Bonded Excimer Formation in π‑Stacked 9‑Methyladenine Dimers
The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiat...
        Saved in:
      
    
          | Published in | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 117; no. 36; pp. 8718 - 8728 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        12.09.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1089-5639 1520-5215 1520-5215  | 
| DOI | 10.1021/jp4033194 | 
Cover
| Abstract | The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection. | 
    
|---|---|
| AbstractList | The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection. The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in π-stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a π-stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA)20·(dT)20 B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection. The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated excited state dynamics. To channel the excess energy associated with the absorption of UV radiation, the nucleobases undergo ultrafast nonradiative decay facilitated by conical intersections. In this work we extend the role of conical intersections in pi -stacked dimers of nucleobases. We present a novel conical intersection between the excited state and the ground state for a pi -stacked 9-methyladenine homodimer system, where a bond is partially formed between the two bases, and the wave function shows charge-transfer character between the monomers. These characteristics lead us to assign this state to a bonded excimer, a model that has been proposed in the past to explain the observed electron transfer in systems where this process is not thermodynamically favored. Gas-phase excited state calculations are carried out using perturbation theory corrected configuration interaction singles methods and complete active space self-consistent field, and physical observables are calculated and analyzed to understand the behavior of the system. A polarizable continuum solvent model is used to test the changes of the energies of the excited states along the pathway subject to solvation and reveals small changes in aqueous solution. Molecular dynamics simulations have also been performed on a poly(dA) sub(20).(dT) sub(20) B-DNA strand to find how the backbone affects the proximity of the bases which can facilitate access to the conical intersection.  | 
    
| Author | Spata, Vincent A Matsika, Spiridoula  | 
    
| AuthorAffiliation | Department of Chemistry Temple University  | 
    
| AuthorAffiliation_xml | – name: Department of Chemistry – name: Temple University  | 
    
| Author_xml | – sequence: 1 givenname: Vincent A surname: Spata fullname: Spata, Vincent A – sequence: 2 givenname: Spiridoula surname: Matsika fullname: Matsika, Spiridoula email: smatsika@temple.edu  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23777305$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqF0TtOw0AQBuAVCiIPKLgAcoMEhck-vXYZQgJIIAqgXm3WY-Fgr8OuI5EuV-Bk3IGT4JCEAkWimr_4_ilmuqhlKwsIHRN8QTAl_emMY8ZIwvdQhwiKQ0GJaDUZx0koIpa0Udf7KcaYMMoPUJsyKSXDooMGl5VNIQ1G7yYvwQXjypW6zisb5Db4XH4tPx5rbV4bkTT5HuqXRaFTsLmF4GrV8IdoP9OFh6PN7KHn8ehpeBPePVzfDgd3oWY8rkPOJBeGcWJEKpsgIc0mAiQYKTMsUypjSolmOol4HKc8i-IMNM60kHGmI2A9dLbeO3PV2xx8rcrcGygKbaGae0WkYILyBNP_KWc0IolkpKEnGzqflJCqmctL7RZqe6EG9NfAuMp7B5kyef1zodrpvFAEq9UP1O8Pmsb5n8Z26S57urbaeDWt5s42J9zhvgHFBpIH | 
    
| CitedBy_id | crossref_primary_10_1039_C4CP05546B crossref_primary_10_1039_D4SC08001G crossref_primary_10_1021_ja501342b crossref_primary_10_1021_jacs_5b05140 crossref_primary_10_1021_acs_chemrev_8b00244 crossref_primary_10_1039_c7pp00154a crossref_primary_10_1021_jacs_0c08751 crossref_primary_10_1002_chem_201504007 crossref_primary_10_1039_C5CP04254B crossref_primary_10_1021_acs_jpclett_5b02756 crossref_primary_10_1021_jp507520c crossref_primary_10_1021_acs_jpclett_5b00813 crossref_primary_10_1002_chem_201505086 crossref_primary_10_1021_acs_chemrev_5b00444 crossref_primary_10_1002_cphc_201600566 crossref_primary_10_1021_jacs_3c08793  | 
    
| Cites_doi | 10.1021/jp305350t 10.1038/nature03933 10.1002/cphc.200400644 10.1016/0021-9991(77)90098-5 10.1021/jz100491x 10.1063/1.474659 10.1529/biophysj.106.097782 10.1063/1.3627152 10.1038/nprot.2008.104 10.1063/1.4705757 10.1021/jz101122t 10.1146/annurev.pc.34.100183.001553 10.1039/b926608a 10.1016/B978-044451656-5/50090-6 10.1039/c003967e 10.1021/ja808998q 10.1016/1011-1344(93)87109-Z 10.1073/pnas.0602991103 10.1073/pnas.0802079105 10.1007/s11426-012-4578-x 10.1021/ja054998f 10.1021/ja802183s 10.1021/ja0622002 10.1126/science.283.5400.375 10.1063/1.1349091 10.1016/S0301-0104(01)00523-7 10.1073/pnas.55.5.1015 10.1021/jp8041445 10.1093/nar/gkg680 10.1021/ja073628j 10.1002/jcc.22952 10.1023/A:1008193805436 10.1021/jp072508v 10.1002/cphc.201100200 10.1073/pnas.0606757104 10.1021/jp036164u 10.1021/jp304725r 10.1002/jcc.20853 10.1021/ja110879m 10.1073/pnas.250483297 10.1016/j.jphotochemrev.2008.12.001 10.1080/07391102.2007.10507159 10.1002/jcc.540141112 10.1146/annurev.physchem.59.032607.093719 10.1039/B517914A 10.1021/ct200384r 10.1039/C3PP25449F 10.1021/ja044321c 10.1021/jp1095344 10.1002/chem.200501515 10.1016/j.cplett.2011.03.024 10.1021/ja01528a007 10.1016/0263-7855(96)00018-5 10.1080/00268976.2012.663944 10.1002/anie.201104382 10.1016/0009-2614(94)00070-0 10.1021/jp0496046 10.1002/cphc.200390050 10.1002/cphc.200500014 10.1021/ja303361z 10.1063/1.2889385 10.1007/978-1-4020-9956-4_11 10.1016/j.cplett.2007.09.051 10.1016/0009-2614(96)00394-6 10.1016/0009-2614(95)00914-P 10.1016/0009-2614(94)00433-1 10.1021/ja1029705 10.1063/1.1861452 10.1021/cr0206770 10.1038/nature04903 10.1021/jp906265c 10.1021/jo071157d 10.1021/ja2007998 10.1021/ja074734o 10.1021/ja808280j 10.1073/pnas.0703298104 10.1063/1.481133 10.1021/jp051833k 10.1063/1.1597635 10.1146/annurev-physchem-032210-103450 10.1002/prot.20033 10.1021/ja00544a007  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2013 American Chemical
Society | 
    
| Copyright_xml | – notice: Copyright © 2013 American Chemical Society | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M  | 
    
| DOI | 10.1021/jp4033194 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1520-5215 | 
    
| EndPage | 8728 | 
    
| ExternalDocumentID | 23777305 10_1021_jp4033194 e23686938  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article  | 
    
| GroupedDBID | - .K2 02 123 29L 4.4 53G 55A 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CJ0 CS3 D0L DU5 EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 PZZ RNS ROL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -~X .DC AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK XSW YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M  | 
    
| ID | FETCH-LOGICAL-a348t-43745c341c5d75c37edfb5e7ec77f07d278221a3a96488d4f68fea0fa578fa6e3 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 1089-5639 1520-5215  | 
    
| IngestDate | Fri Jul 11 07:47:18 EDT 2025 Thu Jul 10 22:32:54 EDT 2025 Mon Jul 21 06:04:59 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Tue Jul 01 01:27:10 EDT 2025 Thu Aug 27 13:41:55 EDT 2020  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 36 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a348t-43745c341c5d75c37edfb5e7ec77f07d278221a3a96488d4f68fea0fa578fa6e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 23777305 | 
    
| PQID | 1432619731 | 
    
| PQPubID | 23479 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_1753524902 proquest_miscellaneous_1432619731 pubmed_primary_23777305 crossref_citationtrail_10_1021_jp4033194 crossref_primary_10_1021_jp4033194 acs_journals_10_1021_jp4033194  | 
    
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-09-12 | 
    
| PublicationDateYYYYMMDD | 2013-09-12 | 
    
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-12 day: 12  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory | 
    
| PublicationTitleAlternate | J. Phys. Chem. A | 
    
| PublicationYear | 2013 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | Schmidt M. W. (ref54/cit54) 1993; 14 Head-Gordon M. (ref51/cit51) 1994; 219 Boggio-Pasqua M. (ref86/cit86) 2007; 129 Buchvarov I. (ref19/cit19) 2007; 104 Liang J. (ref45/cit45) 2012; 134 Blancafort L. (ref87/cit87) 2007; 129 Emanuele E. (ref37/cit37) 2005; 109 Kononov A. I. (ref41/cit41) 1993; 19 Shao Y. (ref60/cit60) 2006; 8 Kwok W.-M. (ref18/cit18) 2006; 128 Macke T. (ref71/cit71) 1998 Nielsen S. B. (ref82/cit82) 2005; 6 ref59/cit59 Laikov D. (ref50/cit50) 2007; 448 Blancafort L. (ref85/cit85) 2006; 128 Zhang W. (ref33/cit33) 2011; 506 Plasser F. (ref35/cit35) 2012; 116 Humphrey W. (ref61/cit61) 1996; 14 Lu X.-J. (ref72/cit72) 2003; 31 Crespo-Hernandez C. E. (ref2/cit2) 2004; 104 Chipman D. M. (ref55/cit55) 2000; 112 Markovitsi D. (ref17/cit17) 2003; 3 Smith V. R. (ref21/cit21) 2010; 12 Subotnik J. E. (ref75/cit75) 2011; 135 Banyasz A. (ref22/cit22) 2011; 133 Wan C. Z. (ref47/cit47) 2000; 97 Markovitsi D. (ref11/cit11) 2006; 441 ref46/cit46 Serrano-Andrés L. (ref4/cit4) 2009; 10 Markovitsi D. (ref9/cit9) 2010; 1 (ref63/cit63) 2012 Serrano-Andrés L. (ref84/cit84) 2006; 103 Serrano-Andrés L. (ref83/cit83) 2006; 12 Callis P. R. (ref1/cit1) 1983; 34 Santoro F. (ref28/cit28) 2007; 104 Improta R. (ref30/cit30) 2011; 50 Lange A. W. (ref29/cit29) 2009; 131 Liu X. (ref76/cit76) 2012; 136 Matsika S. (ref6/cit6) 2011; 62 Marian C. M. (ref81/cit81) 2005; 122 Kohler B. (ref12/cit12) 2010; 1 Crespo-Hernández C. E. (ref10/cit10) 2005; 436 Crespo-Hernández C. E. (ref20/cit20) 2008; 130 Speelman A. L. (ref66/cit66) 2011; 115 Nachtigallova D. (ref36/cit36) 2010; 132 Kelley S. (ref48/cit48) 1999; 283 Liang J. (ref44/cit44) 2011; 133 ref14/cit14 Koch H. (ref79/cit79) 1995; 244 Dou Y. (ref16/cit16) 2012; 110 ref5/cit5 Cancès E. (ref57/cit57) 2001 Onufriev A. (ref67/cit67) 2004; 55 Ryckaert J. P. (ref68/cit68) 1977; 23 Schreiber M. (ref78/cit78) 2008; 128 Emanuele E. (ref26/cit26) 2005; 6 Kwok W.-M. (ref38/cit38) 2009; 113 Perun S. (ref64/cit64) 2005; 127 Lu X.-J. (ref73/cit73) 2008; 3 Takaya T. (ref40/cit40) 2008; 105 Peréz A. (ref65/cit65) 2007; 92 Su C. (ref15/cit15) 2012; 116 Christiansen O. (ref80/cit80) 1996; 256 Crespo-Hernández C. (ref13/cit13) 2004; 108 Bouvier B. (ref24/cit24) 2002; 275 Wang Y. (ref43/cit43) 2008; 112 Case D. A. (ref70/cit70) 2010 Onidas D. (ref23/cit23) 2007; 111 Frisch M. J. (ref58/cit58) 2004 Lu Y. (ref32/cit32) 2012; 33 Gaillard T. (ref69/cit69) 2011; 7 Olaso-González G. (ref27/cit27) 2009; 131 Wang Y. (ref42/cit42) 2007; 72 Santoro F. (ref74/cit74) 2008; 29 Bouvier B. (ref25/cit25) 2003; 107 Shukla M. K. (ref3/cit3) 2007; 25 Eisinger J. (ref39/cit39) 1966; 55 Gonzalez L. (ref7/cit7) 2012; 13 Schaftenaar G. (ref62/cit62) 2000; 14 Dou Y. (ref34/cit34) 2012; 55 Cancès E. (ref56/cit56) 1997; 107 Middleton C. T. (ref8/cit8) 2009; 60 Foster J. P. (ref52/cit52) 1980; 102 Conti I. (ref31/cit31) 2010; 12 Köhn A. (ref77/cit77) 2003; 119 Bearpark M. J. (ref53/cit53) 1994; 223 Murrell J. N. (ref49/cit49) 1959; 81  | 
    
| References_xml | – volume: 116 start-page: 10266 year: 2012 ident: ref15/cit15 publication-title: J. Phys. Chem. B doi: 10.1021/jp305350t – volume: 436 start-page: 1141 year: 2005 ident: ref10/cit10 publication-title: Nature doi: 10.1038/nature03933 – volume: 6 start-page: 1276 year: 2005 ident: ref82/cit82 publication-title: ChemPhysChem doi: 10.1002/cphc.200400644 – volume: 23 start-page: 327 year: 1977 ident: ref68/cit68 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – volume: 1 start-page: 2047 year: 2010 ident: ref12/cit12 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100491x – volume: 107 start-page: 3032 year: 1997 ident: ref56/cit56 publication-title: J. Chem. Phys. doi: 10.1063/1.474659 – volume: 92 start-page: 3817 year: 2007 ident: ref65/cit65 publication-title: Biophys. J. doi: 10.1529/biophysj.106.097782 – volume: 135 start-page: 071104 year: 2011 ident: ref75/cit75 publication-title: J. Chem. Phys. doi: 10.1063/1.3627152 – volume: 3 start-page: 1213 year: 2008 ident: ref73/cit73 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.104 – volume: 136 start-page: 161101 year: 2012 ident: ref76/cit76 publication-title: J. Chem. Phys. doi: 10.1063/1.4705757 – volume: 1 start-page: 3271 year: 2010 ident: ref9/cit9 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101122t – volume: 34 start-page: 329 year: 1983 ident: ref1/cit1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.34.100183.001553 – volume: 12 start-page: 5016 year: 2010 ident: ref31/cit31 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b926608a – ident: ref14/cit14 doi: 10.1016/B978-044451656-5/50090-6 – volume: 12 start-page: 9632 year: 2010 ident: ref21/cit21 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c003967e – volume-title: MATLAB year: 2012 ident: ref63/cit63 – volume: 131 start-page: 3913 year: 2009 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808998q – volume: 19 start-page: 139 year: 1993 ident: ref41/cit41 publication-title: J. Photochem. Photobiol. B: Biol. doi: 10.1016/1011-1344(93)87109-Z – volume: 103 start-page: 8691 year: 2006 ident: ref84/cit84 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602991103 – volume: 105 start-page: 10285 year: 2008 ident: ref40/cit40 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0802079105 – volume: 55 start-page: 1377 year: 2012 ident: ref34/cit34 publication-title: Sci. China: Chem. doi: 10.1007/s11426-012-4578-x – volume: 128 start-page: 210 year: 2006 ident: ref85/cit85 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja054998f – volume: 130 start-page: 10844 year: 2008 ident: ref20/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja802183s – volume-title: Gaussian 03 year: 2004 ident: ref58/cit58 – volume: 128 start-page: 11894 year: 2006 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0622002 – volume: 283 start-page: 375 year: 1999 ident: ref48/cit48 publication-title: Science doi: 10.1126/science.283.5400.375 – start-page: 4744 issue: 114 year: 2001 ident: ref57/cit57 publication-title: J. Chem. Phys. doi: 10.1063/1.1349091 – volume: 275 start-page: 75 year: 2002 ident: ref24/cit24 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(01)00523-7 – volume: 55 start-page: 1015 year: 1966 ident: ref39/cit39 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.55.5.1015 – volume: 112 start-page: 13088 year: 2008 ident: ref43/cit43 publication-title: J. Phys. Chem. A doi: 10.1021/jp8041445 – volume: 31 start-page: 5108 year: 2003 ident: ref72/cit72 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg680 – volume: 129 start-page: 10996 year: 2007 ident: ref86/cit86 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073628j – volume: 33 start-page: 1225 year: 2012 ident: ref32/cit32 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22952 – volume: 14 start-page: 123 year: 2000 ident: ref62/cit62 publication-title: J. Comput.-Aided Mol. Des. doi: 10.1023/A:1008193805436 – volume: 111 start-page: 9644 year: 2007 ident: ref23/cit23 publication-title: J. Phys. Chem. B doi: 10.1021/jp072508v – volume: 13 start-page: 28 year: 2012 ident: ref7/cit7 publication-title: ChemPhysChem doi: 10.1002/cphc.201100200 – volume: 104 start-page: 4794 year: 2007 ident: ref19/cit19 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0606757104 – volume: 107 start-page: 13512 year: 2003 ident: ref25/cit25 publication-title: J. Phys. Chem. B doi: 10.1021/jp036164u – volume: 116 start-page: 11151 year: 2012 ident: ref35/cit35 publication-title: J. Phys. Chem. A doi: 10.1021/jp304725r – volume: 29 start-page: 957 year: 2008 ident: ref74/cit74 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20853 – volume: 133 start-page: 5163 year: 2011 ident: ref22/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110879m – volume: 97 start-page: 14052 year: 2000 ident: ref47/cit47 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.250483297 – volume: 10 start-page: 21 year: 2009 ident: ref4/cit4 publication-title: J. Photochem. Photobiol. C: Photochem. Rev. doi: 10.1016/j.jphotochemrev.2008.12.001 – volume: 25 start-page: 93 year: 2007 ident: ref3/cit3 publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2007.10507159 – volume: 14 start-page: 1347 year: 1993 ident: ref54/cit54 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 – volume: 60 start-page: 217 year: 2009 ident: ref8/cit8 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093719 – volume: 8 start-page: 3172 year: 2006 ident: ref60/cit60 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B517914A – volume: 7 start-page: 3181 year: 2011 ident: ref69/cit69 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200384r – ident: ref46/cit46 doi: 10.1039/C3PP25449F – volume-title: Amber 11 year: 2010 ident: ref70/cit70 – volume: 127 start-page: 6257 year: 2005 ident: ref64/cit64 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044321c – volume: 115 start-page: 3997 year: 2011 ident: ref66/cit66 publication-title: J. Phys. Chem. A. doi: 10.1021/jp1095344 – volume: 12 start-page: 6559 year: 2006 ident: ref83/cit83 publication-title: Chem.—Eur. J. doi: 10.1002/chem.200501515 – volume: 506 start-page: 303 year: 2011 ident: ref33/cit33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.03.024 – ident: ref59/cit59 – volume: 81 start-page: 5037 year: 1959 ident: ref49/cit49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01528a007 – volume: 14 start-page: 33 year: 1996 ident: ref61/cit61 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 110 start-page: 1517 year: 2012 ident: ref16/cit16 publication-title: Mol. Phys. doi: 10.1080/00268976.2012.663944 – volume: 50 start-page: 12016 year: 2011 ident: ref30/cit30 publication-title: Angew. Chem. doi: 10.1002/anie.201104382 – volume: 219 start-page: 21 year: 1994 ident: ref51/cit51 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00070-0 – volume: 108 start-page: 11182 year: 2004 ident: ref13/cit13 publication-title: J. Phys. Chem. B doi: 10.1021/jp0496046 – volume: 3 start-page: 303 year: 2003 ident: ref17/cit17 publication-title: ChemPhysChem doi: 10.1002/cphc.200390050 – volume: 6 start-page: 1387 year: 2005 ident: ref26/cit26 publication-title: Chem. Phys. Chem doi: 10.1002/cphc.200500014 – volume: 134 start-page: 10713 year: 2012 ident: ref45/cit45 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303361z – volume: 128 start-page: 134110 year: 2008 ident: ref78/cit78 publication-title: J. Chem. Phys. doi: 10.1063/1.2889385 – ident: ref5/cit5 doi: 10.1007/978-1-4020-9956-4_11 – volume: 448 start-page: 132 year: 2007 ident: ref50/cit50 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.09.051 – volume: 256 start-page: 185 year: 1996 ident: ref80/cit80 publication-title: J. Chem. Phys. Lett. doi: 10.1016/0009-2614(96)00394-6 – volume: 244 start-page: 75 year: 1995 ident: ref79/cit79 publication-title: J. Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00914-P – volume: 223 start-page: 269 year: 1994 ident: ref53/cit53 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00433-1 – volume: 132 start-page: 8261 year: 2010 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1029705 – volume: 122 start-page: 104314 year: 2005 ident: ref81/cit81 publication-title: J. Chem. Phys. doi: 10.1063/1.1861452 – volume: 104 start-page: 1977 year: 2004 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr0206770 – volume: 441 start-page: E7 year: 2006 ident: ref11/cit11 publication-title: Nature doi: 10.1038/nature04903 – volume: 113 start-page: 11527 year: 2009 ident: ref38/cit38 publication-title: J. Phys. Chem. B doi: 10.1021/jp906265c – volume: 72 start-page: 6970 year: 2007 ident: ref42/cit42 publication-title: J. Org. Chem. doi: 10.1021/jo071157d – volume: 133 start-page: 6799 year: 2011 ident: ref44/cit44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2007998 – volume: 129 start-page: 14540 year: 2007 ident: ref87/cit87 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074734o – volume: 131 start-page: 4368 year: 2009 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808280j – volume: 104 start-page: 9931 year: 2007 ident: ref28/cit28 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0703298104 – volume: 112 start-page: 5558 year: 2000 ident: ref55/cit55 publication-title: J. Chem. Phys. doi: 10.1063/1.481133 – volume: 109 start-page: 16109 year: 2005 ident: ref37/cit37 publication-title: J. Phys. Chem. B doi: 10.1021/jp051833k – volume: 119 start-page: 5021 year: 2003 ident: ref77/cit77 publication-title: J. Chem. Phys. doi: 10.1063/1.1597635 – volume: 62 start-page: 621 year: 2011 ident: ref6/cit6 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032210-103450 – volume: 55 start-page: 383 year: 2004 ident: ref67/cit67 publication-title: Proteins doi: 10.1002/prot.20033 – volume-title: Modeling Unusual Nucleic Acid Structures. In Molecular Modeling of Nucleic Acids year: 1998 ident: ref71/cit71 – volume: 102 start-page: 7211 year: 1980 ident: ref52/cit52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00544a007  | 
    
| SSID | ssj0001324 | 
    
| Score | 2.2256255 | 
    
| Snippet | The interaction of DNA with UV radiation is an area of intense interest not only because of its biological implications but also because of the complicated... | 
    
| SourceID | proquest pubmed crossref acs  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 8718 | 
    
| SubjectTerms | Absorption Adenine - analogs & derivatives Adenine - chemistry Bonding Dimerization Dimers DNA - chemistry Dynamics Excimers Excitation Intersections Mathematical models Molecular Dynamics Simulation Nucleic Acid Conformation Quantum Theory Ultraviolet radiation Ultraviolet Rays Water - chemistry  | 
    
| Title | Bonded Excimer Formation in π‑Stacked 9‑Methyladenine Dimers | 
    
| URI | http://dx.doi.org/10.1021/jp4033194 https://www.ncbi.nlm.nih.gov/pubmed/23777305 https://www.proquest.com/docview/1432619731 https://www.proquest.com/docview/1753524902  | 
    
| Volume | 117 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5215 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001324 issn: 1089-5639 databaseCode: ACS dateStart: 19970101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB2VcoAL-1KWKiwHLoE0duL6WHVRhVQuUKm3ynUmUqGkVRcJceov8GX8A1_COGkqEG25-TCJk_F43hvZMwNw7SE5PYWhXdBc2lxwk6wcBLZG3ZFSOwTJJsG58eDXm_y-5bUycLXkBN8t3D0PuMPIUPgarLu-EObeXqn8OHe3FE7x5Ba9tD3C27R80M9HDfTo0W_oWcInY1ypbUMlzc5JrpO83E7GnVv9_rdY46pP3oGtGa-0Sokh7EIGoz3YKKft3PahZBoIY2BV33T3FYdWLc1atLqR9Tn9mn4Q76QtHViSxg2kBewpckrEQq2KeWJ0AM1a9alct2f9E2zFeHFscya4pwmmtBcIGggMwo6HArUQoSMC17CDgmJK-rSNAx76xRCVEyraxaHykR1CNupHeAwW4T5yxTXFkwRn0pOKaJT0kV6tGEUxOciTgtsz-x-146Ntl0KLVBM5uEl139az6uOmCUZvkejlXHSQlNxYJHSRLmCbFGlOOVSE_QlNzZmJCgUrrJARpqoNl46bg6Nk9edTuUwIcnveyX-_dAqbbtwbw_STOIPseDjBc2Io404-ttBvPTzduA | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8oaEAcuKUlsx_WxKlRlKRdA6i1ynYnEllYklRCn_gJfxj_wJYyzlEVsNx_G-yxvZM8MIXscUOkpiGxXM2kzwUywchjaGnRXSu2gSTYBzu1zv3XFTjq8U6TJMbEwuIgER0qyR_z37ALuwU2fORT5hY2TSe4z1zha9cbFSOuiV8Xyz_TS5mh2yyxCH7saC6STzxboB1iZmZfmbF6nKFtY9qvktjpIu1X99CVn4_9WPkdmCpRp1XO2mCdjEC-QqUZZ3G2R1E05YQito0d9fQ8PVrOMYbSuY-tl-Dp8RhSKAh5aEtttwOu8U6iiEJNah6ZHskSumkeXjZZdVFOwFWW11GZUMK7RaGkeCmwICKMuBwFaiMgRoWewgquokj4KdcgivxaBciKFMh0pH-gymYh7MawSC1EAMMU0epdo3CSXCkGV9AGHVhR9mgrZwoMICmlIguyh20NHozyJCtkvryDQRS5yUxLj7jvS3RFpP0_A8R3RTnmPAR6kefNQMfQGODWjxkcU1P2FRpgcN0w6XoWs5EwwmsqjQqAS5Gt_bWmbTLUu22fB2fH56TqZ9rKqGabSxAaZSB8GsInYJe1uZUz7BqLd5ho | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSMCFfSlrQBy4BNLYjvERFSp2kACJW-TaE4ktVKSVECd-gS_jH_gSxmlSAWK7-TDeZ3kje2YAVgWS0tOY-FXDlc8ld8HK1voGTUMpE5BJdgHOR8fR7gXfvxSXhaPoYmFoERmNlOWP-E6qmzYpMgxUN66bPGDEM7wX-kVEIu6gUO2sq3nJs-KdD_XKF2R6y0xCH7s6K2Syz1boB2iZm5j6CJx0F5f_LLlZb7ca6-bpS97G_69-FIYLtOltddhjDHowHYfBWlnkbQK2XFlhtN7Oo7m6wwevXsYyelep9_r89vxCaJQE3XqK2kdI13qrSVURNvW2XY9sEi7qO-e1Xb-oquBrxjdbPmeSC0PGywgrqSHRJg2BEo2USSBt6DBDVTOtIhJuy5NoM0EdJJpkO9ERsinoS-9TnAGP0AByzQ15mWTklFCawJWKkIbWjHybCizSYcSFVGRx_uAdksNRnkQF1spriE2Rk9yVxrj9jnSlS9rsJOL4jmi5vMuYDtK9fegU79s0NWfOV5Ss-guNdLluuArCCkx3GKE7VcikJGUoZv_a0hIMnG7X48O944M5GArz4hmu4MQ89LUe2rhAEKbVWMz59h1Fb-id | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bonded+excimer+formation+in+%CF%80-stacked+9-methyladenine+dimers&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Spata%2C+Vincent+A&rft.au=Matsika%2C+Spiridoula&rft.date=2013-09-12&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=117&rft.issue=36&rft.spage=8718&rft_id=info:doi/10.1021%2Fjp4033194&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon |