Assessing the Availability of Users to Engage in Just-in-Time Intervention in the Natural Environment
Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064...
Saved in:
Published in | Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference) Vol. 2014; p. 909 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
United States
01.01.2014
|
Subjects | |
Online Access | Get full text |
DOI | 10.1145/2632048.2636082 |
Cover
Abstract | Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064 hours of physiological sensor data and 2,717 self-reports collected from 30 participants in a week-long field study. We use delay in responding to a prompt to objectively measure availability. We compute 99 features and identify 30 as most discriminating to train a machine learning model for predicting availability. We find that location, affect, activity type, stress, time, and day of the week, play significant roles in predicting availability. We find that users are least available at work and during driving, and most available when walking outside. Our model finally achieves an accuracy of 74.7% in 10-fold cross-validation and 77.9% with leave-one-subject-out. |
---|---|
AbstractList | Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is to time its delivery so that the user is available to be engaged. We take a first step in modeling users' availability by analyzing 2,064 hours of physiological sensor data and 2,717 self-reports collected from 30 participants in a week-long field study. We use delay in responding to a prompt to objectively measure availability. We compute 99 features and identify 30 as most discriminating to train a machine learning model for predicting availability. We find that location, affect, activity type, stress, time, and day of the week, play significant roles in predicting availability. We find that users are least available at work and during driving, and most available when walking outside. Our model finally achieves an accuracy of 74.7% in 10-fold cross-validation and 77.9% with leave-one-subject-out. |
Author | Sarker, Hillol Sharmin, Moushumi Bari, Rummana Ali, Amin Ahsan Kumar, Santosh Hossain, Syed Monowar Rahman, Md Mahbubur |
Author_xml | – sequence: 1 givenname: Hillol surname: Sarker fullname: Sarker, Hillol – sequence: 2 givenname: Moushumi surname: Sharmin fullname: Sharmin, Moushumi – sequence: 3 givenname: Amin Ahsan surname: Ali fullname: Ali, Amin Ahsan – sequence: 4 givenname: Md Mahbubur surname: Rahman fullname: Rahman, Md Mahbubur – sequence: 5 givenname: Rummana surname: Bari fullname: Bari, Rummana – sequence: 6 givenname: Syed Monowar surname: Hossain fullname: Hossain, Syed Monowar – sequence: 7 givenname: Santosh surname: Kumar fullname: Kumar, Santosh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25798455$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kL1OwzAYRT2A-CnMbMgvkOKfODZjVRVaVMHSztGX-nOxlDhR7BT17UnVwnSHe88dzj25Cm1AQp44m3KeqxdRSMFyMx2zYEbckFuh9KvJlbojOIsRY_RhT9M30tkBfA2Vr3060tbRbcQ-0tTSRdjDHqkP9GOIKfMh2_gG6Sok7A8Ykm_DqTx9fEIaeqhH5OD7NjRj-0CuHdQRHy85Idu3xWa-zNZf76v5bJ2BzIuU5dy4nbZFLivthBKaV0oquwPN9c45VnFpJUqNYMAUxqJzzjImnTVYCCvkhLDz7xA6OP5AXZdd7xvojyVn5UlGeZFRXmSMyPMZ6YaqQfu__1MkfwFKhGLj |
ContentType | Journal Article Conference Proceeding |
DBID | NPM ADTOC UNPAY |
DOI | 10.1145/2632048.2636082 |
DatabaseName | PubMed Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | oai:pubmedcentral.nih.gov:4365928 25798455 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA035502 – fundername: NIDA NIH HHS grantid: U01 DA023812 – fundername: NIBIB NIH HHS grantid: U54 EB020404 |
GroupedDBID | NPM ADTOC UNPAY |
ID | FETCH-LOGICAL-a346t-418fc7d643b7f25271b535dca717cff0b13d3e37ea8a868defffd003fd8e62d23 |
IEDL.DBID | UNPAY |
IngestDate | Tue Aug 19 23:53:18 EDT 2025 Sat Sep 18 13:56:33 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Intervention Mobile Application EMA Mobile Health Interruption Self-Report |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a346t-418fc7d643b7f25271b535dca717cff0b13d3e37ea8a868defffd003fd8e62d23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1145/2632048.2636082 |
PMID | 25798455 |
ParticipantIDs | unpaywall_primary_10_1145_2632048_2636082 pubmed_primary_25798455 |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference) |
PublicationTitleAlternate | Proc ACM Int Conf Ubiquitous Comput |
PublicationYear | 2014 |
References | 19947783 - Psychol Assess. 2009 Dec;21(4):486-97 19780692 - Telemed J E Health. 2009 Oct;15(8):770-6 21840837 - J Med Internet Res. 2011 Aug 12;13(3):e55 17869159 - Med Eng Phys. 2008 May;30(4):466-77 19947784 - Psychol Assess. 2009 Dec;21(4):498-505 15010446 - JAMA. 2004 Mar 10;291(10):1238-45 17877531 - Pain Med. 2007 Oct;8 Suppl 3:S85-93 8871421 - J Consult Clin Psychol. 1996 Apr;64(2):366-79 18509902 - Annu Rev Clin Psychol. 2008;4:1-32 20619520 - Clin Psychol Rev. 2010 Aug;30(6):794-804 19947782 - Psychol Assess. 2009 Dec;21(4):476-85 9143432 - Age Ageing. 1997 Jan;26(1):15-9 15036549 - Drug Alcohol Depend. 2004 Mar 8;73(3):267-78 22647899 - Drug Alcohol Depend. 2012 Nov 1;126(1-2):118-23 22721999 - Clin Psychol Rev. 2012 Aug;32(6):510-23 9055718 - BMJ. 1997 Feb 22;314(7080):572 21182550 - Addiction. 2011 Mar;106(3):641-50 |
References_xml | – reference: 22721999 - Clin Psychol Rev. 2012 Aug;32(6):510-23 – reference: 17869159 - Med Eng Phys. 2008 May;30(4):466-77 – reference: 15010446 - JAMA. 2004 Mar 10;291(10):1238-45 – reference: 19780692 - Telemed J E Health. 2009 Oct;15(8):770-6 – reference: 19947784 - Psychol Assess. 2009 Dec;21(4):498-505 – reference: 21182550 - Addiction. 2011 Mar;106(3):641-50 – reference: 8871421 - J Consult Clin Psychol. 1996 Apr;64(2):366-79 – reference: 9143432 - Age Ageing. 1997 Jan;26(1):15-9 – reference: 17877531 - Pain Med. 2007 Oct;8 Suppl 3:S85-93 – reference: 19947782 - Psychol Assess. 2009 Dec;21(4):476-85 – reference: 21840837 - J Med Internet Res. 2011 Aug 12;13(3):e55 – reference: 20619520 - Clin Psychol Rev. 2010 Aug;30(6):794-804 – reference: 22647899 - Drug Alcohol Depend. 2012 Nov 1;126(1-2):118-23 – reference: 18509902 - Annu Rev Clin Psychol. 2008;4:1-32 – reference: 19947783 - Psychol Assess. 2009 Dec;21(4):486-97 – reference: 9055718 - BMJ. 1997 Feb 22;314(7080):572 – reference: 15036549 - Drug Alcohol Depend. 2004 Mar 8;73(3):267-78 |
Score | 1.8821403 |
Snippet | Wearable wireless sensors for health monitoring are enabling the design and delivery of just-in-time interventions (JITI). Critical to the success of JITI is... |
SourceID | unpaywall pubmed |
SourceType | Open Access Repository Index Database |
StartPage | 909 |
Title | Assessing the Availability of Users to Engage in Just-in-Time Intervention in the Natural Environment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25798455 http://doi.org/10.1145/2632048.2636082 |
UnpaywallVersion | submittedVersion |
Volume | 2014 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HfSk4vx25ODFQ2bbpG12FHEOYWMHB_NU8inV0Q3XKvOv98XWraAgXvNCCS_p-72X994vCF10jQQg4h4RWlnCFPOJgECCSE9qACzlS-WakwfDqD9m95Nwsi6QrafvfRZeOTZxz5VgOVorDqa2GblEUgM1x8PR9WPF1fPLzBqgbBXZXCzfxXRaQ47eDrr77r8pC0ZeOkUuO-rjJx3jH4vaRa11dx4erXBnD22YbB-ZMnsLAxhcOizeRDotKbiXeGaxu4tY4HyGTfYEFgSnGX4uFjlJM-Jel8dprfTRCd03vjg_xRTXeuFaaNy7fbjpk-oJBSIoi3LCfG5VrMHtkLENwiD2ZUhDrQREccpaT_pUU0NjI7jgEdfGWqvhR7eamyjQAT1AjWyWmSOEqWSx1BY8JE0hTDKSS9h_rn1rfQ1h1jE6LDWezEuejASsQZezECSXqy1YCcuG6DCplJlUyjz5x9xTtA3uCysvRM5QI38tzDm4CLlso83haNCuTsknQtK5gw |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yHfSk4vxWcvDiIbNp0jY7ijhFcOzgYJ5KPqU6uuFaZf71vti6FRTEa14o4SV9v_fy3vsFobOeVQBEIiDSaEe45pRICCSICpQBwNJUad-cfD-Ib0f8bhyNVwWyzfQ95dGFZxMPfAmWp7USYGrbsU8ktVB7NBhePtZcPb_MbADKepnP5OJdTiYN5Ohvopvv_puqYOSlWxaqqz9-0jH-sagt1Fl15-HhEne20ZrNd5CtsrcwgMGlw_JNZpOKgnuBpw77u4g5LqbY5k9gQXCW4-dyXpAsJ_51eZw1Sh-90H_ji_NTTnCjF66DRv3rh6tbUj-hQCTjcUE4FU4nBtwOlbgwChOqIhYZLSGK084FijLDLEusFFLEwljnnIEf3Rlh49CEbBe18mlu9xFmiifKOPCQDIMwySqhYP-Foc5RA2HWAdqrNJ7OKp6MFKxBT_AIJOfLLVgKq4boKK2VmdbKPPzH3CO0Ae4Lry5EjlGreC3tCbgIhTqtz8cn7ua4dw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2014+ACM+International+Joint+Conference+on+Pervasive+and+Ubiquitous+Computing&rft.atitle=Assessing+the+availability+of+users+to+engage+in+just-in-time+intervention+in+the+natural+environment&rft.date=2014-01-01&rft_id=info:doi/10.1145%2F2632048.2636082&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A4365928 |