Bonded Excimer Formation in π‑Stacked 9‑Methyladenine Dimers

The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiat...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 117; no. 36; pp. 8718 - 8728
Main Authors Spata, Vincent A, Matsika, Spiridoula
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.09.2013
Subjects
Online AccessGet full text
ISSN1089-5639
1520-5215
1520-5215
DOI10.1021/jp4033194

Cover

Abstract The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.
AbstractList The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.
The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.
The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in pi -stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a pi -stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA) sub(20).(dT) sub(20) B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.
Author Spata, Vincent A
Matsika, Spiridoula
AuthorAffiliation Department of Chemistry
Temple University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Temple University
Author_xml – sequence: 1
  givenname: Vincent A
  surname: Spata
  fullname: Spata, Vincent A
– sequence: 2
  givenname: Spiridoula
  surname: Matsika
  fullname: Matsika, Spiridoula
  email: smatsika@temple.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23777305$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtOw0AQBuAVCiIPKLgAcoMEhck-vXYZQgJIIAqgXm3WY-Fgr8OuI5EuV-Bk3IGT4JCEAkWimr_4_ilmuqhlKwsIHRN8QTAl_emMY8ZIwvdQhwiKQ0GJaDUZx0koIpa0Udf7KcaYMMoPUJsyKSXDooMGl5VNIQ1G7yYvwQXjypW6zisb5Db4XH4tPx5rbV4bkTT5HuqXRaFTsLmF4GrV8IdoP9OFh6PN7KHn8ehpeBPePVzfDgd3oWY8rkPOJBeGcWJEKpsgIc0mAiQYKTMsUypjSolmOol4HKc8i-IMNM60kHGmI2A9dLbeO3PV2xx8rcrcGygKbaGae0WkYILyBNP_KWc0IolkpKEnGzqflJCqmctL7RZqe6EG9NfAuMp7B5kyef1zodrpvFAEq9UP1O8Pmsb5n8Z26S57urbaeDWt5s42J9zhvgHFBpIH
CitedBy_id crossref_primary_10_1039_C4CP05546B
crossref_primary_10_1039_D4SC08001G
crossref_primary_10_1021_ja501342b
crossref_primary_10_1021_jacs_5b05140
crossref_primary_10_1021_acs_chemrev_8b00244
crossref_primary_10_1039_c7pp00154a
crossref_primary_10_1021_jacs_0c08751
crossref_primary_10_1002_chem_201504007
crossref_primary_10_1039_C5CP04254B
crossref_primary_10_1021_acs_jpclett_5b02756
crossref_primary_10_1021_jp507520c
crossref_primary_10_1021_acs_jpclett_5b00813
crossref_primary_10_1002_chem_201505086
crossref_primary_10_1021_acs_chemrev_5b00444
crossref_primary_10_1002_cphc_201600566
crossref_primary_10_1021_jacs_3c08793
Cites_doi 10.1021/jp305350t
10.1038/nature03933
10.1002/cphc.200400644
10.1016/0021-9991(77)90098-5
10.1021/jz100491x
10.1063/1.474659
10.1529/biophysj.106.097782
10.1063/1.3627152
10.1038/nprot.2008.104
10.1063/1.4705757
10.1021/jz101122t
10.1146/annurev.pc.34.100183.001553
10.1039/b926608a
10.1016/B978-044451656-5/50090-6
10.1039/c003967e
10.1021/ja808998q
10.1016/1011-1344(93)87109-Z
10.1073/pnas.0602991103
10.1073/pnas.0802079105
10.1007/s11426-012-4578-x
10.1021/ja054998f
10.1021/ja802183s
10.1021/ja0622002
10.1126/science.283.5400.375
10.1063/1.1349091
10.1016/S0301-0104(01)00523-7
10.1073/pnas.55.5.1015
10.1021/jp8041445
10.1093/nar/gkg680
10.1021/ja073628j
10.1002/jcc.22952
10.1023/A:1008193805436
10.1021/jp072508v
10.1002/cphc.201100200
10.1073/pnas.0606757104
10.1021/jp036164u
10.1021/jp304725r
10.1002/jcc.20853
10.1021/ja110879m
10.1073/pnas.250483297
10.1016/j.jphotochemrev.2008.12.001
10.1080/07391102.2007.10507159
10.1002/jcc.540141112
10.1146/annurev.physchem.59.032607.093719
10.1039/B517914A
10.1021/ct200384r
10.1039/C3PP25449F
10.1021/ja044321c
10.1021/jp1095344
10.1002/chem.200501515
10.1016/j.cplett.2011.03.024
10.1021/ja01528a007
10.1016/0263-7855(96)00018-5
10.1080/00268976.2012.663944
10.1002/anie.201104382
10.1016/0009-2614(94)00070-0
10.1021/jp0496046
10.1002/cphc.200390050
10.1002/cphc.200500014
10.1021/ja303361z
10.1063/1.2889385
10.1007/978-1-4020-9956-4_11
10.1016/j.cplett.2007.09.051
10.1016/0009-2614(96)00394-6
10.1016/0009-2614(95)00914-P
10.1016/0009-2614(94)00433-1
10.1021/ja1029705
10.1063/1.1861452
10.1021/cr0206770
10.1038/nature04903
10.1021/jp906265c
10.1021/jo071157d
10.1021/ja2007998
10.1021/ja074734o
10.1021/ja808280j
10.1073/pnas.0703298104
10.1063/1.481133
10.1021/jp051833k
10.1063/1.1597635
10.1146/annurev-physchem-032210-103450
10.1002/prot.20033
10.1021/ja00544a007
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1021/jp4033194
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 8728
ExternalDocumentID 23777305
10_1021_jp4033194
e23686938
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-a348t-43745c341c5d75c37edfb5e7ec77f07d278221a3a96488d4f68fea0fa578fa6e3
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Fri Jul 11 07:47:18 EDT 2025
Thu Jul 10 22:32:54 EDT 2025
Mon Jul 21 06:04:59 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Tue Jul 01 01:27:10 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-43745c341c5d75c37edfb5e7ec77f07d278221a3a96488d4f68fea0fa578fa6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23777305
PQID 1432619731
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1753524902
proquest_miscellaneous_1432619731
pubmed_primary_23777305
crossref_citationtrail_10_1021_jp4033194
crossref_primary_10_1021_jp4033194
acs_journals_10_1021_jp4033194
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-12
PublicationDateYYYYMMDD 2013-09-12
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Schmidt M. W. (ref54/cit54) 1993; 14
Head-Gordon M. (ref51/cit51) 1994; 219
Boggio-Pasqua M. (ref86/cit86) 2007; 129
Buchvarov I. (ref19/cit19) 2007; 104
Liang J. (ref45/cit45) 2012; 134
Blancafort L. (ref87/cit87) 2007; 129
Emanuele E. (ref37/cit37) 2005; 109
Kononov A. I. (ref41/cit41) 1993; 19
Shao Y. (ref60/cit60) 2006; 8
Kwok W.-M. (ref18/cit18) 2006; 128
Macke T. (ref71/cit71) 1998
Nielsen S. B. (ref82/cit82) 2005; 6
ref59/cit59
Laikov D. (ref50/cit50) 2007; 448
Blancafort L. (ref85/cit85) 2006; 128
Zhang W. (ref33/cit33) 2011; 506
Plasser F. (ref35/cit35) 2012; 116
Humphrey W. (ref61/cit61) 1996; 14
Lu X.-J. (ref72/cit72) 2003; 31
Crespo-Hernandez C. E. (ref2/cit2) 2004; 104
Chipman D. M. (ref55/cit55) 2000; 112
Markovitsi D. (ref17/cit17) 2003; 3
Smith V. R. (ref21/cit21) 2010; 12
Subotnik J. E. (ref75/cit75) 2011; 135
Banyasz A. (ref22/cit22) 2011; 133
Wan C. Z. (ref47/cit47) 2000; 97
Markovitsi D. (ref11/cit11) 2006; 441
ref46/cit46
Serrano-Andrés L. (ref4/cit4) 2009; 10
Markovitsi D. (ref9/cit9) 2010; 1
(ref63/cit63) 2012
Serrano-Andrés L. (ref84/cit84) 2006; 103
Serrano-Andrés L. (ref83/cit83) 2006; 12
Callis P. R. (ref1/cit1) 1983; 34
Santoro F. (ref28/cit28) 2007; 104
Improta R. (ref30/cit30) 2011; 50
Lange A. W. (ref29/cit29) 2009; 131
Liu X. (ref76/cit76) 2012; 136
Matsika S. (ref6/cit6) 2011; 62
Marian C. M. (ref81/cit81) 2005; 122
Kohler B. (ref12/cit12) 2010; 1
Crespo-Hernández C. E. (ref10/cit10) 2005; 436
Crespo-Hernández C. E. (ref20/cit20) 2008; 130
Speelman A. L. (ref66/cit66) 2011; 115
Nachtigallova D. (ref36/cit36) 2010; 132
Kelley S. (ref48/cit48) 1999; 283
Liang J. (ref44/cit44) 2011; 133
ref14/cit14
Koch H. (ref79/cit79) 1995; 244
Dou Y. (ref16/cit16) 2012; 110
ref5/cit5
Cancès E. (ref57/cit57) 2001
Onufriev A. (ref67/cit67) 2004; 55
Ryckaert J. P. (ref68/cit68) 1977; 23
Schreiber M. (ref78/cit78) 2008; 128
Emanuele E. (ref26/cit26) 2005; 6
Kwok W.-M. (ref38/cit38) 2009; 113
Perun S. (ref64/cit64) 2005; 127
Lu X.-J. (ref73/cit73) 2008; 3
Takaya T. (ref40/cit40) 2008; 105
Peréz A. (ref65/cit65) 2007; 92
Su C. (ref15/cit15) 2012; 116
Christiansen O. (ref80/cit80) 1996; 256
Crespo-Hernández C. (ref13/cit13) 2004; 108
Bouvier B. (ref24/cit24) 2002; 275
Wang Y. (ref43/cit43) 2008; 112
Case D. A. (ref70/cit70) 2010
Onidas D. (ref23/cit23) 2007; 111
Frisch M. J. (ref58/cit58) 2004
Lu Y. (ref32/cit32) 2012; 33
Gaillard T. (ref69/cit69) 2011; 7
Olaso-González G. (ref27/cit27) 2009; 131
Wang Y. (ref42/cit42) 2007; 72
Santoro F. (ref74/cit74) 2008; 29
Bouvier B. (ref25/cit25) 2003; 107
Shukla M. K. (ref3/cit3) 2007; 25
Eisinger J. (ref39/cit39) 1966; 55
Gonzalez L. (ref7/cit7) 2012; 13
Schaftenaar G. (ref62/cit62) 2000; 14
Dou Y. (ref34/cit34) 2012; 55
Cancès E. (ref56/cit56) 1997; 107
Middleton C. T. (ref8/cit8) 2009; 60
Foster J. P. (ref52/cit52) 1980; 102
Conti I. (ref31/cit31) 2010; 12
Köhn A. (ref77/cit77) 2003; 119
Bearpark M. J. (ref53/cit53) 1994; 223
Murrell J. N. (ref49/cit49) 1959; 81
References_xml – volume: 116
  start-page: 10266
  year: 2012
  ident: ref15/cit15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp305350t
– volume: 436
  start-page: 1141
  year: 2005
  ident: ref10/cit10
  publication-title: Nature
  doi: 10.1038/nature03933
– volume: 6
  start-page: 1276
  year: 2005
  ident: ref82/cit82
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200400644
– volume: 23
  start-page: 327
  year: 1977
  ident: ref68/cit68
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– volume: 1
  start-page: 2047
  year: 2010
  ident: ref12/cit12
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100491x
– volume: 107
  start-page: 3032
  year: 1997
  ident: ref56/cit56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474659
– volume: 92
  start-page: 3817
  year: 2007
  ident: ref65/cit65
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097782
– volume: 135
  start-page: 071104
  year: 2011
  ident: ref75/cit75
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3627152
– volume: 3
  start-page: 1213
  year: 2008
  ident: ref73/cit73
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.104
– volume: 136
  start-page: 161101
  year: 2012
  ident: ref76/cit76
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4705757
– volume: 1
  start-page: 3271
  year: 2010
  ident: ref9/cit9
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101122t
– volume: 34
  start-page: 329
  year: 1983
  ident: ref1/cit1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.34.100183.001553
– volume: 12
  start-page: 5016
  year: 2010
  ident: ref31/cit31
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b926608a
– ident: ref14/cit14
  doi: 10.1016/B978-044451656-5/50090-6
– volume: 12
  start-page: 9632
  year: 2010
  ident: ref21/cit21
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c003967e
– volume-title: MATLAB
  year: 2012
  ident: ref63/cit63
– volume: 131
  start-page: 3913
  year: 2009
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808998q
– volume: 19
  start-page: 139
  year: 1993
  ident: ref41/cit41
  publication-title: J. Photochem. Photobiol. B: Biol.
  doi: 10.1016/1011-1344(93)87109-Z
– volume: 103
  start-page: 8691
  year: 2006
  ident: ref84/cit84
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0602991103
– volume: 105
  start-page: 10285
  year: 2008
  ident: ref40/cit40
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0802079105
– volume: 55
  start-page: 1377
  year: 2012
  ident: ref34/cit34
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-012-4578-x
– volume: 128
  start-page: 210
  year: 2006
  ident: ref85/cit85
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja054998f
– volume: 130
  start-page: 10844
  year: 2008
  ident: ref20/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja802183s
– volume-title: Gaussian 03
  year: 2004
  ident: ref58/cit58
– volume: 128
  start-page: 11894
  year: 2006
  ident: ref18/cit18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0622002
– volume: 283
  start-page: 375
  year: 1999
  ident: ref48/cit48
  publication-title: Science
  doi: 10.1126/science.283.5400.375
– start-page: 4744
  issue: 114
  year: 2001
  ident: ref57/cit57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1349091
– volume: 275
  start-page: 75
  year: 2002
  ident: ref24/cit24
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(01)00523-7
– volume: 55
  start-page: 1015
  year: 1966
  ident: ref39/cit39
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.55.5.1015
– volume: 112
  start-page: 13088
  year: 2008
  ident: ref43/cit43
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8041445
– volume: 31
  start-page: 5108
  year: 2003
  ident: ref72/cit72
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg680
– volume: 129
  start-page: 10996
  year: 2007
  ident: ref86/cit86
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073628j
– volume: 33
  start-page: 1225
  year: 2012
  ident: ref32/cit32
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22952
– volume: 14
  start-page: 123
  year: 2000
  ident: ref62/cit62
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1023/A:1008193805436
– volume: 111
  start-page: 9644
  year: 2007
  ident: ref23/cit23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp072508v
– volume: 13
  start-page: 28
  year: 2012
  ident: ref7/cit7
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201100200
– volume: 104
  start-page: 4794
  year: 2007
  ident: ref19/cit19
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0606757104
– volume: 107
  start-page: 13512
  year: 2003
  ident: ref25/cit25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036164u
– volume: 116
  start-page: 11151
  year: 2012
  ident: ref35/cit35
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp304725r
– volume: 29
  start-page: 957
  year: 2008
  ident: ref74/cit74
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20853
– volume: 133
  start-page: 5163
  year: 2011
  ident: ref22/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110879m
– volume: 97
  start-page: 14052
  year: 2000
  ident: ref47/cit47
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.250483297
– volume: 10
  start-page: 21
  year: 2009
  ident: ref4/cit4
  publication-title: J. Photochem. Photobiol. C: Photochem. Rev.
  doi: 10.1016/j.jphotochemrev.2008.12.001
– volume: 25
  start-page: 93
  year: 2007
  ident: ref3/cit3
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2007.10507159
– volume: 14
  start-page: 1347
  year: 1993
  ident: ref54/cit54
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540141112
– volume: 60
  start-page: 217
  year: 2009
  ident: ref8/cit8
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093719
– volume: 8
  start-page: 3172
  year: 2006
  ident: ref60/cit60
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B517914A
– volume: 7
  start-page: 3181
  year: 2011
  ident: ref69/cit69
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200384r
– ident: ref46/cit46
  doi: 10.1039/C3PP25449F
– volume-title: Amber 11
  year: 2010
  ident: ref70/cit70
– volume: 127
  start-page: 6257
  year: 2005
  ident: ref64/cit64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044321c
– volume: 115
  start-page: 3997
  year: 2011
  ident: ref66/cit66
  publication-title: J. Phys. Chem. A.
  doi: 10.1021/jp1095344
– volume: 12
  start-page: 6559
  year: 2006
  ident: ref83/cit83
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.200501515
– volume: 506
  start-page: 303
  year: 2011
  ident: ref33/cit33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.03.024
– ident: ref59/cit59
– volume: 81
  start-page: 5037
  year: 1959
  ident: ref49/cit49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01528a007
– volume: 14
  start-page: 33
  year: 1996
  ident: ref61/cit61
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 110
  start-page: 1517
  year: 2012
  ident: ref16/cit16
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2012.663944
– volume: 50
  start-page: 12016
  year: 2011
  ident: ref30/cit30
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201104382
– volume: 219
  start-page: 21
  year: 1994
  ident: ref51/cit51
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00070-0
– volume: 108
  start-page: 11182
  year: 2004
  ident: ref13/cit13
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0496046
– volume: 3
  start-page: 303
  year: 2003
  ident: ref17/cit17
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200390050
– volume: 6
  start-page: 1387
  year: 2005
  ident: ref26/cit26
  publication-title: Chem. Phys. Chem
  doi: 10.1002/cphc.200500014
– volume: 134
  start-page: 10713
  year: 2012
  ident: ref45/cit45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303361z
– volume: 128
  start-page: 134110
  year: 2008
  ident: ref78/cit78
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2889385
– ident: ref5/cit5
  doi: 10.1007/978-1-4020-9956-4_11
– volume: 448
  start-page: 132
  year: 2007
  ident: ref50/cit50
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.09.051
– volume: 256
  start-page: 185
  year: 1996
  ident: ref80/cit80
  publication-title: J. Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00394-6
– volume: 244
  start-page: 75
  year: 1995
  ident: ref79/cit79
  publication-title: J. Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00914-P
– volume: 223
  start-page: 269
  year: 1994
  ident: ref53/cit53
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00433-1
– volume: 132
  start-page: 8261
  year: 2010
  ident: ref36/cit36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1029705
– volume: 122
  start-page: 104314
  year: 2005
  ident: ref81/cit81
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1861452
– volume: 104
  start-page: 1977
  year: 2004
  ident: ref2/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/cr0206770
– volume: 441
  start-page: E7
  year: 2006
  ident: ref11/cit11
  publication-title: Nature
  doi: 10.1038/nature04903
– volume: 113
  start-page: 11527
  year: 2009
  ident: ref38/cit38
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp906265c
– volume: 72
  start-page: 6970
  year: 2007
  ident: ref42/cit42
  publication-title: J. Org. Chem.
  doi: 10.1021/jo071157d
– volume: 133
  start-page: 6799
  year: 2011
  ident: ref44/cit44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2007998
– volume: 129
  start-page: 14540
  year: 2007
  ident: ref87/cit87
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074734o
– volume: 131
  start-page: 4368
  year: 2009
  ident: ref27/cit27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808280j
– volume: 104
  start-page: 9931
  year: 2007
  ident: ref28/cit28
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0703298104
– volume: 112
  start-page: 5558
  year: 2000
  ident: ref55/cit55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481133
– volume: 109
  start-page: 16109
  year: 2005
  ident: ref37/cit37
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051833k
– volume: 119
  start-page: 5021
  year: 2003
  ident: ref77/cit77
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1597635
– volume: 62
  start-page: 621
  year: 2011
  ident: ref6/cit6
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032210-103450
– volume: 55
  start-page: 383
  year: 2004
  ident: ref67/cit67
  publication-title: Proteins
  doi: 10.1002/prot.20033
– volume-title: Modeling Unusual Nucleic Acid Structures. In Molecular Modeling of Nucleic Acids
  year: 1998
  ident: ref71/cit71
– volume: 102
  start-page: 7211
  year: 1980
  ident: ref52/cit52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00544a007
SSID ssj0001324
Score 2.2256255
Snippet The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8718
SubjectTerms Absorption
Adenine - analogs & derivatives
Adenine - chemistry
Bonding
Dimerization
Dimers
DNA - chemistry
Dynamics
Excimers
Excitation
Intersections
Mathematical models
Molecular Dynamics Simulation
Nucleic Acid Conformation
Quantum Theory
Ultraviolet radiation
Ultraviolet Rays
Water - chemistry
Title Bonded Excimer Formation in π‑Stacked 9‑Methyladenine Dimers
URI http://dx.doi.org/10.1021/jp4033194
https://www.ncbi.nlm.nih.gov/pubmed/23777305
https://www.proquest.com/docview/1432619731
https://www.proquest.com/docview/1753524902
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5215
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001324
  issn: 1089-5639
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWKiwHLoE0duL6WHVRhVQuUKm3ynUmUqGkVRcJceov8GX8A1_COGkqEG25-TCJk_F43hvZMwNw7SE5PYWhXdBc2lxwk6wcBLZG3ZFSOwTJJsG58eDXm_y-5bUycLXkBN8t3D0PuMPIUPgarLu-EObeXqn8OHe3FE7x5Ba9tD3C27R80M9HDfTo0W_oWcInY1ypbUMlzc5JrpO83E7GnVv9_rdY46pP3oGtGa-0Sokh7EIGoz3YKKft3PahZBoIY2BV33T3FYdWLc1atLqR9Tn9mn4Q76QtHViSxg2kBewpckrEQq2KeWJ0AM1a9alct2f9E2zFeHFscya4pwmmtBcIGggMwo6HArUQoSMC17CDgmJK-rSNAx76xRCVEyraxaHykR1CNupHeAwW4T5yxTXFkwRn0pOKaJT0kV6tGEUxOciTgtsz-x-146Ntl0KLVBM5uEl139az6uOmCUZvkejlXHSQlNxYJHSRLmCbFGlOOVSE_QlNzZmJCgUrrJARpqoNl46bg6Nk9edTuUwIcnveyX-_dAqbbtwbw_STOIPseDjBc2Io404-ttBvPTzduA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8oaEAcuKUlsx_WxKlRlKRdA6i1ynYnEllYklRCn_gJfxj_wJYyzlEVsNx_G-yxvZM8MIXscUOkpiGxXM2kzwUywchjaGnRXSu2gSTYBzu1zv3XFTjq8U6TJMbEwuIgER0qyR_z37ALuwU2fORT5hY2TSe4z1zha9cbFSOuiV8Xyz_TS5mh2yyxCH7saC6STzxboB1iZmZfmbF6nKFtY9qvktjpIu1X99CVn4_9WPkdmCpRp1XO2mCdjEC-QqUZZ3G2R1E05YQito0d9fQ8PVrOMYbSuY-tl-Dp8RhSKAh5aEtttwOu8U6iiEJNah6ZHskSumkeXjZZdVFOwFWW11GZUMK7RaGkeCmwICKMuBwFaiMgRoWewgquokj4KdcgivxaBciKFMh0pH-gymYh7MawSC1EAMMU0epdo3CSXCkGV9AGHVhR9mgrZwoMICmlIguyh20NHozyJCtkvryDQRS5yUxLj7jvS3RFpP0_A8R3RTnmPAR6kefNQMfQGODWjxkcU1P2FRpgcN0w6XoWs5EwwmsqjQqAS5Gt_bWmbTLUu22fB2fH56TqZ9rKqGabSxAaZSB8GsInYJe1uZUz7BqLd5ho
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSMCFfSlrQBy4BNLYjvERFSp2kACJW-TaE4ktVKSVECd-gS_jH_gSxmlSAWK7-TDeZ3kje2YAVgWS0tOY-FXDlc8ld8HK1voGTUMpE5BJdgHOR8fR7gXfvxSXhaPoYmFoERmNlOWP-E6qmzYpMgxUN66bPGDEM7wX-kVEIu6gUO2sq3nJs-KdD_XKF2R6y0xCH7s6K2Syz1boB2iZm5j6CJx0F5f_LLlZb7ca6-bpS97G_69-FIYLtOltddhjDHowHYfBWlnkbQK2XFlhtN7Oo7m6wwevXsYyelep9_r89vxCaJQE3XqK2kdI13qrSVURNvW2XY9sEi7qO-e1Xb-oquBrxjdbPmeSC0PGywgrqSHRJg2BEo2USSBt6DBDVTOtIhJuy5NoM0EdJJpkO9ERsinoS-9TnAGP0AByzQ15mWTklFCawJWKkIbWjHybCizSYcSFVGRx_uAdksNRnkQF1spriE2Rk9yVxrj9jnSlS9rsJOL4jmi5vMuYDtK9fegU79s0NWfOV5Ss-guNdLluuArCCkx3GKE7VcikJGUoZv_a0hIMnG7X48O944M5GArz4hmu4MQ89LUe2rhAEKbVWMz59h1Fb-id
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bonded+excimer+formation+in+%CF%80-stacked+9-methyladenine+dimers&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Spata%2C+Vincent+A&rft.au=Matsika%2C+Spiridoula&rft.date=2013-09-12&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=117&rft.issue=36&rft.spage=8718&rft_id=info:doi/10.1021%2Fjp4033194&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon