Parallel scientific computing : theory, algorithms, and applications of mesh based and meshless methods

This book is concentrated on the synergy between computer science and numerical analysis. It is written to provide a firm understanding of the described approaches to computer scientists, engineers or other experts who have to solve real problems. The meshless solution approach is described in more...

Full description

Saved in:
Bibliographic Details
Main Authors Trobec, Roman, Kosec, Gregor
Format eBook Book
LanguageEnglish
Published Cham Springer 2015
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesSpringerBriefs in Computer Science
Subjects
Online AccessGet full text
ISBN3319170724
9783319170725
ISSN2191-5768
2191-5776
DOI10.1007/978-3-319-17073-2

Cover

Table of Contents:
  • 7.2 Computational Fluid Dynamics -- 7.2.1 Problem Definition -- 7.2.2 Convergence -- 7.2.3 Stability and Execution Time -- 7.3 Semiconductor Simulation -- 7.3.1 Problem Definition -- 7.3.2 Solution Accuracy and Convergence -- 8 Parallel Implementation -- 8.1 Multicore Parallelization -- 8.2 GPU Parallelization -- 8.3 Parallelization on Distributed Computers -- 9 Final Remarks and Conclusions -- References -- Index
  • Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Overview and Motivation -- 1.2 Why Solve PDEs? -- 1.3 The Background of the Numerical Solution -- 1.4 Related Work -- 2 Discretization and Formulation of Solution Approaches -- 2.1 Background -- 2.2 Strong Form -- 2.3 Weak Form -- 2.4 Discretization of Time -- 2.5 Summary of Solution Methodology -- 3 Supporting Algorithms -- 3.1 Domain Discretization -- 3.1.1 Mesh Topology -- 3.1.2 Mesh Generation -- 3.1.3 Mesh Enhancement -- 3.1.4 Mesless Discretization -- 3.1.5 Complexity of Discretization Algorithms -- 3.2 Determining Local Support Domain -- 3.2.1 Strategies for Determining Support Nodes -- 3.2.2 kD Tree -- 3.2.3 Computational Complexity of Determining the Support Domain -- 3.3 Interpolation and Approximation -- 3.3.1 Interpolation -- 3.3.2 Moving Least Squares Approximation -- 3.3.3 Accuracy of MLS -- 3.3.4 Computational Complexity of MLS -- 3.4 Numerical Quadrature -- 3.4.1 Computational Complexity of Numerical Integration -- 3.5 Solution of Linear System of Equations -- 3.5.1 Computational Complexity of Solving a Linear System of Equations -- 4 Mesh-Based Methods -- 4.1 Finite Difference Method -- 4.2 Finite Element Method -- 4.2.1 FEM Weak System -- 4.2.2 FEM Complexity -- 5 Meshless Methods -- 5.1 Meshless Local Strong Form Method -- 5.1.1 MLSM Complexity -- 5.2 Meshless Local Petrov Galerkin Method -- 5.2.1 MLPG1 Weak System -- 5.2.2 MLPG1 Complexity -- 6 Assessment of Described Solution Methods -- 6.1 Diffusion Equation -- 6.2 Test Conditions -- 6.3 Solution Approaches -- 6.3.1 FDM -- 6.3.2 FEM -- 6.3.3 MLSM -- 6.3.4 MLPG1 -- 6.4 Experimental Comparison of Convergence and Execution Time -- 6.4.1 Convergence -- 6.4.2 Execution Time -- 7 Test Cases -- 7.1 Mechanics of Cantilever Beam -- 7.1.1 Governing Equations -- 7.1.2 Closed Form Solution -- 7.1.3 Convergence and Runtime