Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume

Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffr...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 18; no. 2; pp. 1075 - 1081
Main Authors Li, Erwen, Gao, Qian, Chen, Ray T, Wang, Alan X
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.02.2018
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/acs.nanolett.7b04588

Cover

Abstract Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects.
AbstractList Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um , which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects.
Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects.Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects.
Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects.
Author Gao, Qian
Li, Erwen
Wang, Alan X
Chen, Ray T
AuthorAffiliation School of Electrical Engineering and Computer Science
The University of Texas at Austin
Department of Electrical and Computer Engineering
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering
– name: School of Electrical Engineering and Computer Science
– name: The University of Texas at Austin
Author_xml – sequence: 1
  givenname: Erwen
  surname: Li
  fullname: Li, Erwen
  organization: School of Electrical Engineering and Computer Science
– sequence: 2
  givenname: Qian
  surname: Gao
  fullname: Gao, Qian
  organization: School of Electrical Engineering and Computer Science
– sequence: 3
  givenname: Ray T
  surname: Chen
  fullname: Chen, Ray T
  organization: The University of Texas at Austin
– sequence: 4
  givenname: Alan X
  orcidid: 0000-0002-0553-498X
  surname: Wang
  fullname: Wang, Alan X
  email: wang@oregonstate.edu
  organization: School of Electrical Engineering and Computer Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29309164$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1OwzAQhC0EAlp4A4Ry5JJix3Eac0MVf1KhByhXa-04wsixS-wUeHuC0nLgAKddaeeblWZGaNd5pxE6IXhCcEbOQYWJA-etjnEylThnZbmDDgmjOC04z3Z_9jI_QKMQXjHGnDK8jw4yTjEnRX6IxNLGFpRvVqBi8misUd6lM--qTkWz1sniw1Q6eegfKVib-Jnc-6qzEH2bvJv4kuAJzpI5NLKCdNZJo5LLAXz2tmv0EdqrwQZ9vJljtLy-eprdpvPFzd3scp4CzcuYMiYLzRmdKsIkLVlVaSklQFkUFLiCqVZQE5BaSSWzLGc1yKpQmcYFzShldIzOBt9V6986HaJoTFDaWnDad0EQXnKWM0pILz3dSDvZ6EqsWtNA-ym2ofSCi0GgWh9Cq2uhTIRovOujMlYQLL4bEH0DYtuA2DTQw_kveOv_D4YH7Pv66rvW9Wn9jXwBlgugrA
CitedBy_id crossref_primary_10_1039_C8NR09157A
crossref_primary_10_1364_OE_519530
crossref_primary_10_1364_OL_44_003932
crossref_primary_10_1007_s12274_020_3271_1
crossref_primary_10_1364_OE_386959
crossref_primary_10_1515_nanoph_2020_0264
crossref_primary_10_1364_OL_43_004429
crossref_primary_10_1021_acsphotonics_9b01678
crossref_primary_10_1063_5_0179441
crossref_primary_10_1109_JPHOT_2019_2927756
crossref_primary_10_1038_s41578_019_0120_5
crossref_primary_10_1515_nanoph_2019_0153
crossref_primary_10_1063_5_0048712
crossref_primary_10_1088_2040_8986_aab8bf
crossref_primary_10_1109_JPHOT_2021_3084943
crossref_primary_10_1364_PRJ_427246
crossref_primary_10_1002_adom_201902025
crossref_primary_10_1038_s41467_024_45130_4
crossref_primary_10_1021_acsphotonics_1c00719
crossref_primary_10_1109_JLT_2020_3023644
crossref_primary_10_1038_s41598_022_09973_5
crossref_primary_10_1063_5_0087540
crossref_primary_10_1364_OME_8_002850
crossref_primary_10_1117_1_JNP_13_036005
crossref_primary_10_29026_oea_2022_200093
crossref_primary_10_1515_nanoph_2021_0796
crossref_primary_10_1109_JSTQE_2021_3127200
crossref_primary_10_1364_PRJ_416656
crossref_primary_10_1109_JLT_2019_2939775
crossref_primary_10_1038_s41566_019_0397_3
crossref_primary_10_1016_j_ijleo_2020_165608
crossref_primary_10_1021_acsami_8b06307
crossref_primary_10_1002_lpor_202400508
crossref_primary_10_1038_s41598_019_47631_5
crossref_primary_10_1038_s42005_021_00683_4
crossref_primary_10_1063_1_5052635
crossref_primary_10_1364_AOP_448391
crossref_primary_10_1016_j_surfin_2025_105836
crossref_primary_10_1063_5_0007279
crossref_primary_10_1364_OE_26_032014
crossref_primary_10_1002_adom_202301232
crossref_primary_10_1364_PRJ_7_000473
crossref_primary_10_3390_nano12030485
crossref_primary_10_1364_OE_555480
crossref_primary_10_1016_j_optmat_2024_114931
crossref_primary_10_1109_JLT_2020_2979192
crossref_primary_10_1039_D0CC05265E
crossref_primary_10_1088_1361_6463_ac4455
Cites_doi 10.1109/JQE.1987.1073206
10.1016/j.optcom.2016.02.062
10.1364/OE.20.007081
10.1364/OME.1.001090
10.1038/nphoton.2014.9
10.1021/nl404513p
10.1038/nphoton.2017.13
10.1038/nature03569
10.1103/PhysRevLett.109.053901
10.1364/OE.19.021989
10.1038/nphoton.2015.127
10.1364/OE.16.012084
10.1109/22.473190
10.1109/JSTQE.2006.883151
10.1109/JLT.2017.2647779
10.1364/OE.19.005244
10.1364/OE.19.008855
10.1021/nl1006307
10.1038/srep15754
10.1109/LPT.2012.2213244
10.1038/nphoton.2010.179
10.1515/nanoph-2012-0009
10.1002/adma.201205076
10.1364/OE.17.022505
10.1021/nl500712u
10.1038/ncomms5008
10.1038/nature10067
10.1364/OL.36.001650
10.1109/JLT.2014.2363947
10.1515/nanoph-2015-0006
10.1364/OE.21.026387
10.1038/nphoton.2011.68
10.1364/OE.18.011192
10.1063/1.1843286
10.1021/nl502998z
10.1038/nature01937
10.1038/nphoton.2010.185
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.7b04588
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 1081
ExternalDocumentID 29309164
10_1021_acs_nanolett_7b04588
b664653525
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a348t-55b6e9537c15b385ddebbbaa8663a9ca7ecaf1abecbcb2245fabd6c2e06323353
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 03:21:33 EDT 2025
Mon Jul 21 05:42:24 EDT 2025
Thu Apr 24 23:08:17 EDT 2025
Tue Jul 01 03:13:59 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords photonic crystal cavity
Silicon photonics
optical modulator
plasmonics
transparent conductive oxides
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-55b6e9537c15b385ddebbbaa8663a9ca7ecaf1abecbcb2245fabd6c2e06323353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0553-498X
PMID 29309164
PQID 1989545311
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1989545311
pubmed_primary_29309164
crossref_citationtrail_10_1021_acs_nanolett_7b04588
crossref_primary_10_1021_acs_nanolett_7b04588
acs_journals_10_1021_acs_nanolett_7b04588
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-14
PublicationDateYYYYMMDD 2018-02-14
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
Colinge J. P. (ref39/cit39) 2005
ref7/cit7
References_xml – ident: ref16/cit16
  doi: 10.1109/JQE.1987.1073206
– ident: ref41/cit41
  doi: 10.1016/j.optcom.2016.02.062
– ident: ref17/cit17
  doi: 10.1364/OE.20.007081
– ident: ref26/cit26
  doi: 10.1364/OME.1.001090
– ident: ref2/cit2
– ident: ref12/cit12
  doi: 10.1038/nphoton.2014.9
– ident: ref25/cit25
  doi: 10.1021/nl404513p
– ident: ref36/cit36
  doi: 10.1038/nphoton.2017.13
– ident: ref18/cit18
  doi: 10.1038/nature03569
– ident: ref38/cit38
  doi: 10.1103/PhysRevLett.109.053901
– ident: ref14/cit14
  doi: 10.1364/OE.19.021989
– ident: ref13/cit13
  doi: 10.1038/nphoton.2015.127
– ident: ref21/cit21
– ident: ref42/cit42
  doi: 10.1364/OE.16.012084
– ident: ref40/cit40
  doi: 10.1109/22.473190
– ident: ref3/cit3
  doi: 10.1109/JSTQE.2006.883151
– ident: ref1/cit1
  doi: 10.1109/JLT.2017.2647779
– ident: ref9/cit9
  doi: 10.1364/OE.19.005244
– ident: ref10/cit10
– ident: ref37/cit37
  doi: 10.1364/OE.19.008855
– ident: ref33/cit33
  doi: 10.1021/nl1006307
– ident: ref35/cit35
  doi: 10.1038/srep15754
– ident: ref19/cit19
  doi: 10.1109/LPT.2012.2213244
– ident: ref20/cit20
  doi: 10.1038/nphoton.2010.179
– ident: ref30/cit30
  doi: 10.1515/nanoph-2012-0009
– ident: ref27/cit27
  doi: 10.1002/adma.201205076
– ident: ref15/cit15
  doi: 10.1364/OE.17.022505
– ident: ref23/cit23
  doi: 10.1021/nl500712u
– volume-title: Physics of semiconductor devices
  year: 2005
  ident: ref39/cit39
– ident: ref6/cit6
  doi: 10.1038/ncomms5008
– ident: ref22/cit22
  doi: 10.1038/nature10067
– ident: ref8/cit8
  doi: 10.1364/OL.36.001650
– ident: ref29/cit29
– ident: ref5/cit5
  doi: 10.1109/JLT.2014.2363947
– ident: ref28/cit28
  doi: 10.1515/nanoph-2015-0006
– ident: ref34/cit34
  doi: 10.1364/OE.21.026387
– ident: ref4/cit4
  doi: 10.1038/nphoton.2011.68
– ident: ref24/cit24
  doi: 10.1364/OE.18.011192
– ident: ref32/cit32
  doi: 10.1063/1.1843286
– ident: ref31/cit31
  doi: 10.1021/nl502998z
– ident: ref11/cit11
  doi: 10.1038/nature01937
– ident: ref7/cit7
  doi: 10.1038/nphoton.2010.185
SSID ssj0009350
Score 2.5018952
Snippet Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1075
Title Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume
URI http://dx.doi.org/10.1021/acs.nanolett.7b04588
https://www.ncbi.nlm.nih.gov/pubmed/29309164
https://www.proquest.com/docview/1989545311
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWgXOCwLJ9bYJGRuHBwqOPYcY5VRVUhoIdS1FvkcRyp2pKs2kRa7a_fcT66wKrqco1iK2O_mXmO7TeEfBxZp8NcAkvARSziYBnIWDCFbMQkKlfWNGqfP9RsGX1dydXtQvHfHfyQfzZ2FxSmKNGMKoihuVr5kDwKFaYaT4Umi1uRXdFUZEUnxiVRoqP-qtyBXnxCsru_E9IBltlkm-lTMu_v7LSHTC6CuoLAXt-VcLynIafkpCOedNwi5Rl54Irn5MkfcoQvSLrcVFvTnEq3FV2sN4iSgk3KwmvCYlSk86t15igGZEyAvuYE_V5mvvxXuaX-fy4dBaOQfjO_ITNsUsPa0nHb8FcTA1-S5fTLz8mMdQUYmBGRrpiUoFwiRWy5BKElhkIAMEYjTTGJNbGzJucGYQAWkAvI3ECmbOiQ94RCSPGKDIqycGeEIjUAcFq5OMm9xJYeSSetixArNucyG5JPOD5p50C7tNkbD3nqH_aDlnaDNiSin7HUdkrmvqDG5kgrtm912Sp5HHn_Qw-GFF3O76OYwpU1fluiEySegvMhed2iZN8jsidkYCp68x_2vCWPkYZpfxacR-_IoNrW7hypTgXvG3zfAF1s_Xw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswEB2k6aHNofvirizQSw90THGRdDSMBm7rpIfEQW4Ch6IAo64U2DJQ9Os7pCWnLRAEuRIiMaTezDyJ5BuAjyPns6TSyHP0iiuBjqNOJTfERmxuKuNsVPs8MdO5-nqhL_ZA93dhyIg1jbSOm_hX6gLiMLTVtm5oNu0wxXjD8g7c1UaZULFhPDm90tqVsTAr-TJ9GeWZ6m_MXTNKyEtu_W9euoZsxqRz9BDOd-bGsyY_hpsWh-73f0qOt57PI3jQ0VA23uLmMez5-gkc_CVO-BSK-bJd2XhG3bXsdLEkzNR80tRBIZZiJPv-a1F6RuGZ0mGoQMGOmzIUA2tWLPzdZaPhKGEz-xNLyycbXDg23nY8jxHxGcyPPp9Nprwrx8CtVFnLtUbjcy1TJzTKTFNgRERrMyItNnc29c5WwhIo0CExA11ZLI1LPLGgREotn8N-3dT-JTAiCog-Mz7NqyC4lY20184rQo6rhC4H8InWp-jcaV3EnfJEFKGxX7SiW7QByP7FFa7TNQ_lNZY39OK7XpdbXY8bnv_QY6IgBwy7Krb2zYZsy7OcaKgUYgAvtmDZjUhciviYUa9uMZ_3cG96djwrZl9Ovr2G-0TQsnBKXKg3sN-uNv4tkaAW30XI_wHRsQXt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIk3wwGAwKJdhpL3w4K6O48R5rDqq3RiTtqKJl8jHcaRqJZnaVEL8eo7dtGxI0wSvVmzZzrl8iY-_D2C3b52OSoU8QxfzWKDlqFLJE0IjJkvKxJrA9nmaHIzjo0t1eUPqiyYxp5Hm4RDfe_V1UbYMA2LPt1emqmlFTS_FcMvyITwiTCK8asNgeP6Hb1cGcVbyZ_o6ynS8ujV3xyg-N9n57dx0B-AMiWe0Cd_XUw71Jle9RYM9--svNsf_WtMzeNrCUTZY2s9zeOCqLXhyg6TwBeTjaTMzoVbdNux8MiXbqfiwrjxTLMVK9vXnpHCMwjSlRa9Ewb7UhRcFq2fM_-Vl_V4_YifmBxaGDxc4sWyw7PgtRMaXMB59vhge8FaWgRsZ64YrhYnLlEytUCi1ogCJiMZoAi8msyZ11pTCkHGgRUIIqjRYJDZyhIYiKZXchk5VV-41MAIMiE4nLs1KT7yl-8op62KyIFsKVXThE-1P3rrVPA8n5pHIfeNq0_J207ogVy8vty2_uZfZmN7Ti697XS_5Pe55_uPKLnJyRH-6YipXL2humc4IjkohuvBqaTDrEQlTES5L4jf_sJ4PsHG2P8pPDk-P38JjwmnaF4uL-B10mtnCvScs1OBOsPrfDysIZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultracompact+Silicon-Conductive+Oxide+Nanocavity+Modulator+with+0.02+Lambda-Cubic+Active+Volume&rft.jtitle=Nano+letters&rft.au=Li%2C+Erwen&rft.au=Gao%2C+Qian&rft.au=Chen%2C+Ray+T&rft.au=Wang%2C+Alan+X&rft.date=2018-02-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=2&rft.spage=1075&rft_id=info:doi/10.1021%2Facs.nanolett.7b04588&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon