
acs_journals_10_1021_acs_nanolett_9b02790
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-09
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref39/cit39
  doi: 10.1038/nnano.2017.3
– ident: ref21/cit21
  doi: 10.1039/C6CS00458J
– ident: ref40/cit40
  doi: 10.1038/nmat4249
– ident: ref17/cit17
  doi: 10.1002/adma.201600658
– ident: ref25/cit25
  doi: 10.1038/nbt.3235
– ident: ref7/cit7
  doi: 10.1002/anie.201409376
– ident: ref29/cit29
  doi: 10.1021/acs.chemrev.7b00258
– ident: ref2/cit2
  doi: 10.1038/nbt.2282
– ident: ref8/cit8
  doi: 10.1039/C7CS00016B
– ident: ref15/cit15
  doi: 10.1002/adhm.201200009
– ident: ref12/cit12
  doi: 10.1039/C6SC04671A
– ident: ref30/cit30
  doi: 10.1016/j.addr.2016.02.006
– ident: ref16/cit16
  doi: 10.1002/adma.201300082
– ident: ref31/cit31
  doi: 10.1016/S0169-409X(02)00046-7
– ident: ref41/cit41
  doi: 10.1021/nl3042917
– ident: ref42/cit42
  doi: 10.1021/acssensors.7b00350
– ident: ref44/cit44
  doi: 10.1021/nn400874a
– ident: ref52/cit52
  doi: 10.1038/sj.bjc.6600541
– ident: ref9/cit9
  doi: 10.1039/C6CS00803H
– ident: ref33/cit33
  doi: 10.1016/j.addr.2012.01.005
– ident: ref18/cit18
  doi: 10.1002/smtd.201800544
– ident: ref14/cit14
  doi: 10.1038/s41576-018-0071-5
– ident: ref43/cit43
  doi: 10.1021/nl3037068
– ident: ref48/cit48
  doi: 10.1021/ac902041h
– ident: ref4/cit4
  doi: 10.1038/nature19328
– ident: ref28/cit28
  doi: 10.1158/1078-0432.CCR-07-1441
– ident: ref6/cit6
  doi: 10.1038/nnano.2016.239
– ident: ref10/cit10
  doi: 10.1038/s41551-018-0190-5
– ident: ref46/cit46
  doi: 10.1073/pnas.1615375114
– ident: ref47/cit47
  doi: 10.1021/acssensors.8b00367
– ident: ref36/cit36
  doi: 10.1016/j.molonc.2015.05.009
– ident: ref45/cit45
  doi: 10.1126/sciadv.aat8131
– ident: ref38/cit38
  doi: 10.1088/0034-4885/80/1/016701
– ident: ref1/cit1
  doi: 10.1038/nature11217
– ident: ref35/cit35
  doi: 10.1021/acs.chemrev.7b00678
– ident: ref5/cit5
  doi: 10.1002/1873-3468.12662
– ident: ref24/cit24
  doi: 10.1038/nrd.2016.246
– ident: ref19/cit19
  doi: 10.1021/acs.nanolett.5b04731
– ident: ref49/cit49
  doi: 10.1039/C6LC00840B
– ident: ref20/cit20
  doi: 10.1002/adfm.201806484
– ident: ref32/cit32
  doi: 10.1038/nbt.3471
– ident: ref11/cit11
  doi: 10.1002/adma.201805344
– ident: ref3/cit3
  doi: 10.1038/nbt.2892
– ident: ref27/cit27
  doi: 10.1016/j.celrep.2016.09.080
– ident: ref22/cit22
  doi: 10.1038/nm.4015
– ident: ref51/cit51
  doi: 10.1038/sj.cdd.4400476
– ident: ref34/cit34
  doi: 10.1038/nature19764
– ident: ref23/cit23
  doi: 10.1038/cgt.2015.58
– ident: ref37/cit37
  doi: 10.1038/ncomms14622
– ident: ref13/cit13
  doi: 10.1146/annurev-bioeng-062117-120947
– ident: ref26/cit26
  doi: 10.1038/nrc3950
– ident: ref50/cit50
  doi: 10.1021/acsnano.8b05473
SSID ssj0009350
Score 2.5565352
Snippet Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7201
Title Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells
URI http://dx.doi.org/10.1021/acs.nanolett.9b02790
https://www.ncbi.nlm.nih.gov/pubmed/31557044
https://www.proquest.com/docview/2299146535
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQeYGHDRiMjg95Ei88uNSO3caPpeo0kBhoH1LfIn9qE11SNakm8chfzl0-VhiqBg-JlMTnyJe73P1s3x0h77zyMpqhYSJJBJMq9Sz10jFjjRo6wBthjNHIX05Gxxfy81zNN0Dx7gq-4B-MKwe5yQsYRjXQFmCUBoj-UIxSjmBrMj3bJNlN6oqsoMQAiXQqu1C5Lb2gQXLlnwZpi5dZW5ujXfK1i9lpNpl8H6wrO3A__k7h-I8DeUJ2WseTThpJeUoehPwZefxbOsI98rOOxkVL10wQ0o9YdeMyeAr_4ALnRG7YrCmbs2wlh35bmAr9Xgon-glninEpAPe20tOmzD22Mrmnzd8D30SLSKdXK1c_hcvz9TUQT4GufE4ujmbn02PW1mhgJpFpxUYqcBe10mbspOM2BqU8IG45slqEMVb1kNZwH43RXGCmn2gdHMJoL1zkyQvSy4s8vCRU-cSPlR_GGGq3JgVkBQRWGWgWrOuT98DCrNWxMquXzwXP8GbH16zla58k3UfNXJvsHGtuLO6hYrdUyybZxz3tDzt5yUArkb8mD8W6zARYeY6p61Sf7DeCdNtjwjHtmZQH_zGeV-QReGq63kWoX5NetVqHN-ANVfZtrQK_AHIMC6c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5QAcKM-y5WUkLhy8rBN7Nz7CqtUW2grBFvUW-SkQJamarJA48suZcZItIFVVD4kUx-PYzoxnxo9vAF555WU0E8OzPM-4VIXnhZeOG2vUxKG_EWZ0GvnwaLo4lu9P1MkGqOEsDFaiwZKatIh_gS4g3lBaZaoaW9OOtUVvSqOnfiOBoZBFNP98gbWbp8CsKMvoGelCDifmLimF9JJr_tVLlxibSensbcGXdXXTXpPv41Vrx-7Xf0iO127PXbjTm6Hsbcc392AjVPfh9l_ghA_gdzqbS3qvmy5k7ygGx9fgGY7INc2Q_OS7XRCds56P2MdT05IVzPDG9mnemBYGaKcr-9QFvadcpvKsG0voS6yObP7t3KW3-Lhc_UDiOdI1D-F4b3c5X_A-YgM3uSxaPlVBuKiVNjMnnbAxKOXR_5ZTq7Mwoxgf0hrhozFaZIT7E63DKzPaZy6K_BFsVnUVHgNTPvcz5ScxhmTkFOhnIYFVBrMF60bwGruw7CWuKdNieiZKShz6tez7dQT58G9L10OfUwSO0yuo-JrqrIP-uCL_y4FtSpRR6l9ThXrVlBnqfEFAdmoE2x0_rUvMBYGgSblzjfa8gJuL5eFBebB_9OEJ3EIbTqf9hfopbLbnq_AM7aTWPk9S8QdrnBQS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqkFB7KI-2dHm0rtRLD96uE3s3PsLCClqKUAsS6iXyE6pCsiJZIXHklzPjZBdaCaH2kEhxPI498Xhm_PiGkI9OOhF0T7MkTRMmZOZY5oRl2mjZs-Bv-AGeRv522N87EV9O5emDUF9QiQpKquIiPkr12IUWYYB_xvRCFyW0qO4qAx6VAm99XiIKHFpFwx_3eLtpDM4K8gzekcrE9NTcI6WgbrLVn7rpEYMzKp7RIvk5q3Lcb_K7O6lN1978heb4X21aIi9bc5RuNf1nmTzzxQp58QCk8BW5jWd0Uf8104Z0G2NxnHtHYWQucabkmu02wXTGbX-iRxe6RmuYwo3u4_wxLhDgjlf63Z-1EcOoLhxtxhT8Ei0DHf66svEtPB5PLoF4CHTVa3Iy2j0e7rE2cgPTqchq1pee26Ck0gMrLDfBS-nADxd9oxI_wFgfwmjugtaKJ4j_E4yFK9HKJTbw9A2ZK8rCvyVUutQNpOuF4KOxk4G_BQRGasjmje2QT8DCvJW8Ko-L6gnPMXHK17zla4ek0_-b2xYCHSNxXDxBxWZU4wYC5In8H6ZdJwdZRf7qwpeTKk9A93MEtJMdstr0qVmJKUcwNCHW_qE978nC0c4oP9g__LpOnoMpp-I2Q7VB5uqrid8Ec6k276Jg3AH-qBaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Branched+Nanostraw-Electroporation+Platform+for+Intracellular+Regulation+and+Monitoring+of+Circulating+Tumor+Cells&rft.jtitle=Nano+letters&rft.au=He%2C+Gen&rft.au=Feng%2C+Jianming&rft.au=Zhang%2C+Aihua&rft.au=Zhou%2C+Lingfei&rft.date=2019-10-09&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=19&rft.issue=10&rft.spage=7201&rft_id=info:doi/10.1021%2Facs.nanolett.9b02790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon