Assessing the Availability of Users to Engage in Just-in-Time Intervention in the Natural Environment

Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference) Vol. 2014; p. 909
Main Authors Sarker, Hillol, Sharmin, Moushumi, Ali, Amin Ahsan, Rahman, Md Mahbubur, Bari, Rummana, Hossain, Syed Monowar, Kumar, Santosh
Format Journal Article Conference Proceeding
LanguageEnglish
Published United States 01.01.2014
Subjects
Online AccessGet full text
DOI10.1145/2632048.2636082

Cover

Abstract Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064 hours of physiological sensor data and 2,717 self-reports collected from 30 participants in a week-long field study. We use delay in responding to a prompt to objectively measure availability. We compute 99 features and identify 30 as most discriminating to train a machine learning model for predicting availability. We find that location, affect, activity type, stress, time, and day of the week, play significant roles in predicting availability. We find that users are least available at work and during driving, and most available when walking outside. Our model finally achieves an accuracy of 74.7% in 10-fold cross-validation and 77.9% with leave-one-subject-out.
AbstractList Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064 hours of physiological sensor data and 2,717 self-reports collected from 30 participants in a week-long field study. We use delay in responding to a prompt to objectively measure availability. We compute 99 features and identify 30 as most discriminating to train a machine learning model for predicting availability. We find that location, affect, activity type, stress, time, and day of the week, play significant roles in predicting availability. We find that users are least available at work and during driving, and most available when walking outside. Our model finally achieves an accuracy of 74.7% in 10-fold cross-validation and 77.9% with leave-one-subject-out.
Author Sarker, Hillol
Sharmin, Moushumi
Bari, Rummana
Ali, Amin Ahsan
Kumar, Santosh
Hossain, Syed Monowar
Rahman, Md Mahbubur
Author_xml – sequence: 1
  givenname: Hillol
  surname: Sarker
  fullname: Sarker, Hillol
– sequence: 2
  givenname: Moushumi
  surname: Sharmin
  fullname: Sharmin, Moushumi
– sequence: 3
  givenname: Amin Ahsan
  surname: Ali
  fullname: Ali, Amin Ahsan
– sequence: 4
  givenname: Md Mahbubur
  surname: Rahman
  fullname: Rahman, Md Mahbubur
– sequence: 5
  givenname: Rummana
  surname: Bari
  fullname: Bari, Rummana
– sequence: 6
  givenname: Syed Monowar
  surname: Hossain
  fullname: Hossain, Syed Monowar
– sequence: 7
  givenname: Santosh
  surname: Kumar
  fullname: Kumar, Santosh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25798455$$D View this record in MEDLINE/PubMed
BookMark eNo9kL1OwzAYRT2A-CnMbMgvkOKfODZjVRVaVMHSztGX-nOxlDhR7BT17UnVwnSHe88dzj25Cm1AQp44m3KeqxdRSMFyMx2zYEbckFuh9KvJlbojOIsRY_RhT9M30tkBfA2Vr3060tbRbcQ-0tTSRdjDHqkP9GOIKfMh2_gG6Sok7A8Ykm_DqTx9fEIaeqhH5OD7NjRj-0CuHdQRHy85Idu3xWa-zNZf76v5bJ2BzIuU5dy4nbZFLivthBKaV0oquwPN9c45VnFpJUqNYMAUxqJzzjImnTVYCCvkhLDz7xA6OP5AXZdd7xvojyVn5UlGeZFRXmSMyPMZ6YaqQfu__1MkfwFKhGLj
ContentType Journal Article
Conference Proceeding
DBID NPM
ADTOC
UNPAY
DOI 10.1145/2632048.2636082
DatabaseName PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai:pubmedcentral.nih.gov:4365928
25798455
Genre Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA035502
– fundername: NIDA NIH HHS
  grantid: U01 DA023812
– fundername: NIBIB NIH HHS
  grantid: U54 EB020404
GroupedDBID NPM
ADTOC
UNPAY
ID FETCH-LOGICAL-a346t-418fc7d643b7f25271b535dca717cff0b13d3e37ea8a868defffd003fd8e62d23
IEDL.DBID UNPAY
IngestDate Tue Aug 19 23:53:18 EDT 2025
Sat Sep 18 13:56:33 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Intervention
Mobile Application
EMA
Mobile Health
Interruption
Self-Report
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a346t-418fc7d643b7f25271b535dca717cff0b13d3e37ea8a868defffd003fd8e62d23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1145/2632048.2636082
PMID 25798455
ParticipantIDs unpaywall_primary_10_1145_2632048_2636082
pubmed_primary_25798455
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)
PublicationTitleAlternate Proc ACM Int Conf Ubiquitous Comput
PublicationYear 2014
References 19947783 - Psychol Assess. 2009 Dec;21(4):486-97
19780692 - Telemed J E Health. 2009 Oct;15(8):770-6
21840837 - J Med Internet Res. 2011 Aug 12;13(3):e55
17869159 - Med Eng Phys. 2008 May;30(4):466-77
19947784 - Psychol Assess. 2009 Dec;21(4):498-505
15010446 - JAMA. 2004 Mar 10;291(10):1238-45
17877531 - Pain Med. 2007 Oct;8 Suppl 3:S85-93
8871421 - J Consult Clin Psychol. 1996 Apr;64(2):366-79
18509902 - Annu Rev Clin Psychol. 2008;4:1-32
20619520 - Clin Psychol Rev. 2010 Aug;30(6):794-804
19947782 - Psychol Assess. 2009 Dec;21(4):476-85
9143432 - Age Ageing. 1997 Jan;26(1):15-9
15036549 - Drug Alcohol Depend. 2004 Mar 8;73(3):267-78
22647899 - Drug Alcohol Depend. 2012 Nov 1;126(1-2):118-23
22721999 - Clin Psychol Rev. 2012 Aug;32(6):510-23
9055718 - BMJ. 1997 Feb 22;314(7080):572
21182550 - Addiction. 2011 Mar;106(3):641-50
References_xml – reference: 22721999 - Clin Psychol Rev. 2012 Aug;32(6):510-23
– reference: 17869159 - Med Eng Phys. 2008 May;30(4):466-77
– reference: 15010446 - JAMA. 2004 Mar 10;291(10):1238-45
– reference: 19780692 - Telemed J E Health. 2009 Oct;15(8):770-6
– reference: 19947784 - Psychol Assess. 2009 Dec;21(4):498-505
– reference: 21182550 - Addiction. 2011 Mar;106(3):641-50
– reference: 8871421 - J Consult Clin Psychol. 1996 Apr;64(2):366-79
– reference: 9143432 - Age Ageing. 1997 Jan;26(1):15-9
– reference: 17877531 - Pain Med. 2007 Oct;8 Suppl 3:S85-93
– reference: 19947782 - Psychol Assess. 2009 Dec;21(4):476-85
– reference: 21840837 - J Med Internet Res. 2011 Aug 12;13(3):e55
– reference: 20619520 - Clin Psychol Rev. 2010 Aug;30(6):794-804
– reference: 22647899 - Drug Alcohol Depend. 2012 Nov 1;126(1-2):118-23
– reference: 18509902 - Annu Rev Clin Psychol. 2008;4:1-32
– reference: 19947783 - Psychol Assess. 2009 Dec;21(4):486-97
– reference: 9055718 - BMJ. 1997 Feb 22;314(7080):572
– reference: 15036549 - Drug Alcohol Depend. 2004 Mar 8;73(3):267-78
Score 1.8821403
Snippet Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 909
Title Assessing the Availability of Users to Engage in Just-in-Time Intervention in the Natural Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/25798455
http://doi.org/10.1145/2632048.2636082
UnpaywallVersion submittedVersion
Volume 2014
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfSk4vx25ODFQ2bbpG12FHEOYWMHB_NU8inV0Q3XKvOv98XWraAgXvNCCS_p-72X994vCF10jQQg4h4RWlnCFPOJgECCSE9qACzlS-WakwfDqD9m95Nwsi6QrafvfRZeOTZxz5VgOVorDqa2GblEUgM1x8PR9WPF1fPLzBqgbBXZXCzfxXRaQ47eDrr77r8pC0ZeOkUuO-rjJx3jH4vaRa11dx4erXBnD22YbB-ZMnsLAxhcOizeRDotKbiXeGaxu4tY4HyGTfYEFgSnGX4uFjlJM-Jel8dprfTRCd03vjg_xRTXeuFaaNy7fbjpk-oJBSIoi3LCfG5VrMHtkLENwiD2ZUhDrQREccpaT_pUU0NjI7jgEdfGWqvhR7eamyjQAT1AjWyWmSOEqWSx1BY8JE0hTDKSS9h_rn1rfQ1h1jE6LDWezEuejASsQZezECSXqy1YCcuG6DCplJlUyjz5x9xTtA3uCysvRM5QI38tzDm4CLlso83haNCuTsknQtK5gw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yHfSk4vxWcvDiIbNp0jY7ijhFcOzgYJ5KPqU6uuFaZf71vti6FRTEa14o4SV9v_fy3vsFobOeVQBEIiDSaEe45pRICCSICpQBwNJUad-cfD-Ib0f8bhyNVwWyzfQ95dGFZxMPfAmWp7USYGrbsU8ktVB7NBhePtZcPb_MbADKepnP5OJdTiYN5Ohvopvv_puqYOSlWxaqqz9-0jH-sagt1Fl15-HhEne20ZrNd5CtsrcwgMGlw_JNZpOKgnuBpw77u4g5LqbY5k9gQXCW4-dyXpAsJ_51eZw1Sh-90H_ji_NTTnCjF66DRv3rh6tbUj-hQCTjcUE4FU4nBtwOlbgwChOqIhYZLSGK084FijLDLEusFFLEwljnnIEf3Rlh49CEbBe18mlu9xFmiifKOPCQDIMwySqhYP-Foc5RA2HWAdqrNJ7OKp6MFKxBT_AIJOfLLVgKq4boKK2VmdbKPPzH3CO0Ae4Lry5EjlGreC3tCbgIhTqtz8cn7ua4dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2014+ACM+International+Joint+Conference+on+Pervasive+and+Ubiquitous+Computing&rft.atitle=Assessing+the+availability+of+users+to+engage+in+just-in-time+intervention+in+the+natural+environment&rft.date=2014-01-01&rft_id=info:doi/10.1145%2F2632048.2636082&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A4365928