Total Organic Carbon Predictions from Lower Barnett Shale Well-log Data Applying an Optimized Data Matching Algorithm at Various Sampling Densities

Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-b...

Full description

Saved in:
Bibliographic Details
Published inPure and applied geophysics Vol. 177; no. 11; pp. 5451 - 5468
Main Author Wood, David A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0033-4553
1420-9136
DOI10.1007/s00024-020-02566-1

Cover

Abstract Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-based machine learning methods, do not provide universally reliable, accurate or easily auditable TOC predictions. A method is developed and its viability evaluated exploiting a promising correlation-free, data-matching routine. This is applied to published well-log curves, with supporting mineralogical data and measured TOC, for two wells penetrating the Lower Barnett Shale formation at distinct settings within the Fort Worth Basin (Texas, U.S.). The method combines between 5 and 10 well log features and evaluates, on a supervised learning basis, multiple cases for nine distinct models at data- record-sampling densities ranging from one record for every 0.5 ft to one record for every 0.04 ft. At zoomed-in sampling densities the model achieves TOC prediction accuracies for the models combining data from both wells of (RMSE ≤ 0.3% and R2 ≥ 0.955) for models involving 6 and 10 input variables. It is the models involving six input variables that have the potential to be applied in unsupervised circumstances to predict TOC in surrounding wells lacking measured TOC, but that potential requires confirmation in future multi-well studies.
AbstractList Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-based machine learning methods, do not provide universally reliable, accurate or easily auditable TOC predictions. A method is developed and its viability evaluated exploiting a promising correlation-free, data-matching routine. This is applied to published well-log curves, with supporting mineralogical data and measured TOC, for two wells penetrating the Lower Barnett Shale formation at distinct settings within the Fort Worth Basin (Texas, U.S.). The method combines between 5 and 10 well log features and evaluates, on a supervised learning basis, multiple cases for nine distinct models at data- record-sampling densities ranging from one record for every 0.5 ft to one record for every 0.04 ft. At zoomed-in sampling densities the model achieves TOC prediction accuracies for the models combining data from both wells of (RMSE ≤ 0.3% and R2 ≥ 0.955) for models involving 6 and 10 input variables. It is the models involving six input variables that have the potential to be applied in unsupervised circumstances to predict TOC in surrounding wells lacking measured TOC, but that potential requires confirmation in future multi-well studies.
Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-based machine learning methods, do not provide universally reliable, accurate or easily auditable TOC predictions. A method is developed and its viability evaluated exploiting a promising correlation-free, data-matching routine. This is applied to published well-log curves, with supporting mineralogical data and measured TOC, for two wells penetrating the Lower Barnett Shale formation at distinct settings within the Fort Worth Basin (Texas, U.S.). The method combines between 5 and 10 well log features and evaluates, on a supervised learning basis, multiple cases for nine distinct models at data- record-sampling densities ranging from one record for every 0.5 ft to one record for every 0.04 ft. At zoomed-in sampling densities the model achieves TOC prediction accuracies for the models combining data from both wells of (RMSE ≤ 0.3% and R2 ≥ 0.955) for models involving 6 and 10 input variables. It is the models involving six input variables that have the potential to be applied in unsupervised circumstances to predict TOC in surrounding wells lacking measured TOC, but that potential requires confirmation in future multi-well studies.
Author Wood, David A.
Author_xml – sequence: 1
  givenname: David A.
  orcidid: 0000-0003-3202-4069
  surname: Wood
  fullname: Wood, David A.
  email: dw@dwasolutions.com
  organization: DWA Energy Limited
BookMark eNp9kc-KFDEQxoOs4OzqC3gKeG6t_OnO5DjOuiqMjLCrHkNNd7onSzppkwyyvoYvbI8tCB72EIrwfb-qor5LchFisIS8ZPCaAag3GQC4rIDD_OqmqdgTsmJy_mommguyAhCiknUtnpHLnO8BmFK1XpFfd7Ggp_s0YHAt3WI6xEA_J9u5trgYMu1THOku_rCJvsUUbCn09oje0m_W-8rHgV5jQbqZJv_gwkAx0P1U3Oh-2m6RPmFpj2dp44eYXDmOFAv9isnFU6a3OE7-rF7bkF1xNj8nT3v02b74W6_Il5t3d9sP1W7__uN2s6tQSF6qrj4obJRWQivVdX2ve8m0ZI2UB8tlqxXv27UEDdz2INa8YUJip9E23KLtxBV5tfSdUvx-srmY-3hKYR5puFSsFtBAPbvWi6tNMedke9O6gufblITOGwbmHIFZIjBzBOZPBIbNKP8PnZIbMT08DokFyrM5DDb92-oR6jehjpwe
CitedBy_id crossref_primary_10_1007_s10712_022_09705_4
crossref_primary_10_1016_j_petlm_2022_10_004
crossref_primary_10_1007_s40808_022_01381_y
crossref_primary_10_1016_j_earscirev_2024_104913
crossref_primary_10_1016_j_marpetgeo_2024_107006
crossref_primary_10_1016_j_petrol_2021_109455
Cites_doi 10.1016/j.jappgeo.2011.12.005
10.1306/02221615104
10.1016/j.jngse.2016.05.060
10.1016/j.jngse.2016.05.041
10.1016/S0146-6380(86)80051-1
10.1016/0146-6380(95)00088-7
10.1306/12190606068
10.2174/1874834101710010118
10.1306/10300606008
10.1016/j.ngib.2015.07.004
10.26804/ager.2018.02.04
10.1016/j.petrol.2004.08.005
10.1016/j.petrol.2015.01.028
10.1007/s40808-019-00583-1
10.1306/04261110116
10.1016/j.jngse.2015.07.008
10.1016/j.petrol.2011.05.010
10.1016/j.petrol.2017.12.021
10.1016/j.cageo.2011.11.024
10.1016/j.petrol.2016.10.015
10.1190/INT-2015-0166.1
10.2118/15612-PA
10.1016/j.petrol.2015.05.022
10.1007/s13202-017-0360-0
10.1007/s40808-018-0543-9
10.1016/j.petrol.2012.03.024
10.2118/131350-MS
10.3133/pp356A
10.3133/ofr8720
10.2118/147184-MS
10.2118/21297-PA
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2020
Springer Nature Switzerland AG 2020.
Copyright_xml – notice: Springer Nature Switzerland AG 2020
– notice: Springer Nature Switzerland AG 2020.
DBID AAYXX
CITATION
3V.
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
M2P
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
DOI 10.1007/s00024-020-02566-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
ProQuest Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1420-9136
EndPage 5468
ExternalDocumentID 10_1007_s00024_020_02566_1
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M2P
M4Y
M7R
MA-
MBV
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8R
Z8T
Z8W
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TG
7UA
7XB
8FD
8FK
C1K
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a342t-d5b7a67973977ddff9f41941644be24c972fc840902ef03826134ad9ae62eaed3
IEDL.DBID BENPR
ISSN 0033-4553
IngestDate Fri Jul 25 22:36:20 EDT 2025
Wed Oct 01 03:19:20 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 21 02:39:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords data-matching machine learning
data record sample densities
Well log TOC estimates
correlation-free feature selections
zoomed-data interpolation
model transparency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-d5b7a67973977ddff9f41941644be24c972fc840902ef03826134ad9ae62eaed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3202-4069
PQID 2471530605
PQPubID 54182
PageCount 18
ParticipantIDs proquest_journals_2471530605
crossref_citationtrail_10_1007_s00024_020_02566_1
crossref_primary_10_1007_s00024_020_02566_1
springer_journals_10_1007_s00024_020_02566_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Basel
PublicationSubtitle pageoph
PublicationTitle Pure and applied geophysics
PublicationTitleAbbrev Pure Appl. Geophys
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Wood (CR47) 2016; 33
Wood (CR50) 2019; 5
CR39
Wang (CR46) 2013; 35
CR34
Tabatabaei, Kadkhodaie, Hosseinib, Asghari Moghaddam (CR41) 2015; 127
Schmoker (CR33) 1981; 65
Sfidari, Kadkhodaie, Najjari (CR36) 2012; 86–87
Al-Mudhafar (CR4) 2017; 7
Jarvie, Hill, Ruble, Pollastro (CR18) 2007; 91
Wood (CR48) 2018; 2
Zhao, Mao, Huang, Zhang (CR51) 2016; 100
El Sharawy, Gaafar (CR11) 2012; 80
Beers (CR7) 1945; 26
Mann (CR26) 1986; 10
Kadkhodaie, Rezaee (CR20) 2017; 148
CR6
CR9
Kamali, Mirshady (CR21) 2004; 45
CR44
Cheng, Yuan, Tan, Wang (CR10) 2016; 21
CR40
Herron (CR14) 1988; 72
Schmoker, Hester (CR35) 1983; 67
Bolandi, Kadkhodaie-Ilkhchi, Alizadeh, Tahmorasi, Farzi (CR8) 2015; 133
Passey, Moretti, Stroud (CR30) 1990; 74
Kadkhodaie, Rahimpour, Rezaee (CR19) 2009; 35
Huang, Wang, Cheng, Liu, Cheng (CR16) 2015; 2
Singh, Slatt, Coffey (CR38) 2008; 58
CR15
CR13
Pollastro, Jarvie, Hill, Adams (CR31) 2007; 91
Verma, Zhao, Marfurt, Devegowda (CR43) 2016; 4
Fertl, Chilingar (CR12) 1988; 3
Abouelresh, Slatt (CR1) 2012; 96
Tan, Song, Yang, Wu (CR42) 2015; 26
Meyer, Nederlof (CR28) 1984; 68
Mallick, Raju (CR25) 1995; 23
Schmoker (CR32) 1979; 63
Shi, Wang, Liu, Yang, Ge, Jiang (CR37) 2016; 33
Wood (CR49) 2019; 5
CR29
CR27
Alshakhs, Rezaee (CR5) 2017; 10
CR24
CR23
Wang, Gale (CR45) 2009; 59
Alizadeh, Najjari, Kadkhodaie (CR3) 2011; 45
Huang, Williamson (CR17) 1996; 13
Alizadeh, Maroufi, Heidarifard (CR2) 2018; 167
Khoshnoodkia, Mohseni, Rahmani, Mohammadi (CR22) 2011; 78
2566_CR34
X Shi (2566_CR37) 2016; 33
S Verma (2566_CR43) 2016; 4
M Khoshnoodkia (2566_CR22) 2011; 78
JW Schmoker (2566_CR33) 1981; 65
D Cheng (2566_CR10) 2016; 21
M Abouelresh (2566_CR1) 2012; 96
2566_CR39
DA Wood (2566_CR47) 2016; 33
WH Fertl (2566_CR12) 1988; 3
RK Mallick (2566_CR25) 1995; 23
RF Beers (2566_CR7) 1945; 26
2566_CR44
JW Schmoker (2566_CR35) 1983; 67
2566_CR40
QR Passey (2566_CR30) 1990; 74
P Zhao (2566_CR51) 2016; 100
U Mann (2566_CR26) 1986; 10
E Sfidari (2566_CR36) 2012; 86–87
M Alshakhs (2566_CR5) 2017; 10
A Kadkhodaie (2566_CR20) 2017; 148
SL Herron (2566_CR14) 1988; 72
DA Wood (2566_CR48) 2018; 2
Z Huang (2566_CR17) 1996; 13
V Bolandi (2566_CR8) 2015; 133
R Huang (2566_CR16) 2015; 2
BL Meyer (2566_CR28) 1984; 68
2566_CR9
2566_CR13
2566_CR15
2566_CR6
B Alizadeh (2566_CR2) 2018; 167
B Alizadeh (2566_CR3) 2011; 45
A Kadkhodaie (2566_CR19) 2009; 35
M Tan (2566_CR42) 2015; 26
DM Jarvie (2566_CR18) 2007; 91
Y Wang (2566_CR46) 2013; 35
SMH Tabatabaei (2566_CR41) 2015; 127
MS El Sharawy (2566_CR11) 2012; 80
FP Wang (2566_CR45) 2009; 59
J Schmoker (2566_CR32) 1979; 63
2566_CR23
2566_CR24
RM Pollastro (2566_CR31) 2007; 91
P Singh (2566_CR38) 2008; 58
MR Kamali (2566_CR21) 2004; 45
DA Wood (2566_CR49) 2019; 5
2566_CR27
2566_CR29
DA Wood (2566_CR50) 2019; 5
WJ Al-Mudhafar (2566_CR4) 2017; 7
References_xml – volume: 58
  start-page: 777
  year: 2008
  end-page: 795
  ident: CR38
  article-title: Barnett Shale - Unfolded: Sedimentology, sequence stratigraphy, and regional mapping
  publication-title: Gulf Coast Association of Geological Societies Transactions
– volume: 80
  start-page: 129
  year: 2012
  end-page: 143
  ident: CR11
  article-title: Application of well log analysis for source rock evaluation in the Duwi Formation, Southern Gulf of Suez, Egypt
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2011.12.005
– volume: 100
  start-page: 1311
  issue: 8
  year: 2016
  end-page: 1327
  ident: CR51
  article-title: A new method for estimating total organic carbon content from well logs
  publication-title: AAPG Bulletin
  doi: 10.1306/02221615104
– ident: CR39
– volume: 33
  start-page: 687
  year: 2016
  end-page: 702
  ident: CR37
  article-title: Application of extreme learning machine and neural networks in total organic carbon content prediction in organic shale with wire line logs
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2016.05.060
– volume: 33
  start-page: 751
  year: 2016
  end-page: 768
  ident: CR47
  article-title: Metaheuristic profiling to assess performance of hybrid evolutionary optimization algorithms applied to complex wellbore trajectories
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2016.05.041
– volume: 67
  start-page: 2165
  year: 1983
  end-page: 2174
  ident: CR35
  article-title: Organic carbon in Bakken formation, United States portion of Williston basin
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 10
  start-page: 1105
  issue: 4–6
  year: 1986
  end-page: 1112
  ident: CR26
  article-title: Relation between source rock properties and wireline log parameters, an example from Lower Jurassic Posidonia Shale, NW Germany
  publication-title: Organic Geochemistry
  doi: 10.1016/S0146-6380(86)80051-1
– volume: 23
  start-page: 871
  issue: 10
  year: 1995
  end-page: 879
  ident: CR25
  article-title: Thermal maturity evaluation by sonic log and seismic velocity analysis in parts of Upper Assam Basin, India
  publication-title: Organic Geochemistry
  doi: 10.1016/0146-6380(95)00088-7
– ident: CR29
– volume: 26
  start-page: 1
  year: 1945
  end-page: 22
  ident: CR7
  article-title: Radioactivity and organic content of some Paleozoic shales
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 63
  start-page: 1504
  year: 1979
  end-page: 1509
  ident: CR32
  article-title: Determination of organic content of Appalachian Devonian Shales from formation-density logs: Geologic notes
  publication-title: AAPG Bulletin
– volume: 91
  start-page: 475
  year: 2007
  end-page: 499
  ident: CR18
  article-title: Unconventional shale-gas systems: The Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment
  publication-title: AAPG Bulletin
  doi: 10.1306/12190606068
– volume: 10
  start-page: 118
  year: 2017
  end-page: 133
  ident: CR5
  article-title: A new method to estimate total organic carbon (TOC) content, an example from Goldwyer Shale Formation, the Canning Basin
  publication-title: The Open Petroleum Engineering Journal
  doi: 10.2174/1874834101710010118
– volume: 91
  start-page: 405
  issue: 4
  year: 2007
  end-page: 436
  ident: CR31
  article-title: Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas
  publication-title: AAPG Bulletin
  doi: 10.1306/10300606008
– volume: 35
  start-page: 100
  issue: 2
  year: 2013
  end-page: 104
  ident: CR46
  article-title: The method of application of gamma-ray spectral logging data for determining clay mineral content
  publication-title: Journal of Oil and Gas Technology
– volume: 2
  start-page: 155
  year: 2015
  end-page: 161
  ident: CR16
  article-title: Selection of logging-based TOC calculation methods for shale reservoirs: A case study of the Jiaoshiba shale gas field in the Sichuan Basin
  publication-title: Natural Gas Industry B
  doi: 10.1016/j.ngib.2015.07.004
– ident: CR15
– ident: CR9
– volume: 72
  start-page: 1007
  year: 1988
  ident: CR14
  article-title: Source rock evaluation using geochemical information from wireline logs and cores (abs)
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 2
  start-page: 148
  issue: 2
  year: 2018
  end-page: 162
  ident: CR48
  article-title: A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms
  publication-title: Advances in Geo-Energy Research
  doi: 10.26804/ager.2018.02.04
– volume: 45
  start-page: 141
  year: 2004
  end-page: 148
  ident: CR21
  article-title: Total organic carbon content determined from well logs using ΔlogR and neuro fuzzy techniques
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2004.08.005
– volume: 65
  start-page: 2165
  year: 1981
  end-page: 2174
  ident: CR33
  article-title: Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 127
  start-page: 35
  year: 2015
  end-page: 43
  ident: CR41
  article-title: A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2015.01.028
– volume: 5
  start-page: 753
  year: 2019
  end-page: 766
  ident: CR50
  article-title: Sensitivity analysis and optimization capabilities of the transparent open box learning network in predicting coal gross calorific value from underlying compositional variables
  publication-title: Modeling Earth Systems and Environment.
  doi: 10.1007/s40808-019-00583-1
– volume: 21
  start-page: 1
  issue: 5
  year: 2016
  end-page: 10
  ident: CR10
  article-title: Logging-lithology identification methods and their application: A case study on the Chang 7 Member in the central-western Ordos Basin, NW China
  publication-title: China Petroleum Exploration
– volume: 59
  start-page: 779
  year: 2009
  end-page: 793
  ident: CR45
  article-title: Screening criteria for shale-gas systems
  publication-title: Gulf Coast Association of Geological Societies Transactions
– volume: 96
  start-page: 1
  issue: 1
  year: 2012
  end-page: 22
  ident: CR1
  article-title: Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas
  publication-title: AAPG Bulletin
  doi: 10.1306/04261110116
– volume: 68
  start-page: 121
  year: 1984
  end-page: 129
  ident: CR28
  article-title: Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity cross plots
  publication-title: American Association of Petroleum Geologists Bulletin
– ident: CR6
– volume: 74
  start-page: 1777
  year: 1990
  end-page: 1794
  ident: CR30
  article-title: A practical modal for organic richness from porosity and resistivity logs
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 26
  start-page: 792
  year: 2015
  end-page: 802
  ident: CR42
  article-title: Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: A comparative study
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2015.07.008
– volume: 78
  start-page: 119
  year: 2011
  end-page: 130
  ident: CR22
  article-title: TOC determination of Gadvan Formation in South Pars Gas field, using artificial intelligent systems and geochemical data
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2011.05.010
– ident: CR40
– ident: CR27
– volume: 167
  start-page: 857
  year: 2018
  end-page: 868
  ident: CR2
  article-title: Estimating source rock parameters using wireline data: An example from Dezful Embayment, South West of Iran
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.12.021
– ident: CR23
– volume: 45
  start-page: 261
  year: 2011
  end-page: 269
  ident: CR3
  article-title: Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars gas field, Iran
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2011.11.024
– volume: 148
  start-page: 94
  year: 2017
  end-page: 102
  ident: CR20
  article-title: Estimation of vitrinite reflectance from well log data
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2016.10.015
– volume: 13
  start-page: 227
  year: 1996
  end-page: 290
  ident: CR17
  article-title: Artificial neural network modeling as an aid to source rock characterization
  publication-title: Marine and Petroleum Geology
– volume: 4
  start-page: 373
  issue: 3
  year: 2016
  end-page: 385
  ident: CR43
  article-title: Estimation of total organic carbon and brittleness volume
  publication-title: Interpretation
  doi: 10.1190/INT-2015-0166.1
– ident: CR44
– volume: 3
  start-page: 407
  year: 1988
  end-page: 419
  ident: CR12
  article-title: Total organic carbon content determined from well logs
  publication-title: SPE Formation Evaluation
  doi: 10.2118/15612-PA
– volume: 133
  start-page: 167
  year: 2015
  end-page: 176
  ident: CR8
  article-title: Source rock characterization of the Albian Kazhdumi formation by integrating well logs and geochemical data in the Azadegan oilfield, Abadan plain, SW Iran
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2015.05.022
– ident: CR13
– volume: 35
  start-page: 457
  year: 2009
  end-page: 474
  ident: CR19
  article-title: A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data
  publication-title: Computers and Geosciences
– ident: CR34
– volume: 7
  start-page: 1023
  year: 2017
  end-page: 1033
  ident: CR4
  article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms
  publication-title: Journal of Petroleum Exploration and Production
  doi: 10.1007/s13202-017-0360-0
– volume: 5
  start-page: 395
  year: 2019
  end-page: 419
  ident: CR49
  article-title: Transparent open box learning network provides auditable predictions for coal gross calorific value
  publication-title: Modeling Earth Systems and Environment.
  doi: 10.1007/s40808-018-0543-9
– volume: 86–87
  start-page: 190
  year: 2012
  end-page: 205
  ident: CR36
  article-title: Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2012.03.024
– ident: CR24
– volume: 86–87
  start-page: 190
  year: 2012
  ident: 2566_CR36
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2012.03.024
– volume: 100
  start-page: 1311
  issue: 8
  year: 2016
  ident: 2566_CR51
  publication-title: AAPG Bulletin
  doi: 10.1306/02221615104
– volume: 127
  start-page: 35
  year: 2015
  ident: 2566_CR41
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2015.01.028
– volume: 148
  start-page: 94
  year: 2017
  ident: 2566_CR20
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2016.10.015
– ident: 2566_CR29
  doi: 10.2118/131350-MS
– volume: 72
  start-page: 1007
  year: 1988
  ident: 2566_CR14
  publication-title: American Association of Petroleum Geologists Bulletin
– ident: 2566_CR27
– ident: 2566_CR40
  doi: 10.3133/pp356A
– ident: 2566_CR15
  doi: 10.3133/ofr8720
– volume: 10
  start-page: 118
  year: 2017
  ident: 2566_CR5
  publication-title: The Open Petroleum Engineering Journal
  doi: 10.2174/1874834101710010118
– ident: 2566_CR23
– volume: 96
  start-page: 1
  issue: 1
  year: 2012
  ident: 2566_CR1
  publication-title: AAPG Bulletin
  doi: 10.1306/04261110116
– volume: 63
  start-page: 1504
  year: 1979
  ident: 2566_CR32
  publication-title: AAPG Bulletin
– volume: 35
  start-page: 100
  issue: 2
  year: 2013
  ident: 2566_CR46
  publication-title: Journal of Oil and Gas Technology
– volume: 167
  start-page: 857
  year: 2018
  ident: 2566_CR2
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2017.12.021
– volume: 33
  start-page: 687
  year: 2016
  ident: 2566_CR37
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2016.05.060
– volume: 133
  start-page: 167
  year: 2015
  ident: 2566_CR8
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2015.05.022
– ident: 2566_CR13
  doi: 10.2118/147184-MS
– volume: 7
  start-page: 1023
  year: 2017
  ident: 2566_CR4
  publication-title: Journal of Petroleum Exploration and Production
  doi: 10.1007/s13202-017-0360-0
– volume: 5
  start-page: 395
  year: 2019
  ident: 2566_CR49
  publication-title: Modeling Earth Systems and Environment.
  doi: 10.1007/s40808-018-0543-9
– volume: 45
  start-page: 141
  year: 2004
  ident: 2566_CR21
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2004.08.005
– volume: 23
  start-page: 871
  issue: 10
  year: 1995
  ident: 2566_CR25
  publication-title: Organic Geochemistry
  doi: 10.1016/0146-6380(95)00088-7
– volume: 78
  start-page: 119
  year: 2011
  ident: 2566_CR22
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2011.05.010
– volume: 2
  start-page: 155
  year: 2015
  ident: 2566_CR16
  publication-title: Natural Gas Industry B
  doi: 10.1016/j.ngib.2015.07.004
– volume: 91
  start-page: 405
  issue: 4
  year: 2007
  ident: 2566_CR31
  publication-title: AAPG Bulletin
  doi: 10.1306/10300606008
– ident: 2566_CR9
– ident: 2566_CR34
– volume: 74
  start-page: 1777
  year: 1990
  ident: 2566_CR30
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 91
  start-page: 475
  year: 2007
  ident: 2566_CR18
  publication-title: AAPG Bulletin
  doi: 10.1306/12190606068
– volume: 58
  start-page: 777
  year: 2008
  ident: 2566_CR38
  publication-title: Gulf Coast Association of Geological Societies Transactions
– volume: 5
  start-page: 753
  year: 2019
  ident: 2566_CR50
  publication-title: Modeling Earth Systems and Environment.
  doi: 10.1007/s40808-019-00583-1
– volume: 21
  start-page: 1
  issue: 5
  year: 2016
  ident: 2566_CR10
  publication-title: China Petroleum Exploration
– volume: 67
  start-page: 2165
  year: 1983
  ident: 2566_CR35
  publication-title: American Association of Petroleum Geologists Bulletin
– ident: 2566_CR6
– ident: 2566_CR24
  doi: 10.2118/21297-PA
– ident: 2566_CR44
– volume: 33
  start-page: 751
  year: 2016
  ident: 2566_CR47
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2016.05.041
– volume: 3
  start-page: 407
  year: 1988
  ident: 2566_CR12
  publication-title: SPE Formation Evaluation
  doi: 10.2118/15612-PA
– volume: 26
  start-page: 792
  year: 2015
  ident: 2566_CR42
  publication-title: Journal of Natural Gas Science and Engineering
  doi: 10.1016/j.jngse.2015.07.008
– ident: 2566_CR39
– volume: 13
  start-page: 227
  year: 1996
  ident: 2566_CR17
  publication-title: Marine and Petroleum Geology
– volume: 65
  start-page: 2165
  year: 1981
  ident: 2566_CR33
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 35
  start-page: 457
  year: 2009
  ident: 2566_CR19
  publication-title: Computers and Geosciences
– volume: 59
  start-page: 779
  year: 2009
  ident: 2566_CR45
  publication-title: Gulf Coast Association of Geological Societies Transactions
– volume: 26
  start-page: 1
  year: 1945
  ident: 2566_CR7
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 2
  start-page: 148
  issue: 2
  year: 2018
  ident: 2566_CR48
  publication-title: Advances in Geo-Energy Research
  doi: 10.26804/ager.2018.02.04
– volume: 68
  start-page: 121
  year: 1984
  ident: 2566_CR28
  publication-title: American Association of Petroleum Geologists Bulletin
– volume: 4
  start-page: 373
  issue: 3
  year: 2016
  ident: 2566_CR43
  publication-title: Interpretation
  doi: 10.1190/INT-2015-0166.1
– volume: 10
  start-page: 1105
  issue: 4–6
  year: 1986
  ident: 2566_CR26
  publication-title: Organic Geochemistry
  doi: 10.1016/S0146-6380(86)80051-1
– volume: 45
  start-page: 261
  year: 2011
  ident: 2566_CR3
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2011.11.024
– volume: 80
  start-page: 129
  year: 2012
  ident: 2566_CR11
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2011.12.005
SSID ssj0017759
Score 2.3128498
Snippet Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5451
SubjectTerms Algorithms
Cores
Correlation
Data
Earth and Environmental Science
Earth Sciences
Evaluation
Geophysics/Geodesy
Learning algorithms
Machine learning
Matching
Methods
Model accuracy
Organic carbon
Predictions
Sampling
Sedimentary rocks
Shale
Shale gas
Shales
Total organic carbon
Well logs
Wells
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKyQuqOUhthQ0B25gKXFsZ3PctlQVooDULvQWjR-hlbYJyqaX_o3-YWby2AoESJz9OGTGM98XzzcW4k1qUc9t5qXL84QJSiFd0IlUaJ03EYmFsHb49JM9WeoPF-ZiFIWtp2r36Uqyj9QbsRsfXi2Z7nCetpI4z7bhdl7kxUu12Nwd5LkZQG-WSW1MNkpl_rzHr-noHmP-di3aZ5vjHfF4hImwGOy6Kx7E-ol42Jdr-vVTcXfeEGiGQUjp4RBb19TwpeVbl96RgGUj8JGfQIMDbOvYdXB2SckAvsXVSlLAgyPsEBiEstAJsIbPFD2ur25jGIZOKUjz7ylYrL437VV3eQ3YwVfi1s3NGs6QS9Fp9Igr4Lkr6zOxPH5_fngix-cVJGZadTIYl6PNi5wxYAhVVVQ6LQigae2i0r7IVeWZ_yUqVklGPCTNNIYCo1URY8iei626qeMLAakKafQOg6bFMaQ4t04biqPKz4to3Uyk01cu_dh7nJ_AWJWbrsm9ZUqyTNlbpkxn4u1mzY-h88Y_Z-9PxivHU7guFWVeQ5woMTPxbjLo_fDfd9v7v-kvxSPFPtVLFPfFVtfexFeEVTr3unfNnxfM3uQ
  priority: 102
  providerName: Springer Nature
Title Total Organic Carbon Predictions from Lower Barnett Shale Well-log Data Applying an Optimized Data Matching Algorithm at Various Sampling Densities
URI https://link.springer.com/article/10.1007/s00024-020-02566-1
https://www.proquest.com/docview/2471530605
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1420-9136
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017759
  issn: 0033-4553
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1420-9136
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017759
  issn: 0033-4553
  databaseCode: BENPR
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1420-9136
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017759
  issn: 0033-4553
  databaseCode: 8FG
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1420-9136
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017759
  issn: 0033-4553
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1420-9136
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017759
  issn: 0033-4553
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH7aWiFxQTBAFEblw25gkTi20xwQ6rZ208bKxFYYp8i_wpC6ZLTZhX-Dfxg_J2kFErvGsQ9-L5-_F7_vPYC9WCo-komhOk0jDFAyqi2PKFNSG-GUj0JQO3w2k8dzfnIlrrZg1mlhMK2yw8QA1LYy-I_8HfMoKjy_jcSH258Uu0bh7WrXQkO1rRXs-1BibBv6DCtj9aC_P5mdf17fK6SpaAhxklAuRNLKaIKYDsGBUwynkAdIGv99VG345z9XpuEkmj6GRy2FJOPG5k9gy5U78CCkcprVU_h9WXlCTRqRpSEHaqmrkpwv8UYmOBlBSQn5iO3RyL5alq6uycW1PyjIV7dYUA-G5FDViiBBRREUUSX55JHl5scvZ5uhMw_g-OuKjBff_SbV1zdE1eSLj7uruxW5UJim7kcPMTseK7Y-g_l0cnlwTNvWC1QlnNXUCp0qmWYp8kNriyIreJx58sa5doybLGWFwdgwYq6IEh-jxAlXNlNOMqecTZ5Dr6xK9wJIzGzsjFaW-8nOxmokNRceY5kZZU7qAcTdLuemrUuO7TEW-bqicrBM7i2TB8vk8QDerOfcNlU57n17tzNe3n6hq3zjTwN42xl0M_z_1V7ev9oreMjQh4JccRd69fLOvfa8pdZD2B5Nj4bQHx99O50MW9f0T-ds_AeA0evz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RUNVeUJ9qgLZzaE_tqvZ6bccHVAEBhZKkqISWm9mXS6VgQ2JUtX-D_8Nv64wfiVqp3DivvQfPeOb7dvabYeyNHynZjQLDdRx7RFASrq30uFCRNqFTyEJIOzwcRf1j-ekkPFliN60Whq5VtjGxCtS2MHRG_kFgFA0R33rhx4tLTlOjqLrajtBQzWgFu1m1GGuEHQfu10-kcLPN_R7a-60Qe7vjnT5vpgxwFUhRchvqWEVxEhMUsjbLkkwis0caIbUT0iSxyAzRIE-4zAsQjvuBVDZRLhJOORvgvvfYigxkguRvZXt3dPhlXseI47AG4EHAZRgGjWynEu9RMJKc6Bvhjoj7f6fGBd79p0RbZb69R2y1gaywVfvYY7bk8ifsfnV11MyesutxgQAealGngR011UUOh1OqAFVODSRhgQGNY4NtNc1dWcLRGSYm-OYmE47BF3qqVECAmERXoHL4jJHs_MdvZ-ulISYMOiqDrcl3NEp5dg6qhK_I84urGRwpuhaPqz26jU8dYp-x4zsxwnO2nBe5e8HAF9Z3Risr8WVnfdWNtAwxpgvTTVykO8xvv3Jqmj7oNI5jks47OFeWSdEyaWWZ1O-wd_N3LuouILc-vdEaL20iwixd-G-HvW8Nulj-_25rt-_2mj3oj4eDdLA_OlhnDwX5UyWV3GDL5fTKvUTMVOpXjWMCO73rf-EPfRQlKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4im2FJgDnMBq4tjO5oBQ6bK09EGlttBb8Cu00jYpu6kQ_A3-Db-OmTx2BRK99ezYh8x45hvPfDOMPY-1kUOdOG7TNKIAJePWy4gLo61TwWAUQtzh3T29eSQ_HKvjJfa758JQWWVvExtD7StHb-RrAq2oQnwbqbWiK4vYH43fnH_jNEGKMq39OI1WRbbDj-8Yvs1eb41Q1i-EGL873Njk3YQBbhIpau6VTY1Os5RgkPdFkRUSo3oMIaQNQrosFYWjECgSoYgShOJxIo3PTNAimOATPPcau55SF3diqY_fzzMYaapa6J0kXCqVdISdhrZHZkhyCtwIcWge_-0UF0j3n-Rs4_PGd9jtDqzCeqtdd9lSKO-xG03RqJvdZ78OK4Tu0NI5HWyYqa1K2J9S7qdRZyDyCuzQIDZ4a6ZlqGs4OEGXBJ_DZMLR7MLI1AYIChPdCkwJH9GGnZ3-DL5d2kVXQY9ksD75iiKoT87A1PAJI_zqYgYHhgricXVEdfjUG_YBO7oSETxky2VVhkcMYuHj4KzxEjcHH5uhtlKhNRdumAVtByzu_3Luug7oNIhjks97NzeSyVEyeSOZPB6wl_M9523_j0u_Xu2Fl3e2YJYvNHfAXvUCXSz__7SVy097xm7iDch3tva2H7NbgtSp4UiusuV6ehGeIFiq7dNGK4F9uepr8AdqWyLF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+Organic+Carbon+Predictions+from+Lower+Barnett+Shale+Well-log+Data+Applying+an+Optimized+Data+Matching+Algorithm+at+Various+Sampling+Densities&rft.jtitle=Pure+and+applied+geophysics&rft.au=Wood%2C+David+A.&rft.date=2020-11-01&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=177&rft.issue=11&rft.spage=5451&rft.epage=5468&rft_id=info:doi/10.1007%2Fs00024-020-02566-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00024_020_02566_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon