Difference RuleA New Thermodynamic Principle: Prediction of Standard Thermodynamic Data for Inorganic Solvates
We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding...
Saved in:
| Published in | Journal of the American Chemical Society Vol. 126; no. 48; pp. 15809 - 15817 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Washington, DC
American Chemical Society
08.12.2004
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0002-7863 1520-5126 |
| DOI | 10.1021/ja040137f |
Cover
| Abstract | We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P{n-solvate} − P{parent}]/n = constant = θ P {S,s−s}, or n-S and other solvate, n ‘-S: [P{n-solvate} − P{n‘-solvate}]/(n − n‘) = [P{n-S } − P{n ‘-S }]/(n − n ‘) = constant = θ P {S,s−s} where P may be any one of: U POT (the lattice potential energy), V m (the molecular or formula unit volume), Δf H°, Δf S°, Δf G° or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, θ P {S,s−s}, for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, θ P {S,s−s} can be reliably predicted from liquid-state values, P{S,l}, or even gas-state values, P{S,g}. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H2O (hydrates), D2O, NH3, ND3, (CH3)2O, NaOH, CH3OH, C2H5OH, (CH2OH)2, H2S, SO2, HF, KOH, and (CH(CH3)2)2O. Detailed examples of usage are given for hydrates and for SO2. |
|---|---|
| AbstractList | We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2).We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2). We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P{n-solvate} − P{parent}]/n = constant = θ P {S,s−s}, or n-S and other solvate, n ‘-S: [P{n-solvate} − P{n‘-solvate}]/(n − n‘) = [P{n-S } − P{n ‘-S }]/(n − n ‘) = constant = θ P {S,s−s} where P may be any one of: U POT (the lattice potential energy), V m (the molecular or formula unit volume), Δf H°, Δf S°, Δf G° or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, θ P {S,s−s}, for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, θ P {S,s−s} can be reliably predicted from liquid-state values, P{S,l}, or even gas-state values, P{S,g}. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H2O (hydrates), D2O, NH3, ND3, (CH3)2O, NaOH, CH3OH, C2H5OH, (CH2OH)2, H2S, SO2, HF, KOH, and (CH(CH3)2)2O. Detailed examples of usage are given for hydrates and for SO2. We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2). |
| Author | Glasser, Leslie Jenkins, H. Donald Brooke |
| Author_xml | – sequence: 1 givenname: H. Donald Brooke surname: Jenkins fullname: Jenkins, H. Donald Brooke – sequence: 2 givenname: Leslie surname: Glasser fullname: Glasser, Leslie |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16349886$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15571406$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkU1uFDEQhS0URCaBBRdAvYFdg__adrOLMgQiBoiYEVurxm2Dh257YncD2bHlBLlKzsMBOAOOMiQSq1JVfVVP9eoA7YUYLEKPCX5OMCUvNoA5Jky6e2hGGorrhlCxh2YYY1pLJdg-Osh5U1JOFXmA9knTSMKxmKFx7p2zyQZjq49Tb_9cXh1V7-33avXFpiF2FwEGb6qz5IPx296-_P3zV8ls583oY6iiq5YjhA5S99_IHEaoXEzVaYjpM4RSWsb-G4w2P0T3HfTZPtrFQ7Q6ebU6flMvPrw-PT5a1MA4H2sqMKiWMgKkXQPFjeKMUaGEUNgoJ9ctGMeVAyHL_cIKw7El0pg1blql2CF6drN2m-L5ZPOoB5-N7XsINk5Zi-IBka0s4JMdOK0H2-lt8gOkC_3PpgI83QGQDfQuQXEj33GC8SJ4zdU3nM-j_XHbh_S1iDHZ6NXZUn96u2wW78iJnt_tBZP1Jk4pFDs0wfr6rfr2rewv0qOUNA |
| CODEN | JACSAT |
| ContentType | Journal Article |
| Copyright | Copyright © 2004 American Chemical Society 2005 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2004 American Chemical Society – notice: 2005 INIST-CNRS |
| DBID | BSCLL IQODW NPM 7X8 |
| DOI | 10.1021/ja040137f |
| DatabaseName | Istex Pascal-Francis PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5126 |
| EndPage | 15817 |
| ExternalDocumentID | 15571406 16349886 ark_67375_TPS_VKS5LM1F_D a229985845 |
| Genre | Journal Article |
| GroupedDBID | - .K2 02 186 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABDEX ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 DZ EBS ED ED~ EJD ET F20 F5P GJ GNL IH9 IHE JG JG~ K2 K78 LG6 MVM NHB OHT P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UPT UQL VF5 VG9 VQA W1F WH7 X XFK YZZ ZCG ZE2 ZGI ZHY --- -DZ -ET -~X .DC .GJ 6TJ AAHBH AAYOK ABJNI ABQRX ACBEA ACGFO ADHLV ADOJD AGXLV AHGAQ BSCLL CUPRZ GGK IH2 XOL XSW YQT ZCA ~02 .HR 1WB 3EH 3O- 41~ AAUPJ AAYJJ AAYWT ABBLG ABHMW ABLBI ABWLT ACBNA ACKIV ACRPL ADNMO ADXHL AEYZD AGQPQ AHDLI AI. ANPPW BKOMP D0S IQODW P-O RNS UBC UBX VH1 X7L YR5 YXA YXE YYP ZY4 NPM VXZ YIN 7X8 |
| ID | FETCH-LOGICAL-a344t-260a89231a19ba20584332686680c8f7b9acf48fa670406e6c40e17ccb059883 |
| IEDL.DBID | ACS |
| ISSN | 0002-7863 |
| IngestDate | Thu Oct 02 07:03:01 EDT 2025 Wed Feb 19 01:38:39 EST 2025 Mon Jul 21 09:10:57 EDT 2025 Wed Oct 30 09:38:51 EDT 2024 Thu Aug 27 13:42:58 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Keywords | Alkali metal Compounds Gibbs free energy Thermodynamic model Enthalpy Lattice model Heat of crystallization Theoretical study Entropy Thermodynamic properties Heat of formation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a344t-260a89231a19ba20584332686680c8f7b9acf48fa670406e6c40e17ccb059883 |
| Notes | ark:/67375/TPS-VKS5LM1F-D istex:ECA1511DC62C2F65F37ACCBC12FD95AD67606F50 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15571406 |
| PQID | 67141797 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_67141797 pubmed_primary_15571406 pascalfrancis_primary_16349886 istex_primary_ark_67375_TPS_VKS5LM1F_D acs_journals_10_1021_ja040137f |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-12-08 |
| PublicationDateYYYYMMDD | 2004-12-08 |
| PublicationDate_xml | – month: 12 year: 2004 text: 2004-12-08 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC – name: United States |
| PublicationTitle | Journal of the American Chemical Society |
| PublicationTitleAlternate | J. Am. Chem. Soc |
| PublicationYear | 2004 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| SSID | ssj0004281 |
| Score | 2.0241184 |
| Snippet | We present a quite general thermodynamic “difference” rule, derived from thermochemical first principles, quantifying the difference between the standard... We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard... |
| SourceID | proquest pubmed pascalfrancis istex acs |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 15809 |
| SubjectTerms | Chemical thermodynamics Chemistry Exact sciences and technology General and physical chemistry General. Theory |
| Title | Difference RuleA New Thermodynamic Principle: Prediction of Standard Thermodynamic Data for Inorganic Solvates |
| URI | http://dx.doi.org/10.1021/ja040137f https://api.istex.fr/ark:/67375/TPS-VKS5LM1F-D/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15571406 https://www.proquest.com/docview/67141797 |
| Volume | 126 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 0002-7863 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7xOJQLj5bCAqWWWvUWlIdjO72tdlkBfQg1W8Qtsr32ZSFBu1mEOHHlF_Sv8Hv4AfwGxnmUPkR7zGGsycwk89kz_gbgPRVS05GJvYT6kUcTGniJFcZLIkyvcYAhLSu2z6_s4Ds9Oo1P5-DdMxX80PED-W4PwO08LIaMc9e31-2lT5cfQxG0GJcLFrX0Qb-KutSjp4g_nemuXP-jnKIJbD274nlwWSWZwQr026s6dW_JeG9Wqj19_Tdz47_0X4XlBmSSbh0VazBn8pfwotfOdnsFZb-Zi6IN-TY7Mw8_7roE_3cEo2ZyXozqMfXkuD2J_3h_c4tPrqjjHEkKS9LmDOIPkb4sJUEgTA7zemCUJmlxdukQ7ToMB_vD3oHXzF_wZERp6eFWRwoHAGWQKBn6iFUiRHuCMeFrYblKpLZUWMk4viIzTFPfBFxrhZhNiOg1LORFbjaBBAphllKWa8kos1oYSpU_EkxyPrKcd2AX_ZM1n880qyrjIe5MWtt14EPluuyi5uDI5GTsWtJ4nA2P0-zkUxp__hIMsj6u9Jtvfwog7qSoFOvA29bZGRrdlUdkborZFJcL3Dg2VGajjoEn2Th2vIZs639qbsNSSwTpix1YKCcz8wZBS6l2q6B9BNv85oM |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELYKPcCFFvrD9gd8QL0FxRvHdritdrtayoIQ2VbcLNtrX6AJ2mQR4tRrn4BX6fPwADxDx_npAlIFxxzGGs9M4m9i-_sQ2qFCGTq1cZDQMApoQkmQOGGDJILlNSZQ0qpi-zxio-_022l82tDk-Lsw4EQBIxXVJv6CXcDTBIW-FeBuCb2MGSW-0er108UdyK4gLdTlgkUti9B9U78CmQJgqI_glT8GqQqIhKslLP6PMau1ZviqFi2qvKyOmJztzku9a64fETg-bxqv0VoDOXGvrpF19MJmG2il3yq9vUHloFFJMRafzM_t3c2fHoavH4Yamv3Mp7VoPT5u_8vv3f76DU9-i8enFecOp80fiUcmA1UqDLAY72e1fJTBaX5-6fHtWzQZfp30R0GjxhCoiNIygMZHCQ8HFUm06oaAXCLAfoIxERrhuE6UcVQ4xThMkVlmaGgJN0YDghMieoeWszyzmwgTDaBLa8eNYpQ5IyylOpwKpjifOs47aAtCJ5uXqZDVPnkX-pQ2dh30pcqgvKgZOaSanfkDajyWk-NU_jhI4_EhGcoBjPQgxf8MAIVScIp10HabcwlB95slKrP5vIDhiBdnA2fe16WwsI1jz3LIPjzl5jZaGU0Ox3K8f3TwEa22FJGh-ISWy9ncfgY4U-qtqo7_Av8p7uU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB5BkYALtPxuf31A3FIlG8d2eqt2u2ppKSuyoN4s27EvLUm1ySLEiWufoK_C8_AAfQbG-WmhEqLHHMYaz4zjbzz2NwBvqFCG5jYJUhrGAU1pFKRO2CCNcXtNIgxp1bB9HrP9T_TdSXLSJYr-LQwqUeFIVVPE96v6PHcdw4CnCgp9OsDdfXiQMFziHgqNspt3kEMR9XCXCxb3TEJ_ivpdyFQIRb0Vv_mrkKpCa7i2jcW_cWaz30yewodrTZtrJqfbi1pvm--3SBzvPpVleNJBT7LbxsoK3LPFM3g06ju-PYd63HVLMZZ8XJzZq8ufuwT_ggRjaf6lzNvm9WTan8_v_PpxgV--1OPdS0pHsu5k4pbIWNWKIDwmB0XbRsqQrDz76nHuC5hN9maj_aDryhComNI6wARICQ8LVZRqNQwRwcSIAQVjIjTCcZ0q46hwinGcIrPM0NBG3BiNSE6I-CUsFWVhXwOJNIIvrR03Cp3pjLCU6jAXTHGeO84HsInmk92iqmRTLx9ivtLbbgBvGy_K85aZQ6r5qb-oxhM5m2by82GWHL2PJnKMI_3l5msBRKMUlWID2Or9LtHovmiiClsuKhwu8k3aUJlXbTjcyCaJZztkq_9TcwseTscTeXRwfLgGj3umyFCsw1I9X9gNRDW13mxC-TfF5_Fo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Difference+Rule%EE%97%B8A+New+Thermodynamic+Principle%3A%E2%80%89+Prediction+of+Standard+Thermodynamic+Data+for+Inorganic+Solvates&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Jenkins%2C+H.+Donald+Brooke&rft.au=Glasser%2C+Leslie&rft.date=2004-12-08&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=126&rft.issue=48&rft.spage=15809&rft.epage=15817&rft_id=info:doi/10.1021%2Fja040137f&rft.externalDocID=a229985845 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |