Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume
Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffr...
Saved in:
Published in | Nano letters Vol. 18; no. 2; pp. 1075 - 1081 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
14.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/acs.nanolett.7b04588 |
Cover
Abstract | Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects. |
---|---|
AbstractList | Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm
by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um
, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects. Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects.Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects. Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index perturbation. Therefore, the size and energy efficiency of silicon photonic modulators are ultimately limited as they are also subject to the diffraction limit. Here we report an ultracompact electro-optic modulator with total device footprint of 0.6 × 8 μm2 by integrating voltage-switched transparent conductive oxide with one-dimensional silicon photonic crystal nanocavity. The active modulation volume is only 0.06 um3, which is less than 2% of the lambda-cubic volume. The device operates in the dual mode of cavity resonance and optical absorption by exploiting the refractive index modulation from both the conductive oxide and the silicon waveguide induced by the applied gate voltage. Such a metal-free, hybrid silicon-conductive oxide nanocavity modulator also demonstrates only 0.5 dB extra optical loss, moderate Q-factor above 1000, and high energy efficiency of 46 fJ/bit. The combined results achieved through the holistic design opened a new route for the development of next generation electro-optic modulators that can be used for future on-chip optical interconnects. |
Author | Gao, Qian Li, Erwen Wang, Alan X Chen, Ray T |
AuthorAffiliation | School of Electrical Engineering and Computer Science The University of Texas at Austin Department of Electrical and Computer Engineering |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering – name: School of Electrical Engineering and Computer Science – name: The University of Texas at Austin |
Author_xml | – sequence: 1 givenname: Erwen surname: Li fullname: Li, Erwen organization: School of Electrical Engineering and Computer Science – sequence: 2 givenname: Qian surname: Gao fullname: Gao, Qian organization: School of Electrical Engineering and Computer Science – sequence: 3 givenname: Ray T surname: Chen fullname: Chen, Ray T organization: The University of Texas at Austin – sequence: 4 givenname: Alan X orcidid: 0000-0002-0553-498X surname: Wang fullname: Wang, Alan X email: wang@oregonstate.edu organization: School of Electrical Engineering and Computer Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29309164$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OwzAQhC0EAlp4A4Ry5JJix3Eac0MVf1KhByhXa-04wsixS-wUeHuC0nLgAKddaeeblWZGaNd5pxE6IXhCcEbOQYWJA-etjnEylThnZbmDDgmjOC04z3Z_9jI_QKMQXjHGnDK8jw4yTjEnRX6IxNLGFpRvVqBi8misUd6lM--qTkWz1sniw1Q6eegfKVib-Jnc-6qzEH2bvJv4kuAJzpI5NLKCdNZJo5LLAXz2tmv0EdqrwQZ9vJljtLy-eprdpvPFzd3scp4CzcuYMiYLzRmdKsIkLVlVaSklQFkUFLiCqVZQE5BaSSWzLGc1yKpQmcYFzShldIzOBt9V6986HaJoTFDaWnDad0EQXnKWM0pILz3dSDvZ6EqsWtNA-ym2ofSCi0GgWh9Cq2uhTIRovOujMlYQLL4bEH0DYtuA2DTQw_kveOv_D4YH7Pv66rvW9Wn9jXwBlgugrA |
CitedBy_id | crossref_primary_10_1039_C8NR09157A crossref_primary_10_1364_OE_519530 crossref_primary_10_1364_OL_44_003932 crossref_primary_10_1007_s12274_020_3271_1 crossref_primary_10_1364_OE_386959 crossref_primary_10_1515_nanoph_2020_0264 crossref_primary_10_1364_OL_43_004429 crossref_primary_10_1021_acsphotonics_9b01678 crossref_primary_10_1063_5_0179441 crossref_primary_10_1109_JPHOT_2019_2927756 crossref_primary_10_1038_s41578_019_0120_5 crossref_primary_10_1515_nanoph_2019_0153 crossref_primary_10_1063_5_0048712 crossref_primary_10_1088_2040_8986_aab8bf crossref_primary_10_1109_JPHOT_2021_3084943 crossref_primary_10_1364_PRJ_427246 crossref_primary_10_1002_adom_201902025 crossref_primary_10_1038_s41467_024_45130_4 crossref_primary_10_1021_acsphotonics_1c00719 crossref_primary_10_1109_JLT_2020_3023644 crossref_primary_10_1038_s41598_022_09973_5 crossref_primary_10_1063_5_0087540 crossref_primary_10_1364_OME_8_002850 crossref_primary_10_1117_1_JNP_13_036005 crossref_primary_10_29026_oea_2022_200093 crossref_primary_10_1515_nanoph_2021_0796 crossref_primary_10_1109_JSTQE_2021_3127200 crossref_primary_10_1364_PRJ_416656 crossref_primary_10_1109_JLT_2019_2939775 crossref_primary_10_1038_s41566_019_0397_3 crossref_primary_10_1016_j_ijleo_2020_165608 crossref_primary_10_1021_acsami_8b06307 crossref_primary_10_1002_lpor_202400508 crossref_primary_10_1038_s41598_019_47631_5 crossref_primary_10_1038_s42005_021_00683_4 crossref_primary_10_1063_1_5052635 crossref_primary_10_1364_AOP_448391 crossref_primary_10_1016_j_surfin_2025_105836 crossref_primary_10_1063_5_0007279 crossref_primary_10_1364_OE_26_032014 crossref_primary_10_1002_adom_202301232 crossref_primary_10_1364_PRJ_7_000473 crossref_primary_10_3390_nano12030485 crossref_primary_10_1364_OE_555480 crossref_primary_10_1016_j_optmat_2024_114931 crossref_primary_10_1109_JLT_2020_2979192 crossref_primary_10_1039_D0CC05265E crossref_primary_10_1088_1361_6463_ac4455 |
Cites_doi | 10.1109/JQE.1987.1073206 10.1016/j.optcom.2016.02.062 10.1364/OE.20.007081 10.1364/OME.1.001090 10.1038/nphoton.2014.9 10.1021/nl404513p 10.1038/nphoton.2017.13 10.1038/nature03569 10.1103/PhysRevLett.109.053901 10.1364/OE.19.021989 10.1038/nphoton.2015.127 10.1364/OE.16.012084 10.1109/22.473190 10.1109/JSTQE.2006.883151 10.1109/JLT.2017.2647779 10.1364/OE.19.005244 10.1364/OE.19.008855 10.1021/nl1006307 10.1038/srep15754 10.1109/LPT.2012.2213244 10.1038/nphoton.2010.179 10.1515/nanoph-2012-0009 10.1002/adma.201205076 10.1364/OE.17.022505 10.1021/nl500712u 10.1038/ncomms5008 10.1038/nature10067 10.1364/OL.36.001650 10.1109/JLT.2014.2363947 10.1515/nanoph-2015-0006 10.1364/OE.21.026387 10.1038/nphoton.2011.68 10.1364/OE.18.011192 10.1063/1.1843286 10.1021/nl502998z 10.1038/nature01937 10.1038/nphoton.2010.185 |
ContentType | Journal Article |
Copyright | Copyright © 2018 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.nanolett.7b04588 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 1081 |
ExternalDocumentID | 29309164 10_1021_acs_nanolett_7b04588 b664653525 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a348t-55b6e9537c15b385ddebbbaa8663a9ca7ecaf1abecbcb2245fabd6c2e06323353 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 03:21:33 EDT 2025 Mon Jul 21 05:42:24 EDT 2025 Thu Apr 24 23:08:17 EDT 2025 Tue Jul 01 03:13:59 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | photonic crystal cavity Silicon photonics optical modulator plasmonics transparent conductive oxides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a348t-55b6e9537c15b385ddebbbaa8663a9ca7ecaf1abecbcb2245fabd6c2e06323353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0553-498X |
PMID | 29309164 |
PQID | 1989545311 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1989545311 pubmed_primary_29309164 crossref_citationtrail_10_1021_acs_nanolett_7b04588 crossref_primary_10_1021_acs_nanolett_7b04588 acs_journals_10_1021_acs_nanolett_7b04588 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-14 |
PublicationDateYYYYMMDD | 2018-02-14 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 Colinge J. P. (ref39/cit39) 2005 ref7/cit7 |
References_xml | – ident: ref16/cit16 doi: 10.1109/JQE.1987.1073206 – ident: ref41/cit41 doi: 10.1016/j.optcom.2016.02.062 – ident: ref17/cit17 doi: 10.1364/OE.20.007081 – ident: ref26/cit26 doi: 10.1364/OME.1.001090 – ident: ref2/cit2 – ident: ref12/cit12 doi: 10.1038/nphoton.2014.9 – ident: ref25/cit25 doi: 10.1021/nl404513p – ident: ref36/cit36 doi: 10.1038/nphoton.2017.13 – ident: ref18/cit18 doi: 10.1038/nature03569 – ident: ref38/cit38 doi: 10.1103/PhysRevLett.109.053901 – ident: ref14/cit14 doi: 10.1364/OE.19.021989 – ident: ref13/cit13 doi: 10.1038/nphoton.2015.127 – ident: ref21/cit21 – ident: ref42/cit42 doi: 10.1364/OE.16.012084 – ident: ref40/cit40 doi: 10.1109/22.473190 – ident: ref3/cit3 doi: 10.1109/JSTQE.2006.883151 – ident: ref1/cit1 doi: 10.1109/JLT.2017.2647779 – ident: ref9/cit9 doi: 10.1364/OE.19.005244 – ident: ref10/cit10 – ident: ref37/cit37 doi: 10.1364/OE.19.008855 – ident: ref33/cit33 doi: 10.1021/nl1006307 – ident: ref35/cit35 doi: 10.1038/srep15754 – ident: ref19/cit19 doi: 10.1109/LPT.2012.2213244 – ident: ref20/cit20 doi: 10.1038/nphoton.2010.179 – ident: ref30/cit30 doi: 10.1515/nanoph-2012-0009 – ident: ref27/cit27 doi: 10.1002/adma.201205076 – ident: ref15/cit15 doi: 10.1364/OE.17.022505 – ident: ref23/cit23 doi: 10.1021/nl500712u – volume-title: Physics of semiconductor devices year: 2005 ident: ref39/cit39 – ident: ref6/cit6 doi: 10.1038/ncomms5008 – ident: ref22/cit22 doi: 10.1038/nature10067 – ident: ref8/cit8 doi: 10.1364/OL.36.001650 – ident: ref29/cit29 – ident: ref5/cit5 doi: 10.1109/JLT.2014.2363947 – ident: ref28/cit28 doi: 10.1515/nanoph-2015-0006 – ident: ref34/cit34 doi: 10.1364/OE.21.026387 – ident: ref4/cit4 doi: 10.1038/nphoton.2011.68 – ident: ref24/cit24 doi: 10.1364/OE.18.011192 – ident: ref32/cit32 doi: 10.1063/1.1843286 – ident: ref31/cit31 doi: 10.1021/nl502998z – ident: ref11/cit11 doi: 10.1038/nature01937 – ident: ref7/cit7 doi: 10.1038/nphoton.2010.185 |
SSID | ssj0009350 |
Score | 2.5018952 |
Snippet | Silicon photonic modulators rely on the plasma dispersion effect by free-carrier injection or depletion, which can only induce moderate refractive index... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1075 |
Title | Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume |
URI | http://dx.doi.org/10.1021/acs.nanolett.7b04588 https://www.ncbi.nlm.nih.gov/pubmed/29309164 https://www.proquest.com/docview/1989545311 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwELWgXOCwLJ9bYJGRuHBwqOPYcY5VRVUhoIdS1FvkcRyp2pKs2kRa7a_fcT66wKrqco1iK2O_mXmO7TeEfBxZp8NcAkvARSziYBnIWDCFbMQkKlfWNGqfP9RsGX1dydXtQvHfHfyQfzZ2FxSmKNGMKoihuVr5kDwKFaYaT4Umi1uRXdFUZEUnxiVRoqP-qtyBXnxCsru_E9IBltlkm-lTMu_v7LSHTC6CuoLAXt-VcLynIafkpCOedNwi5Rl54Irn5MkfcoQvSLrcVFvTnEq3FV2sN4iSgk3KwmvCYlSk86t15igGZEyAvuYE_V5mvvxXuaX-fy4dBaOQfjO_ITNsUsPa0nHb8FcTA1-S5fTLz8mMdQUYmBGRrpiUoFwiRWy5BKElhkIAMEYjTTGJNbGzJucGYQAWkAvI3ECmbOiQ94RCSPGKDIqycGeEIjUAcFq5OMm9xJYeSSetixArNucyG5JPOD5p50C7tNkbD3nqH_aDlnaDNiSin7HUdkrmvqDG5kgrtm912Sp5HHn_Qw-GFF3O76OYwpU1fluiEySegvMhed2iZN8jsidkYCp68x_2vCWPkYZpfxacR-_IoNrW7hypTgXvG3zfAF1s_Xw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswEB2k6aHNofvirizQSw90THGRdDSMBm7rpIfEQW4Ch6IAo64U2DJQ9Os7pCWnLRAEuRIiMaTezDyJ5BuAjyPns6TSyHP0iiuBjqNOJTfERmxuKuNsVPs8MdO5-nqhL_ZA93dhyIg1jbSOm_hX6gLiMLTVtm5oNu0wxXjD8g7c1UaZULFhPDm90tqVsTAr-TJ9GeWZ6m_MXTNKyEtu_W9euoZsxqRz9BDOd-bGsyY_hpsWh-73f0qOt57PI3jQ0VA23uLmMez5-gkc_CVO-BSK-bJd2XhG3bXsdLEkzNR80tRBIZZiJPv-a1F6RuGZ0mGoQMGOmzIUA2tWLPzdZaPhKGEz-xNLyycbXDg23nY8jxHxGcyPPp9Nprwrx8CtVFnLtUbjcy1TJzTKTFNgRERrMyItNnc29c5WwhIo0CExA11ZLI1LPLGgREotn8N-3dT-JTAiCog-Mz7NqyC4lY20184rQo6rhC4H8InWp-jcaV3EnfJEFKGxX7SiW7QByP7FFa7TNQ_lNZY39OK7XpdbXY8bnv_QY6IgBwy7Krb2zYZsy7OcaKgUYgAvtmDZjUhciviYUa9uMZ_3cG96djwrZl9Ovr2G-0TQsnBKXKg3sN-uNv4tkaAW30XI_wHRsQXt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIk3wwGAwKJdhpL3w4K6O48R5rDqq3RiTtqKJl8jHcaRqJZnaVEL8eo7dtGxI0wSvVmzZzrl8iY-_D2C3b52OSoU8QxfzWKDlqFLJE0IjJkvKxJrA9nmaHIzjo0t1eUPqiyYxp5Hm4RDfe_V1UbYMA2LPt1emqmlFTS_FcMvyITwiTCK8asNgeP6Hb1cGcVbyZ_o6ynS8ujV3xyg-N9n57dx0B-AMiWe0Cd_XUw71Jle9RYM9--svNsf_WtMzeNrCUTZY2s9zeOCqLXhyg6TwBeTjaTMzoVbdNux8MiXbqfiwrjxTLMVK9vXnpHCMwjSlRa9Ewb7UhRcFq2fM_-Vl_V4_YifmBxaGDxc4sWyw7PgtRMaXMB59vhge8FaWgRsZ64YrhYnLlEytUCi1ogCJiMZoAi8msyZ11pTCkHGgRUIIqjRYJDZyhIYiKZXchk5VV-41MAIMiE4nLs1KT7yl-8op62KyIFsKVXThE-1P3rrVPA8n5pHIfeNq0_J207ogVy8vty2_uZfZmN7Ti697XS_5Pe55_uPKLnJyRH-6YipXL2humc4IjkohuvBqaTDrEQlTES5L4jf_sJ4PsHG2P8pPDk-P38JjwmnaF4uL-B10mtnCvScs1OBOsPrfDysIZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultracompact+Silicon-Conductive+Oxide+Nanocavity+Modulator+with+0.02+Lambda-Cubic+Active+Volume&rft.jtitle=Nano+letters&rft.au=Li%2C+Erwen&rft.au=Gao%2C+Qian&rft.au=Chen%2C+Ray+T&rft.au=Wang%2C+Alan+X&rft.date=2018-02-14&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=2&rft.spage=1075&rft_id=info:doi/10.1021%2Facs.nanolett.7b04588&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |