Difference RuleA New Thermodynamic Principle:  Prediction of Standard Thermodynamic Data for Inorganic Solvates

We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 126; no. 48; pp. 15809 - 15817
Main Authors Jenkins, H. Donald Brooke, Glasser, Leslie
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 08.12.2004
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
DOI10.1021/ja040137f

Cover

Abstract We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt:  [P{n-solvate} − P{parent}]/n = constant = θ P {S,s−s}, or n-S and other solvate, n ‘-S:  [P{n-solvate} − P{n‘-solvate}]/(n − n‘) = [P{n-S } − P{n ‘-S }]/(n − n ‘) = constant = θ P {S,s−s} where P may be any one of:  U POT (the lattice potential energy), V m (the molecular or formula unit volume), Δf H°, Δf S°, Δf G° or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, θ P {S,s−s}, for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, θ P {S,s−s} can be reliably predicted from liquid-state values, P{S,l}, or even gas-state values, P{S,g}. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates:  H2O (hydrates), D2O, NH3, ND3, (CH3)2O, NaOH, CH3OH, C2H5OH, (CH2OH)2, H2S, SO2, HF, KOH, and (CH(CH3)2)2O. Detailed examples of usage are given for hydrates and for SO2.
AbstractList We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2).We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2).
We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt:  [P{n-solvate} − P{parent}]/n = constant = θ P {S,s−s}, or n-S and other solvate, n ‘-S:  [P{n-solvate} − P{n‘-solvate}]/(n − n‘) = [P{n-S } − P{n ‘-S }]/(n − n ‘) = constant = θ P {S,s−s} where P may be any one of:  U POT (the lattice potential energy), V m (the molecular or formula unit volume), Δf H°, Δf S°, Δf G° or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, θ P {S,s−s}, for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, θ P {S,s−s} can be reliably predicted from liquid-state values, P{S,l}, or even gas-state values, P{S,g}. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates:  H2O (hydrates), D2O, NH3, ND3, (CH3)2O, NaOH, CH3OH, C2H5OH, (CH2OH)2, H2S, SO2, HF, KOH, and (CH(CH3)2)2O. Detailed examples of usage are given for hydrates and for SO2.
We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2).
Author Glasser, Leslie
Jenkins, H. Donald Brooke
Author_xml – sequence: 1
  givenname: H. Donald Brooke
  surname: Jenkins
  fullname: Jenkins, H. Donald Brooke
– sequence: 2
  givenname: Leslie
  surname: Glasser
  fullname: Glasser, Leslie
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16349886$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15571406$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1uFDEQhS0URCaBBRdAvYFdg__adrOLMgQiBoiYEVurxm2Dh257YncD2bHlBLlKzsMBOAOOMiQSq1JVfVVP9eoA7YUYLEKPCX5OMCUvNoA5Jky6e2hGGorrhlCxh2YYY1pLJdg-Osh5U1JOFXmA9knTSMKxmKFx7p2zyQZjq49Tb_9cXh1V7-33avXFpiF2FwEGb6qz5IPx296-_P3zV8ls583oY6iiq5YjhA5S99_IHEaoXEzVaYjpM4RSWsb-G4w2P0T3HfTZPtrFQ7Q6ebU6flMvPrw-PT5a1MA4H2sqMKiWMgKkXQPFjeKMUaGEUNgoJ9ctGMeVAyHL_cIKw7El0pg1blql2CF6drN2m-L5ZPOoB5-N7XsINk5Zi-IBka0s4JMdOK0H2-lt8gOkC_3PpgI83QGQDfQuQXEj33GC8SJ4zdU3nM-j_XHbh_S1iDHZ6NXZUn96u2wW78iJnt_tBZP1Jk4pFDs0wfr6rfr2rewv0qOUNA
CODEN JACSAT
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
2005 INIST-CNRS
Copyright_xml – notice: Copyright © 2004 American Chemical Society
– notice: 2005 INIST-CNRS
DBID BSCLL
IQODW
NPM
7X8
DOI 10.1021/ja040137f
DatabaseName Istex
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 15817
ExternalDocumentID 15571406
16349886
ark_67375_TPS_VKS5LM1F_D
a229985845
Genre Journal Article
GroupedDBID -
.K2
02
186
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABDEX
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F20
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
LG6
MVM
NHB
OHT
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UNC
UPT
UQL
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZCG
ZE2
ZGI
ZHY
---
-DZ
-ET
-~X
.DC
.GJ
6TJ
AAHBH
AAYOK
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
ADOJD
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
IH2
XOL
XSW
YQT
ZCA
~02
.HR
1WB
3EH
3O-
41~
AAUPJ
AAYJJ
AAYWT
ABBLG
ABHMW
ABLBI
ABWLT
ACBNA
ACKIV
ACRPL
ADNMO
ADXHL
AEYZD
AGQPQ
AHDLI
AI.
ANPPW
BKOMP
D0S
IQODW
P-O
RNS
UBC
UBX
VH1
X7L
YR5
YXA
YXE
YYP
ZY4
NPM
VXZ
YIN
7X8
ID FETCH-LOGICAL-a344t-260a89231a19ba20584332686680c8f7b9acf48fa670406e6c40e17ccb059883
IEDL.DBID ACS
ISSN 0002-7863
IngestDate Thu Oct 02 07:03:01 EDT 2025
Wed Feb 19 01:38:39 EST 2025
Mon Jul 21 09:10:57 EDT 2025
Wed Oct 30 09:38:51 EDT 2024
Thu Aug 27 13:42:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords Alkali metal Compounds
Gibbs free energy
Thermodynamic model
Enthalpy
Lattice model
Heat of crystallization
Theoretical study
Entropy
Thermodynamic properties
Heat of formation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a344t-260a89231a19ba20584332686680c8f7b9acf48fa670406e6c40e17ccb059883
Notes ark:/67375/TPS-VKS5LM1F-D
istex:ECA1511DC62C2F65F37ACCBC12FD95AD67606F50
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15571406
PQID 67141797
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_67141797
pubmed_primary_15571406
pascalfrancis_primary_16349886
istex_primary_ark_67375_TPS_VKS5LM1F_D
acs_journals_10_1021_ja040137f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2004-12-08
PublicationDateYYYYMMDD 2004-12-08
PublicationDate_xml – month: 12
  year: 2004
  text: 2004-12-08
  day: 08
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0004281
Score 2.0241184
Snippet We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard...
We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard...
SourceID proquest
pubmed
pascalfrancis
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 15809
SubjectTerms Chemical thermodynamics
Chemistry
Exact sciences and technology
General and physical chemistry
General. Theory
Title Difference RuleA New Thermodynamic Principle:  Prediction of Standard Thermodynamic Data for Inorganic Solvates
URI http://dx.doi.org/10.1021/ja040137f
https://api.istex.fr/ark:/67375/TPS-VKS5LM1F-D/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15571406
https://www.proquest.com/docview/67141797
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004281
  issn: 0002-7863
  databaseCode: ACS
  dateStart: 18790101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOJQLj5bCAqWWWvUWlIdjO72tdlkBfQg1W8Qtsr32ZSFBu1mEOHHlF_Sv8Hv4AfwGxnmUPkR7zGGsycwk89kz_gbgPRVS05GJvYT6kUcTGniJFcZLIkyvcYAhLSu2z6_s4Ds9Oo1P5-DdMxX80PED-W4PwO08LIaMc9e31-2lT5cfQxG0GJcLFrX0Qb-KutSjp4g_nemuXP-jnKIJbD274nlwWSWZwQr026s6dW_JeG9Wqj19_Tdz47_0X4XlBmSSbh0VazBn8pfwotfOdnsFZb-Zi6IN-TY7Mw8_7roE_3cEo2ZyXozqMfXkuD2J_3h_c4tPrqjjHEkKS9LmDOIPkb4sJUEgTA7zemCUJmlxdukQ7ToMB_vD3oHXzF_wZERp6eFWRwoHAGWQKBn6iFUiRHuCMeFrYblKpLZUWMk4viIzTFPfBFxrhZhNiOg1LORFbjaBBAphllKWa8kos1oYSpU_EkxyPrKcd2AX_ZM1n880qyrjIe5MWtt14EPluuyi5uDI5GTsWtJ4nA2P0-zkUxp__hIMsj6u9Jtvfwog7qSoFOvA29bZGRrdlUdkborZFJcL3Dg2VGajjoEn2Th2vIZs639qbsNSSwTpix1YKCcz8wZBS6l2q6B9BNv85oM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYKPcCFFvrD9gd8QL0FxRvHdritdrtayoIQ2VbcLNtrX6AJ2mQR4tRrn4BX6fPwADxDx_npAlIFxxzGGs9M4m9i-_sQ2qFCGTq1cZDQMApoQkmQOGGDJILlNSZQ0qpi-zxio-_022l82tDk-Lsw4EQBIxXVJv6CXcDTBIW-FeBuCb2MGSW-0er108UdyK4gLdTlgkUti9B9U78CmQJgqI_glT8GqQqIhKslLP6PMau1ZviqFi2qvKyOmJztzku9a64fETg-bxqv0VoDOXGvrpF19MJmG2il3yq9vUHloFFJMRafzM_t3c2fHoavH4Yamv3Mp7VoPT5u_8vv3f76DU9-i8enFecOp80fiUcmA1UqDLAY72e1fJTBaX5-6fHtWzQZfp30R0GjxhCoiNIygMZHCQ8HFUm06oaAXCLAfoIxERrhuE6UcVQ4xThMkVlmaGgJN0YDghMieoeWszyzmwgTDaBLa8eNYpQ5IyylOpwKpjifOs47aAtCJ5uXqZDVPnkX-pQ2dh30pcqgvKgZOaSanfkDajyWk-NU_jhI4_EhGcoBjPQgxf8MAIVScIp10HabcwlB95slKrP5vIDhiBdnA2fe16WwsI1jz3LIPjzl5jZaGU0Ox3K8f3TwEa22FJGh-ISWy9ncfgY4U-qtqo7_Av8p7uU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB5BkYALtPxuf31A3FIlG8d2eqt2u2ppKSuyoN4s27EvLUm1ySLEiWufoK_C8_AAfQbG-WmhEqLHHMYaz4zjbzz2NwBvqFCG5jYJUhrGAU1pFKRO2CCNcXtNIgxp1bB9HrP9T_TdSXLSJYr-LQwqUeFIVVPE96v6PHcdw4CnCgp9OsDdfXiQMFziHgqNspt3kEMR9XCXCxb3TEJ_ivpdyFQIRb0Vv_mrkKpCa7i2jcW_cWaz30yewodrTZtrJqfbi1pvm--3SBzvPpVleNJBT7LbxsoK3LPFM3g06ju-PYd63HVLMZZ8XJzZq8ufuwT_ggRjaf6lzNvm9WTan8_v_PpxgV--1OPdS0pHsu5k4pbIWNWKIDwmB0XbRsqQrDz76nHuC5hN9maj_aDryhComNI6wARICQ8LVZRqNQwRwcSIAQVjIjTCcZ0q46hwinGcIrPM0NBG3BiNSE6I-CUsFWVhXwOJNIIvrR03Cp3pjLCU6jAXTHGeO84HsInmk92iqmRTLx9ivtLbbgBvGy_K85aZQ6r5qb-oxhM5m2by82GWHL2PJnKMI_3l5msBRKMUlWID2Or9LtHovmiiClsuKhwu8k3aUJlXbTjcyCaJZztkq_9TcwseTscTeXRwfLgGj3umyFCsw1I9X9gNRDW13mxC-TfF5_Fo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference+Rule%EE%97%B8A+New+Thermodynamic+Principle%3A%E2%80%89+Prediction+of+Standard+Thermodynamic+Data+for+Inorganic+Solvates&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Jenkins%2C+H.+Donald+Brooke&rft.au=Glasser%2C+Leslie&rft.date=2004-12-08&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=126&rft.issue=48&rft.spage=15809&rft.epage=15817&rft_id=info:doi/10.1021%2Fja040137f&rft.externalDocID=a229985845
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon