Nucleophilic Degradation of Fenitrothion Insecticide and Performance of Nucleophiles: A Computational Study

Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P–OAr linkages...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 116; no. 10; pp. 2536 - 2546
Main Authors Mandal, Debasish, Mondal, Bhaskar, Das, Abhijit K
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.03.2012
Subjects
Online AccessGet full text
ISSN1089-5639
1520-5215
1520-5215
DOI10.1021/jp2100057

Cover

Abstract Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P–OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH–), and two different α-nucleophiles, hydroperoxide (OOH–) and hydroxylamine anion (NH2O–), have been considered for this study. Nucleophilic attack at the two different centers, SN2@P and SN2@C, has been monitored, and the computed reaction energetics confirms that the SN2@P reactions are favorable over the SN2@C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the SN2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two α-nucleophiles, OOH– and NH2O–, at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for −X–H···S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH– > NH2O– > OH– for the SN2@P, whereas for the SN2@C the order, which gets little altered, is NH2O– > OOH– > OH–.
AbstractList Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P-OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH super(-)), and two different alpha -nucleophiles, hydroperoxide (OOH super(-)) and hydroxylamine anion (NH sub(2)O super(-)), have been considered for this study. Nucleophilic attack at the two different centers, S sub(N)2P and S sub(N)2C, has been monitored, and the computed reaction energetics confirms that the S sub(N)2P reactions are favorable over the S sub(N)2C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the S sub(N)2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two alpha -nucleophiles, OOH super(-) and NH sub(2)O super(-), at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for -X-H...S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH super(-) > NH sub(2)O super(-) > OH super(-) for the S sub(N)2P, whereas for the S sub(N)2C the order, which gets little altered, is NH sub(2)O super(-) > OOH super(-) > OH super(-).
Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P-OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH(-)), and two different α-nucleophiles, hydroperoxide (OOH(-)) and hydroxylamine anion (NH(2)O(-)), have been considered for this study. Nucleophilic attack at the two different centers, S(N)2@P and S(N)2@C, has been monitored, and the computed reaction energetics confirms that the S(N)2@P reactions are favorable over the S(N)2@C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the S(N)2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two α-nucleophiles, OOH(-) and NH(2)O(-), at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for -X-H···S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH(-) > NH(2)O(-) > OH(-) for the S(N)2@P, whereas for the S(N)2@C the order, which gets little altered, is NH(2)O(-) > OOH(-) > OH(-).
Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P-OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH(-)), and two different α-nucleophiles, hydroperoxide (OOH(-)) and hydroxylamine anion (NH(2)O(-)), have been considered for this study. Nucleophilic attack at the two different centers, S(N)2@P and S(N)2@C, has been monitored, and the computed reaction energetics confirms that the S(N)2@P reactions are favorable over the S(N)2@C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the S(N)2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two α-nucleophiles, OOH(-) and NH(2)O(-), at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for -X-H···S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH(-) > NH(2)O(-) > OH(-) for the S(N)2@P, whereas for the S(N)2@C the order, which gets little altered, is NH(2)O(-) > OOH(-) > OH(-).Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P-OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH(-)), and two different α-nucleophiles, hydroperoxide (OOH(-)) and hydroxylamine anion (NH(2)O(-)), have been considered for this study. Nucleophilic attack at the two different centers, S(N)2@P and S(N)2@C, has been monitored, and the computed reaction energetics confirms that the S(N)2@P reactions are favorable over the S(N)2@C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the S(N)2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two α-nucleophiles, OOH(-) and NH(2)O(-), at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for -X-H···S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH(-) > NH(2)O(-) > OH(-) for the S(N)2@P, whereas for the S(N)2@C the order, which gets little altered, is NH(2)O(-) > OOH(-) > OH(-).
Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus insecticide O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate, fenitrothion (FN), toward nucleophilic attack. Breaking of the P–OAr linkages through nucleophilic attack is considered to be the major degradation pathway for FN. One simple nucleophile, hydroxide (OH–), and two different α-nucleophiles, hydroperoxide (OOH–) and hydroxylamine anion (NH2O–), have been considered for this study. Nucleophilic attack at the two different centers, SN2@P and SN2@C, has been monitored, and the computed reaction energetics confirms that the SN2@P reactions are favorable over the SN2@C reactions for all the nucleophiles. All electronic structure calculations for the reaction are performed at DFT-B3LYP/6-31+G(d) level of theory followed by a refinement of energy at ab initio MP2/6-311++G(2d,2p) level. The effect of aqueous polarization on both the SN2 reactions is taken into account employing the conductor-like screening model (COSMO) as well as polarization continuum model (PCM) at B3LYP/6-31+G(d) level of theory. Relative performance of the two α-nucleophiles, OOH– and NH2O–, at the P center has further been clarified using natural bond orbital (NBO), conceptual DFT, and atoms in molecules (AIM) approaches. The strength of the intermolecular hydrogen bonding in the transition states and topological properties of the electron density distribution for −X–H···S (X = O, N) intermolecular hydrogen bonds are the subject of NBO and AIM analysis, respectively. Our calculated reaction energetics and electronic properties suggest that the relative order of nucleophilicity for the nucleophiles is OOH– > NH2O– > OH– for the SN2@P, whereas for the SN2@C the order, which gets little altered, is NH2O– > OOH– > OH–.
Author Das, Abhijit K
Mandal, Debasish
Mondal, Bhaskar
AuthorAffiliation Indian Association for the Cultivation of Science
AuthorAffiliation_xml – name: Indian Association for the Cultivation of Science
Author_xml – sequence: 1
  givenname: Debasish
  surname: Mandal
  fullname: Mandal, Debasish
– sequence: 2
  givenname: Bhaskar
  surname: Mondal
  fullname: Mondal, Bhaskar
– sequence: 3
  givenname: Abhijit K
  surname: Das
  fullname: Das, Abhijit K
  email: spakd@iacs.res.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22339374$$D View this record in MEDLINE/PubMed
BookMark eNp90clOwzAQBmALgSjbgRdAuSDgEOolTmpuVVmlCpDgbjmOTV2SONjOoW9PQlqQEOLkRd_80szsg-3a1gqAYwQvEcRovGwwghDSbAvsIYphTDGi290dTlhMU8JGYN_7ZUcQwckuGGFMCCNZsgfeH1tZKtssTGlkdK3enChEMLaOrI5uVW2Cs2HRvx9qr2Qw0hQqEnURPSunratELVVvf3KUv4qm0cxWTRu-okQZvYS2WB2CHS1Kr47W5wF4vb15nd3H86e7h9l0HguSZCGmTEimtYYJS3FeZEmSQIpggZFEKYR5ziZaajrJNCGo0ARBhqjQ3WeqsMbkAJwNsY2zH63ygVfGS1WWola29ZzhCYOMZUknz_-VKKOEIpylPT1Z0zavVMEbZyrhVnwzyQ6MByCd9d4pzaUZ2g9OmJIjyPtd8e9ddRUXvyo2oX_Z08EK6fnStq4bqv_DfQJsvJ8y
CitedBy_id crossref_primary_10_1007_s00214_022_02925_2
crossref_primary_10_1002_poc_3308
crossref_primary_10_1007_s00214_018_2301_5
crossref_primary_10_1021_jp503382j
crossref_primary_10_1007_s12039_017_1322_2
crossref_primary_10_1021_acs_orglett_8b01765
crossref_primary_10_1002_qua_27096
crossref_primary_10_15587_1729_4061_2019_168391
crossref_primary_10_1039_D2RA00258B
crossref_primary_10_1007_s00214_020_02688_8
crossref_primary_10_1039_D2EM00296E
crossref_primary_10_1186_1758_2946_4_17
crossref_primary_10_1016_j_ica_2018_08_021
crossref_primary_10_1039_C5CP02442K
crossref_primary_10_1016_j_cej_2018_10_153
crossref_primary_10_1039_D0OB01620A
crossref_primary_10_1021_jp305994g
crossref_primary_10_1016_j_comptc_2014_07_010
crossref_primary_10_1016_j_comptc_2021_113348
crossref_primary_10_1021_acs_joc_8b02636
crossref_primary_10_1016_j_comptc_2025_115159
crossref_primary_10_1021_acs_chemrev_9b00312
Cites_doi 10.1021/jo0487597
10.1021/ja00279a008
10.1021/j100377a021
10.1021/jo0502706
10.1016/S0045-6535(00)00506-3
10.1021/jp002279b
10.1002/jcc.540110311
10.1021/es60124a001
10.1021/ja983394r
10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
10.1016/0009-2614(90)80029-D
10.1016/0009-2614(96)00349-1
10.1016/0009-2614(89)87234-3
10.1021/la049572d
10.1021/la060641t
10.1016/j.chemosphere.2006.09.039
10.5012/bkcs.2009.30.6.1257
10.1021/cr00031a013
10.1007/s00214-009-0701-2
10.1016/0009-2614(90)80030-H
10.5012/bkcs.2010.31.5.1339
10.1039/P29930000799
10.1021/ja065147q
10.1039/b008615k
10.1021/es960499q
10.1103/PhysRev.46.618
10.1002/qua.21830
10.1016/S0031-8914(34)90011-2
10.1039/b810408e
10.1016/0922-338X(96)88823-4
10.1021/jf60227a016
10.1021/jo100541y
10.1063/1.1740588
10.1021/es00005a016
10.1021/ja0010094
10.1016/0003-2670(92)80021-X
10.1063/1.456010
10.1021/es00068a007
10.1021/jf60149a015
10.1103/PhysRevB.37.785
10.1063/1.430801
10.1016/0009-2614(92)85247-8
10.1016/0009-2614(88)85250-3
10.1063/1.464913
10.1016/0009-2614(93)85377-Z
10.1021/jf60228a014
10.3998/ark.5550190.0002.c14
10.5012/bkcs.2008.29.11.2252
10.1073/pnas.82.20.6723
10.1021/jp970643+
10.1021/es00055a029
10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
10.1021/cr00088a005
10.1063/1.474671
10.1021/jp800386f
10.2166/wqrj.2001.031
10.1063/1.477265
10.1021/jp106270d
10.1002/ps.2780130113
10.1021/jf00088a068
10.1021/jf00120a003
10.1002/(SICI)1099-1395(199804)11:4<232::AID-POC984>3.0.CO;2-A
10.1021/ja00326a036
10.1016/S0009-2614(94)87001-2
10.1002/ps.2780420205
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
Copyright_xml – notice: Copyright © 2012 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
7X8
DOI 10.1021/jp2100057
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5215
EndPage 2546
ExternalDocumentID 22339374
10_1021_jp2100057
c808073483
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CJ0
CS3
D0L
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-~X
.DC
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
7X8
ID FETCH-LOGICAL-a347t-59ac9fff04962bd74440510d21c1600bb98fcf587f331df310915af8fc6e2f23
IEDL.DBID ACS
ISSN 1089-5639
1520-5215
IngestDate Thu Jul 10 17:15:34 EDT 2025
Thu Oct 02 10:19:21 EDT 2025
Mon Jul 21 06:02:07 EDT 2025
Tue Jul 01 01:27:02 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Thu Aug 27 13:42:17 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a347t-59ac9fff04962bd74440510d21c1600bb98fcf587f331df310915af8fc6e2f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22339374
PQID 1753512764
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_928909974
proquest_miscellaneous_1753512764
pubmed_primary_22339374
crossref_citationtrail_10_1021_jp2100057
crossref_primary_10_1021_jp2100057
acs_journals_10_1021_jp2100057
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-15
PublicationDateYYYYMMDD 2012-03-15
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
PublicationTitleAlternate J. Phys. Chem. A
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Kazimierowicz E. D. (ref18/cit18) 2008; 112
Frisch M. J. (ref44/cit44) 1990; 166
Macalady D. L. (ref8/cit8) 1983; 31
Bavcon K. M. (ref11/cit11) 2007; 67
Yang W. (ref59/cit59) 1985; 82
Greenhalgh R. (ref21/cit21) 1980; 28
Lartiges S. B. (ref4/cit4) 1995; 29
Reed A. E. (ref62/cit62) 1988; 88
Patterson E. V. (ref20/cit20) 1998; 11
Dust J. M. (ref25/cit25) 2001; 36
Mandal D. (ref17/cit17) 2010; 114
ref34/cit34
Blanchet P. F. (ref24/cit24) 1982; 13
Cossi M. (ref49/cit49) 1996; 255
Omakor J. E. (ref14/cit14) 2001; 2
Barone V. (ref51/cit51) 1998; 19
Gonzales C. (ref41/cit41) 1990; 94
Kesharwani M. K. (ref16/cit16) 2010; 127
Wolfe N. L. (ref10/cit10) 1977; 11
Becke A. D. (ref36/cit36) 1993; 98
Bixler G. (ref1/cit1) 1983
ref35/cit35
Xiong Y. (ref19/cit19) 2004; 69
Smolen J. M. (ref27/cit27) 1997; 31
Koo I. S. (ref32/cit32) 2008; 29
Katagi T. (ref30/cit30) 1989; 37
Howard S. T. (ref74/cit74) 2000; 122
Gonzales C. (ref40/cit40) 1989; 90
Yang W. (ref61/cit61) 1986; 108
Rougier N. M. (ref15/cit15) 2010; 75
Gazquez J. L. (ref66/cit66) 1997; 101
Lee C. T. (ref37/cit37) 1988; 37
Møller C. (ref42/cit42) 1934; 46
Seckute J. (ref53/cit53) 2005; 70
Choi H. (ref31/cit31) 2010; 31
Nguyen L. T. (ref67/cit67) 1999; 121
Breneman C. (ref64/cit64) 1990; 11
Frisch M. J. (ref45/cit45) 1990; 166
Onyido I. (ref26/cit26) 2001; 2
Nowroozi A. (ref73/cit73) 2009; 109
Durand G. (ref6/cit6) 1992; 262
Parr R. G. (ref60/cit60) 1984; 106
Ohshiro K. (ref3/cit3) 1996; 82
Cioslowski J. (ref55/cit55) 1993; 203
Miehlich B. (ref38/cit38) 1989; 157
Kirby A. J. (ref70/cit70) 2008
Han X. (ref13/cit13) 2006; 22
Koopmans T. A. (ref65/cit65) 1934; 1
Tomasi J. (ref48/cit48) 1994; 94
Kirby A. J. (ref69/cit69) 2009
Popelier P. L. A. (ref72/cit72) 1992; 189
Mulliken R. (ref63/cit63) 1955; 23
Head-Gordon M. (ref43/cit43) 1988; 153
Wanner O. (ref12/cit12) 1989; 23
Kirby A. J. (ref71/cit71) 2006; 128
Biegler-Konig F. (ref57/cit57) 2001; 22
Klamt A. (ref46/cit46) 1993; 2
Barone V. (ref50/cit50) 1997; 107
Wan H. B. (ref2/cit2) 1994; 42
Maguire R. J. (ref9/cit9) 1980; 28
Koo I. S. (ref28/cit28) 2009; 30
Cossi M. (ref52/cit52) 1998; 109
Liu B. (ref7/cit7) 2001; 44
ref58/cit58
ref22/cit22
ref33/cit33
Mortland M. M. (ref23/cit23) 1967; 15
Cioslowski J. (ref56/cit56) 1994; 219
Balakrishnan V. K. (ref29/cit29) 2004; 20
Dill J. D. (ref39/cit39) 1975; 62
ref47/cit47
Ponti A. (ref68/cit68) 2000; 104
Lacorte S. (ref5/cit5) 1994; 28
Bader R. F. W. (ref54/cit54) 1994
References_xml – volume: 69
  start-page: 8451
  year: 2004
  ident: ref19/cit19
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0487597
– volume: 108
  start-page: 5708
  year: 1986
  ident: ref61/cit61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00279a008
– volume: 94
  start-page: 5523
  year: 1990
  ident: ref41/cit41
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100377a021
– volume: 70
  start-page: 8649
  year: 2005
  ident: ref53/cit53
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0502706
– volume: 44
  start-page: 1315
  year: 2001
  ident: ref7/cit7
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00506-3
– volume: 104
  start-page: 8843
  year: 2000
  ident: ref68/cit68
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp002279b
– volume-title: Chemistry and World Food Supplies: The New Frontiers—CHEMRAWN II
  year: 1983
  ident: ref1/cit1
– volume: 11
  start-page: 361
  year: 1990
  ident: ref64/cit64
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540110311
– volume: 11
  start-page: 88
  year: 1977
  ident: ref10/cit10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60124a001
– volume: 121
  start-page: 5992
  year: 1999
  ident: ref67/cit67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja983394r
– ident: ref47/cit47
– volume: 22
  start-page: 545
  year: 2001
  ident: ref57/cit57
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
– volume: 166
  start-page: 275
  year: 1990
  ident: ref44/cit44
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)80029-D
– volume: 255
  start-page: 327
  year: 1996
  ident: ref49/cit49
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00349-1
– volume: 157
  start-page: 200
  year: 1989
  ident: ref38/cit38
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)87234-3
– ident: ref58/cit58
– ident: ref33/cit33
– ident: ref22/cit22
– volume: 20
  start-page: 6586
  year: 2004
  ident: ref29/cit29
  publication-title: Langmuir
  doi: 10.1021/la049572d
– volume: 22
  start-page: 9009
  year: 2006
  ident: ref13/cit13
  publication-title: Langmuir
  doi: 10.1021/la060641t
– volume: 67
  start-page: 99
  year: 2007
  ident: ref11/cit11
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.09.039
– volume: 30
  start-page: 1257
  year: 2009
  ident: ref28/cit28
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2009.30.6.1257
– volume: 94
  start-page: 2027
  year: 1994
  ident: ref48/cit48
  publication-title: Chem. Rev.
  doi: 10.1021/cr00031a013
– volume-title: Atoms in Molecules. A Quantum Theory
  year: 1994
  ident: ref54/cit54
– volume: 127
  start-page: 39
  year: 2010
  ident: ref16/cit16
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-009-0701-2
– volume: 166
  start-page: 281
  year: 1990
  ident: ref45/cit45
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)80030-H
– volume: 31
  start-page: 1339
  year: 2010
  ident: ref31/cit31
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2010.31.5.1339
– volume: 2
  start-page: 799
  year: 1993
  ident: ref46/cit46
  publication-title: J. Chem. Soc., Perkin Trans.
  doi: 10.1039/P29930000799
– volume: 128
  start-page: 12374
  year: 2006
  ident: ref71/cit71
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065147q
– volume: 2
  start-page: 324
  year: 2001
  ident: ref14/cit14
  publication-title: J. Chem. Soc., Perkin Trans.
  doi: 10.1039/b008615k
– volume: 31
  start-page: 1664
  year: 1997
  ident: ref27/cit27
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960499q
– volume: 46
  start-page: 618
  year: 1934
  ident: ref42/cit42
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 109
  start-page: 1505
  year: 2009
  ident: ref73/cit73
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.21830
– volume: 1
  start-page: 104
  year: 1934
  ident: ref65/cit65
  publication-title: Physica
  doi: 10.1016/S0031-8914(34)90011-2
– start-page: 4428
  year: 2008
  ident: ref70/cit70
  publication-title: Chem. Commun.
  doi: 10.1039/b810408e
– volume: 82
  start-page: 299
  year: 1996
  ident: ref3/cit3
  publication-title: J. Ferment. Bioeng.
  doi: 10.1016/0922-338X(96)88823-4
– volume: 28
  start-page: 102
  year: 1980
  ident: ref21/cit21
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60227a016
– volume: 75
  start-page: 3427
  year: 2010
  ident: ref15/cit15
  publication-title: J. Org. Chem.
  doi: 10.1021/jo100541y
– volume: 23
  start-page: 1833
  year: 1955
  ident: ref63/cit63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740588
– volume: 29
  start-page: 1246
  year: 1995
  ident: ref4/cit4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00005a016
– volume: 122
  start-page: 8238
  year: 2000
  ident: ref74/cit74
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0010094
– volume: 262
  start-page: 167
  year: 1992
  ident: ref6/cit6
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(92)80021-X
– volume: 90
  start-page: 2154
  year: 1989
  ident: ref40/cit40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456010
– volume: 23
  start-page: 1232
  year: 1989
  ident: ref12/cit12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00068a007
– volume: 15
  start-page: 163
  year: 1967
  ident: ref23/cit23
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60149a015
– volume: 37
  start-page: 785
  year: 1988
  ident: ref37/cit37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 62
  start-page: 2921
  year: 1975
  ident: ref39/cit39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.430801
– volume: 189
  start-page: 542
  year: 1992
  ident: ref72/cit72
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(92)85247-8
– volume: 153
  start-page: 503
  year: 1988
  ident: ref43/cit43
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(88)85250-3
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref36/cit36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 203
  start-page: 137
  year: 1993
  ident: ref55/cit55
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)85377-Z
– ident: ref35/cit35
– ident: ref34/cit34
– volume: 28
  start-page: 372
  year: 1980
  ident: ref9/cit9
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60228a014
– volume: 2
  start-page: 134
  year: 2001
  ident: ref26/cit26
  publication-title: ARKIVOC
  doi: 10.3998/ark.5550190.0002.c14
– volume: 29
  start-page: 2252
  year: 2008
  ident: ref32/cit32
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2008.29.11.2252
– volume: 82
  start-page: 6723
  year: 1985
  ident: ref59/cit59
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.82.20.6723
– volume: 101
  start-page: 4657
  year: 1997
  ident: ref66/cit66
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp970643+
– volume: 28
  start-page: 1159
  year: 1994
  ident: ref5/cit5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00055a029
– volume: 19
  start-page: 404
  year: 1998
  ident: ref51/cit51
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
– volume: 88
  start-page: 899
  year: 1988
  ident: ref62/cit62
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a005
– volume: 107
  start-page: 3210
  year: 1997
  ident: ref50/cit50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474671
– volume: 112
  start-page: 9982
  year: 2008
  ident: ref18/cit18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp800386f
– volume: 36
  start-page: 589
  year: 2001
  ident: ref25/cit25
  publication-title: Water Qual. Res. J. Can.
  doi: 10.2166/wqrj.2001.031
– volume: 109
  start-page: 6246
  year: 1998
  ident: ref52/cit52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477265
– volume: 114
  start-page: 10717
  year: 2010
  ident: ref17/cit17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp106270d
– volume: 13
  start-page: 85
  year: 1982
  ident: ref24/cit24
  publication-title: Pestic. Sci.
  doi: 10.1002/ps.2780130113
– volume: 37
  start-page: 1124
  year: 1989
  ident: ref30/cit30
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00088a068
– volume: 31
  start-page: 1139
  year: 1983
  ident: ref8/cit8
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00120a003
– volume: 11
  start-page: 232
  year: 1998
  ident: ref20/cit20
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/(SICI)1099-1395(199804)11:4<232::AID-POC984>3.0.CO;2-A
– volume: 106
  start-page: 4049
  year: 1984
  ident: ref60/cit60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00326a036
– volume: 219
  start-page: 151
  year: 1994
  ident: ref56/cit56
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(94)87001-2
– start-page: 28
  year: 2009
  ident: ref69/cit69
  publication-title: ARKIVOC(III)
– volume: 42
  start-page: 93
  year: 1994
  ident: ref2/cit2
  publication-title: Pestic. Sci.
  doi: 10.1002/ps.2780420205
SSID ssj0001324
Score 2.165242
Snippet Ab initio and density functional theory (DFT) calculations have been performed to understand the destruction chemistry of an important organophosphorus...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2536
SubjectTerms Anions
Computation
Degradation
Fenitrothion - chemistry
Insecticides
Insecticides - chemistry
Mathematical models
Molecular Structure
Nucleophiles
Orbitals
Polarization
Quantum Theory
Title Nucleophilic Degradation of Fenitrothion Insecticide and Performance of Nucleophiles: A Computational Study
URI http://dx.doi.org/10.1021/jp2100057
https://www.ncbi.nlm.nih.gov/pubmed/22339374
https://www.proquest.com/docview/1753512764
https://www.proquest.com/docview/928909974
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5215
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001324
  issn: 1089-5639
  databaseCode: ACS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLZgHODC-1FeCo8DlwJNk3blNm0gQGJCYkjcpqZNpDHUTWt3gF-P3ccAscGxldu0cRJ_jp3PAKdo1C4FTmjUgFC2MELaigttS220i4Dei3MqpYe2d_ss7l_kyxyczIjgc-fidchpD1r687DAPd-nvL1G82my3KI7JYos-sCWaG8r-qDvj5LpidKfpmcGnsztys0KtKrTOUU6Sf98nKnz6OM3WeNfn7wKyyWuZI1iIKzBnE7WYbFZlXPbgH6bmIsHQ9pAiViLOCKKckpsYBiO1V42QqXR9V2S0ioY9WLNwiRmj19nC0j26z06vWINVtSFKPcUGeUlvm9C5-a607y1y0oLdugKP7NlEEaBMQbdBY-r2BdC0GSNuRM5iIiUCuomMrLuG9d1YpOzicrQ4E1Pc8PdLaglg0TvAJMU1TGKCiW4aOpi9H91XPe5Rs9OoWtkwSFqoltOlLSbx8A5-iBVl1lwVimpG5U05VQt422a6PFEdFhwc0wTOqo03cUep3BImOjBGJvGz0G443vCAjZDJqA4bIA-lwXbxSiZtIS4isgExe5_f7QHS4iyOCWuOXIfatlorA8QyWTqMB_Jn9966nY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgHODC-zGeAXHgUqBp0q7cpgHaeExIDIlb1bSJNEDdRLsD_HrsPjZAIDi2cpM0dmI7dj4DHKJSOxW4oJEDQlnCCGkpLrQltdEOGvRunEMp3Xbd9oO4epSPJUwO3YXBQaTYUpoH8SfoAvbJ05DTUbT0pmFGusImR6vZuh_vuuhViSKZ3rckqt0KRejzp6SBovSrBvrFrMzVy-VCUacoH1ieVfJ8PMrUcfT-DbPxfyNfhPnSymTNQiyWYEonyzDbqoq7rcBzl3CMB0M6TonYOSFGFMWV2MAwlNx-9oospOdOktKeGPVjzcIkZneTmwZEO2lHp2esyYoqEeUJI6MsxbdV6F1e9Fptq6y7YIWO8DJL-mHkG2PQeXC5ij0hBC3dmNuRjfaRUn7DREY2POM4dmxybFEZGnzpam64swa1ZJDoDWCSYjxGUdkEBxVfjN6wjhse1-jnKXSU6rCLMxaUyyYN8og4R4-kmrI6HFW8CqIStJxqZ7z8RHowJh0WSB0_Ee1XDA9wxik4EiZ6MMKucTho_HiuqAP7hcanqKyPHlgd1gthGfeEVhZBC4rNv_5oD2bbvdub4KbTvd6CObS_OKW02XIbatnrSO-gjZOp3Vy4PwCySfLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSMCFfSmrQRy4BIhjJw03VKhYCxIgcYvi2JZYlFYkPcDXM5OlLALBMdHEdmyP543HfgOwjUZtX6BC4wgI5QgrpKO4MI401ngI6H1dUClddvyTO3F2L-8rR5HuwmAjMiwpK4L4pNU9bSuGAXfvscdpO1oGwzAqfVRxgkKtm8HKi56VKA_Uh45E01szCX3-lKxQkn21Qr9Ay8LEtKfgatC44mTJ024_V7vJ2zfexv-3fhomK7TJDsvpMQNDJp2F8Vad5G0OnjrEZ9zt0bZKwo6IOaJMssS6luEMfshfcCjp-TTNaG1MHrRhcarZ9ceNA5L9KMdkB-yQldkiqp1GRqcVX-fhtn182zpxqvwLTuyJIHdkGCehtRadCJ8rHQghSIU1dxMXcZJSYdMmVjYD63mutgXHqIwtvvQNt9xbgJG0m5olYJJiPVZR-gQPDaBGr9joZsAN-nsKHaYGrGOvRZX6ZFERGefomdRd1oCderyipCIvpxwazz-Jbg1EeyVjx09Cm_WgR9jjFCSJU9PtY9XYHARBgS8awH6RCSk6G6In1oDFcsIMakK0RRSDYvmvP9qAseujdnRx2jlfgQmEYZxOtrlyFUbyl75ZQ6iTq_Vifr8DtxH1Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleophilic+degradation+of+fenitrothion+insecticide+and+performance+of+nucleophiles%3A+a+computational+study&rft.jtitle=The+journal+of+physical+chemistry.+A%2C+Molecules%2C+spectroscopy%2C+kinetics%2C+environment%2C+%26+general+theory&rft.au=Mandal%2C+Debasish&rft.au=Mondal%2C+Bhaskar&rft.au=Das%2C+Abhijit+K&rft.date=2012-03-15&rft.issn=1520-5215&rft.eissn=1520-5215&rft.volume=116&rft.issue=10&rft.spage=2536&rft_id=info:doi/10.1021%2Fjp2100057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-5639&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-5639&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-5639&client=summon