Total Organic Carbon Predictions from Lower Barnett Shale Well-log Data Applying an Optimized Data Matching Algorithm at Various Sampling Densities
Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-b...
Saved in:
| Published in | Pure and applied geophysics Vol. 177; no. 11; pp. 5451 - 5468 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.11.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0033-4553 1420-9136 |
| DOI | 10.1007/s00024-020-02566-1 |
Cover
| Abstract | Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-based machine learning methods, do not provide universally reliable, accurate or easily auditable TOC predictions. A method is developed and its viability evaluated exploiting a promising correlation-free, data-matching routine. This is applied to published well-log curves, with supporting mineralogical data and measured TOC, for two wells penetrating the Lower Barnett Shale formation at distinct settings within the Fort Worth Basin (Texas, U.S.). The method combines between 5 and 10 well log features and evaluates, on a supervised learning basis, multiple cases for nine distinct models at data- record-sampling densities ranging from one record for every 0.5 ft to one record for every 0.04 ft. At zoomed-in sampling densities the model achieves TOC prediction accuracies for the models combining data from both wells of (RMSE ≤ 0.3% and R2 ≥ 0.955) for models involving 6 and 10 input variables. It is the models involving six input variables that have the potential to be applied in unsupervised circumstances to predict TOC in surrounding wells lacking measured TOC, but that potential requires confirmation in future multi-well studies. |
|---|---|
| AbstractList | Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-based machine learning methods, do not provide universally reliable, accurate or easily auditable TOC predictions. A method is developed and its viability evaluated exploiting a promising correlation-free, data-matching routine. This is applied to published well-log curves, with supporting mineralogical data and measured TOC, for two wells penetrating the Lower Barnett Shale formation at distinct settings within the Fort Worth Basin (Texas, U.S.). The method combines between 5 and 10 well log features and evaluates, on a supervised learning basis, multiple cases for nine distinct models at data- record-sampling densities ranging from one record for every 0.5 ft to one record for every 0.04 ft. At zoomed-in sampling densities the model achieves TOC prediction accuracies for the models combining data from both wells of (RMSE ≤ 0.3% and R2 ≥ 0.955) for models involving 6 and 10 input variables. It is the models involving six input variables that have the potential to be applied in unsupervised circumstances to predict TOC in surrounding wells lacking measured TOC, but that potential requires confirmation in future multi-well studies. Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from core samples in many wells. Unfortunately, the several methods developed over recent decades, based on various correlations and correlation-based machine learning methods, do not provide universally reliable, accurate or easily auditable TOC predictions. A method is developed and its viability evaluated exploiting a promising correlation-free, data-matching routine. This is applied to published well-log curves, with supporting mineralogical data and measured TOC, for two wells penetrating the Lower Barnett Shale formation at distinct settings within the Fort Worth Basin (Texas, U.S.). The method combines between 5 and 10 well log features and evaluates, on a supervised learning basis, multiple cases for nine distinct models at data- record-sampling densities ranging from one record for every 0.5 ft to one record for every 0.04 ft. At zoomed-in sampling densities the model achieves TOC prediction accuracies for the models combining data from both wells of (RMSE ≤ 0.3% and R2 ≥ 0.955) for models involving 6 and 10 input variables. It is the models involving six input variables that have the potential to be applied in unsupervised circumstances to predict TOC in surrounding wells lacking measured TOC, but that potential requires confirmation in future multi-well studies. |
| Author | Wood, David A. |
| Author_xml | – sequence: 1 givenname: David A. orcidid: 0000-0003-3202-4069 surname: Wood fullname: Wood, David A. email: dw@dwasolutions.com organization: DWA Energy Limited |
| BookMark | eNp9kc-KFDEQxoOs4OzqC3gKeG6t_OnO5DjOuiqMjLCrHkNNd7onSzppkwyyvoYvbI8tCB72EIrwfb-qor5LchFisIS8ZPCaAag3GQC4rIDD_OqmqdgTsmJy_mommguyAhCiknUtnpHLnO8BmFK1XpFfd7Ggp_s0YHAt3WI6xEA_J9u5trgYMu1THOku_rCJvsUUbCn09oje0m_W-8rHgV5jQbqZJv_gwkAx0P1U3Oh-2m6RPmFpj2dp44eYXDmOFAv9isnFU6a3OE7-rF7bkF1xNj8nT3v02b74W6_Il5t3d9sP1W7__uN2s6tQSF6qrj4obJRWQivVdX2ve8m0ZI2UB8tlqxXv27UEDdz2INa8YUJip9E23KLtxBV5tfSdUvx-srmY-3hKYR5puFSsFtBAPbvWi6tNMedke9O6gufblITOGwbmHIFZIjBzBOZPBIbNKP8PnZIbMT08DokFyrM5DDb92-oR6jehjpwe |
| CitedBy_id | crossref_primary_10_1007_s10712_022_09705_4 crossref_primary_10_1016_j_petlm_2022_10_004 crossref_primary_10_1007_s40808_022_01381_y crossref_primary_10_1016_j_earscirev_2024_104913 crossref_primary_10_1016_j_marpetgeo_2024_107006 crossref_primary_10_1016_j_petrol_2021_109455 |
| Cites_doi | 10.1016/j.jappgeo.2011.12.005 10.1306/02221615104 10.1016/j.jngse.2016.05.060 10.1016/j.jngse.2016.05.041 10.1016/S0146-6380(86)80051-1 10.1016/0146-6380(95)00088-7 10.1306/12190606068 10.2174/1874834101710010118 10.1306/10300606008 10.1016/j.ngib.2015.07.004 10.26804/ager.2018.02.04 10.1016/j.petrol.2004.08.005 10.1016/j.petrol.2015.01.028 10.1007/s40808-019-00583-1 10.1306/04261110116 10.1016/j.jngse.2015.07.008 10.1016/j.petrol.2011.05.010 10.1016/j.petrol.2017.12.021 10.1016/j.cageo.2011.11.024 10.1016/j.petrol.2016.10.015 10.1190/INT-2015-0166.1 10.2118/15612-PA 10.1016/j.petrol.2015.05.022 10.1007/s13202-017-0360-0 10.1007/s40808-018-0543-9 10.1016/j.petrol.2012.03.024 10.2118/131350-MS 10.3133/pp356A 10.3133/ofr8720 10.2118/147184-MS 10.2118/21297-PA |
| ContentType | Journal Article |
| Copyright | Springer Nature Switzerland AG 2020 Springer Nature Switzerland AG 2020. |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: Springer Nature Switzerland AG 2020. |
| DBID | AAYXX CITATION 3V. 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M M2P P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY Q9U |
| DOI | 10.1007/s00024-020-02566-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace ProQuest Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1420-9136 |
| EndPage | 5468 |
| ExternalDocumentID | 10_1007_s00024_020_02566_1 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATCPS AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M2P M4Y M7R MA- MBV N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8R Z8T Z8W ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TG 7UA 7XB 8FD 8FK C1K F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-a342t-d5b7a67973977ddff9f41941644be24c972fc840902ef03826134ad9ae62eaed3 |
| IEDL.DBID | BENPR |
| ISSN | 0033-4553 |
| IngestDate | Fri Jul 25 22:36:20 EDT 2025 Wed Oct 01 03:19:20 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | data-matching machine learning data record sample densities Well log TOC estimates correlation-free feature selections zoomed-data interpolation model transparency |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-d5b7a67973977ddff9f41941644be24c972fc840902ef03826134ad9ae62eaed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3202-4069 |
| PQID | 2471530605 |
| PQPubID | 54182 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2471530605 crossref_citationtrail_10_1007_s00024_020_02566_1 crossref_primary_10_1007_s00024_020_02566_1 springer_journals_10_1007_s00024_020_02566_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201100 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Basel |
| PublicationSubtitle | pageoph |
| PublicationTitle | Pure and applied geophysics |
| PublicationTitleAbbrev | Pure Appl. Geophys |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Wood (CR47) 2016; 33 Wood (CR50) 2019; 5 CR39 Wang (CR46) 2013; 35 CR34 Tabatabaei, Kadkhodaie, Hosseinib, Asghari Moghaddam (CR41) 2015; 127 Schmoker (CR33) 1981; 65 Sfidari, Kadkhodaie, Najjari (CR36) 2012; 86–87 Al-Mudhafar (CR4) 2017; 7 Jarvie, Hill, Ruble, Pollastro (CR18) 2007; 91 Wood (CR48) 2018; 2 Zhao, Mao, Huang, Zhang (CR51) 2016; 100 El Sharawy, Gaafar (CR11) 2012; 80 Beers (CR7) 1945; 26 Mann (CR26) 1986; 10 Kadkhodaie, Rezaee (CR20) 2017; 148 CR6 CR9 Kamali, Mirshady (CR21) 2004; 45 CR44 Cheng, Yuan, Tan, Wang (CR10) 2016; 21 CR40 Herron (CR14) 1988; 72 Schmoker, Hester (CR35) 1983; 67 Bolandi, Kadkhodaie-Ilkhchi, Alizadeh, Tahmorasi, Farzi (CR8) 2015; 133 Passey, Moretti, Stroud (CR30) 1990; 74 Kadkhodaie, Rahimpour, Rezaee (CR19) 2009; 35 Huang, Wang, Cheng, Liu, Cheng (CR16) 2015; 2 Singh, Slatt, Coffey (CR38) 2008; 58 CR15 CR13 Pollastro, Jarvie, Hill, Adams (CR31) 2007; 91 Verma, Zhao, Marfurt, Devegowda (CR43) 2016; 4 Fertl, Chilingar (CR12) 1988; 3 Abouelresh, Slatt (CR1) 2012; 96 Tan, Song, Yang, Wu (CR42) 2015; 26 Meyer, Nederlof (CR28) 1984; 68 Mallick, Raju (CR25) 1995; 23 Schmoker (CR32) 1979; 63 Shi, Wang, Liu, Yang, Ge, Jiang (CR37) 2016; 33 Wood (CR49) 2019; 5 CR29 CR27 Alshakhs, Rezaee (CR5) 2017; 10 CR24 CR23 Wang, Gale (CR45) 2009; 59 Alizadeh, Najjari, Kadkhodaie (CR3) 2011; 45 Huang, Williamson (CR17) 1996; 13 Alizadeh, Maroufi, Heidarifard (CR2) 2018; 167 Khoshnoodkia, Mohseni, Rahmani, Mohammadi (CR22) 2011; 78 2566_CR34 X Shi (2566_CR37) 2016; 33 S Verma (2566_CR43) 2016; 4 M Khoshnoodkia (2566_CR22) 2011; 78 JW Schmoker (2566_CR33) 1981; 65 D Cheng (2566_CR10) 2016; 21 M Abouelresh (2566_CR1) 2012; 96 2566_CR39 DA Wood (2566_CR47) 2016; 33 WH Fertl (2566_CR12) 1988; 3 RK Mallick (2566_CR25) 1995; 23 RF Beers (2566_CR7) 1945; 26 2566_CR44 JW Schmoker (2566_CR35) 1983; 67 2566_CR40 QR Passey (2566_CR30) 1990; 74 P Zhao (2566_CR51) 2016; 100 U Mann (2566_CR26) 1986; 10 E Sfidari (2566_CR36) 2012; 86–87 M Alshakhs (2566_CR5) 2017; 10 A Kadkhodaie (2566_CR20) 2017; 148 SL Herron (2566_CR14) 1988; 72 DA Wood (2566_CR48) 2018; 2 Z Huang (2566_CR17) 1996; 13 V Bolandi (2566_CR8) 2015; 133 R Huang (2566_CR16) 2015; 2 BL Meyer (2566_CR28) 1984; 68 2566_CR9 2566_CR13 2566_CR15 2566_CR6 B Alizadeh (2566_CR2) 2018; 167 B Alizadeh (2566_CR3) 2011; 45 A Kadkhodaie (2566_CR19) 2009; 35 M Tan (2566_CR42) 2015; 26 DM Jarvie (2566_CR18) 2007; 91 Y Wang (2566_CR46) 2013; 35 SMH Tabatabaei (2566_CR41) 2015; 127 MS El Sharawy (2566_CR11) 2012; 80 FP Wang (2566_CR45) 2009; 59 J Schmoker (2566_CR32) 1979; 63 2566_CR23 2566_CR24 RM Pollastro (2566_CR31) 2007; 91 P Singh (2566_CR38) 2008; 58 MR Kamali (2566_CR21) 2004; 45 DA Wood (2566_CR49) 2019; 5 2566_CR27 2566_CR29 DA Wood (2566_CR50) 2019; 5 WJ Al-Mudhafar (2566_CR4) 2017; 7 |
| References_xml | – volume: 58 start-page: 777 year: 2008 end-page: 795 ident: CR38 article-title: Barnett Shale - Unfolded: Sedimentology, sequence stratigraphy, and regional mapping publication-title: Gulf Coast Association of Geological Societies Transactions – volume: 80 start-page: 129 year: 2012 end-page: 143 ident: CR11 article-title: Application of well log analysis for source rock evaluation in the Duwi Formation, Southern Gulf of Suez, Egypt publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2011.12.005 – volume: 100 start-page: 1311 issue: 8 year: 2016 end-page: 1327 ident: CR51 article-title: A new method for estimating total organic carbon content from well logs publication-title: AAPG Bulletin doi: 10.1306/02221615104 – ident: CR39 – volume: 33 start-page: 687 year: 2016 end-page: 702 ident: CR37 article-title: Application of extreme learning machine and neural networks in total organic carbon content prediction in organic shale with wire line logs publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.05.060 – volume: 33 start-page: 751 year: 2016 end-page: 768 ident: CR47 article-title: Metaheuristic profiling to assess performance of hybrid evolutionary optimization algorithms applied to complex wellbore trajectories publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.05.041 – volume: 67 start-page: 2165 year: 1983 end-page: 2174 ident: CR35 article-title: Organic carbon in Bakken formation, United States portion of Williston basin publication-title: American Association of Petroleum Geologists Bulletin – volume: 10 start-page: 1105 issue: 4–6 year: 1986 end-page: 1112 ident: CR26 article-title: Relation between source rock properties and wireline log parameters, an example from Lower Jurassic Posidonia Shale, NW Germany publication-title: Organic Geochemistry doi: 10.1016/S0146-6380(86)80051-1 – volume: 23 start-page: 871 issue: 10 year: 1995 end-page: 879 ident: CR25 article-title: Thermal maturity evaluation by sonic log and seismic velocity analysis in parts of Upper Assam Basin, India publication-title: Organic Geochemistry doi: 10.1016/0146-6380(95)00088-7 – ident: CR29 – volume: 26 start-page: 1 year: 1945 end-page: 22 ident: CR7 article-title: Radioactivity and organic content of some Paleozoic shales publication-title: American Association of Petroleum Geologists Bulletin – volume: 63 start-page: 1504 year: 1979 end-page: 1509 ident: CR32 article-title: Determination of organic content of Appalachian Devonian Shales from formation-density logs: Geologic notes publication-title: AAPG Bulletin – volume: 91 start-page: 475 year: 2007 end-page: 499 ident: CR18 article-title: Unconventional shale-gas systems: The Mississippian Barnett Shale of North-Central Texas as one model for thermogenic shale-gas assessment publication-title: AAPG Bulletin doi: 10.1306/12190606068 – volume: 10 start-page: 118 year: 2017 end-page: 133 ident: CR5 article-title: A new method to estimate total organic carbon (TOC) content, an example from Goldwyer Shale Formation, the Canning Basin publication-title: The Open Petroleum Engineering Journal doi: 10.2174/1874834101710010118 – volume: 91 start-page: 405 issue: 4 year: 2007 end-page: 436 ident: CR31 article-title: Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend arch–Fort Worth Basin, Texas publication-title: AAPG Bulletin doi: 10.1306/10300606008 – volume: 35 start-page: 100 issue: 2 year: 2013 end-page: 104 ident: CR46 article-title: The method of application of gamma-ray spectral logging data for determining clay mineral content publication-title: Journal of Oil and Gas Technology – volume: 2 start-page: 155 year: 2015 end-page: 161 ident: CR16 article-title: Selection of logging-based TOC calculation methods for shale reservoirs: A case study of the Jiaoshiba shale gas field in the Sichuan Basin publication-title: Natural Gas Industry B doi: 10.1016/j.ngib.2015.07.004 – ident: CR15 – ident: CR9 – volume: 72 start-page: 1007 year: 1988 ident: CR14 article-title: Source rock evaluation using geochemical information from wireline logs and cores (abs) publication-title: American Association of Petroleum Geologists Bulletin – volume: 2 start-page: 148 issue: 2 year: 2018 end-page: 162 ident: CR48 article-title: A transparent Open-Box learning network provides insight to complex systems and a performance benchmark for more-opaque machine learning algorithms publication-title: Advances in Geo-Energy Research doi: 10.26804/ager.2018.02.04 – volume: 45 start-page: 141 year: 2004 end-page: 148 ident: CR21 article-title: Total organic carbon content determined from well logs using ΔlogR and neuro fuzzy techniques publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2004.08.005 – volume: 65 start-page: 2165 year: 1981 end-page: 2174 ident: CR33 article-title: Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs publication-title: American Association of Petroleum Geologists Bulletin – volume: 127 start-page: 35 year: 2015 end-page: 43 ident: CR41 article-title: A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2015.01.028 – volume: 5 start-page: 753 year: 2019 end-page: 766 ident: CR50 article-title: Sensitivity analysis and optimization capabilities of the transparent open box learning network in predicting coal gross calorific value from underlying compositional variables publication-title: Modeling Earth Systems and Environment. doi: 10.1007/s40808-019-00583-1 – volume: 21 start-page: 1 issue: 5 year: 2016 end-page: 10 ident: CR10 article-title: Logging-lithology identification methods and their application: A case study on the Chang 7 Member in the central-western Ordos Basin, NW China publication-title: China Petroleum Exploration – volume: 59 start-page: 779 year: 2009 end-page: 793 ident: CR45 article-title: Screening criteria for shale-gas systems publication-title: Gulf Coast Association of Geological Societies Transactions – volume: 96 start-page: 1 issue: 1 year: 2012 end-page: 22 ident: CR1 article-title: Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas publication-title: AAPG Bulletin doi: 10.1306/04261110116 – volume: 68 start-page: 121 year: 1984 end-page: 129 ident: CR28 article-title: Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity cross plots publication-title: American Association of Petroleum Geologists Bulletin – ident: CR6 – volume: 74 start-page: 1777 year: 1990 end-page: 1794 ident: CR30 article-title: A practical modal for organic richness from porosity and resistivity logs publication-title: American Association of Petroleum Geologists Bulletin – volume: 26 start-page: 792 year: 2015 end-page: 802 ident: CR42 article-title: Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: A comparative study publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2015.07.008 – volume: 78 start-page: 119 year: 2011 end-page: 130 ident: CR22 article-title: TOC determination of Gadvan Formation in South Pars Gas field, using artificial intelligent systems and geochemical data publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2011.05.010 – ident: CR40 – ident: CR27 – volume: 167 start-page: 857 year: 2018 end-page: 868 ident: CR2 article-title: Estimating source rock parameters using wireline data: An example from Dezful Embayment, South West of Iran publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.12.021 – ident: CR23 – volume: 45 start-page: 261 year: 2011 end-page: 269 ident: CR3 article-title: Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars gas field, Iran publication-title: Computers and Geosciences doi: 10.1016/j.cageo.2011.11.024 – volume: 148 start-page: 94 year: 2017 end-page: 102 ident: CR20 article-title: Estimation of vitrinite reflectance from well log data publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2016.10.015 – volume: 13 start-page: 227 year: 1996 end-page: 290 ident: CR17 article-title: Artificial neural network modeling as an aid to source rock characterization publication-title: Marine and Petroleum Geology – volume: 4 start-page: 373 issue: 3 year: 2016 end-page: 385 ident: CR43 article-title: Estimation of total organic carbon and brittleness volume publication-title: Interpretation doi: 10.1190/INT-2015-0166.1 – ident: CR44 – volume: 3 start-page: 407 year: 1988 end-page: 419 ident: CR12 article-title: Total organic carbon content determined from well logs publication-title: SPE Formation Evaluation doi: 10.2118/15612-PA – volume: 133 start-page: 167 year: 2015 end-page: 176 ident: CR8 article-title: Source rock characterization of the Albian Kazhdumi formation by integrating well logs and geochemical data in the Azadegan oilfield, Abadan plain, SW Iran publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2015.05.022 – ident: CR13 – volume: 35 start-page: 457 year: 2009 end-page: 474 ident: CR19 article-title: A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data publication-title: Computers and Geosciences – ident: CR34 – volume: 7 start-page: 1023 year: 2017 end-page: 1033 ident: CR4 article-title: Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms publication-title: Journal of Petroleum Exploration and Production doi: 10.1007/s13202-017-0360-0 – volume: 5 start-page: 395 year: 2019 end-page: 419 ident: CR49 article-title: Transparent open box learning network provides auditable predictions for coal gross calorific value publication-title: Modeling Earth Systems and Environment. doi: 10.1007/s40808-018-0543-9 – volume: 86–87 start-page: 190 year: 2012 end-page: 205 ident: CR36 article-title: Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2012.03.024 – ident: CR24 – volume: 86–87 start-page: 190 year: 2012 ident: 2566_CR36 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2012.03.024 – volume: 100 start-page: 1311 issue: 8 year: 2016 ident: 2566_CR51 publication-title: AAPG Bulletin doi: 10.1306/02221615104 – volume: 127 start-page: 35 year: 2015 ident: 2566_CR41 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2015.01.028 – volume: 148 start-page: 94 year: 2017 ident: 2566_CR20 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2016.10.015 – ident: 2566_CR29 doi: 10.2118/131350-MS – volume: 72 start-page: 1007 year: 1988 ident: 2566_CR14 publication-title: American Association of Petroleum Geologists Bulletin – ident: 2566_CR27 – ident: 2566_CR40 doi: 10.3133/pp356A – ident: 2566_CR15 doi: 10.3133/ofr8720 – volume: 10 start-page: 118 year: 2017 ident: 2566_CR5 publication-title: The Open Petroleum Engineering Journal doi: 10.2174/1874834101710010118 – ident: 2566_CR23 – volume: 96 start-page: 1 issue: 1 year: 2012 ident: 2566_CR1 publication-title: AAPG Bulletin doi: 10.1306/04261110116 – volume: 63 start-page: 1504 year: 1979 ident: 2566_CR32 publication-title: AAPG Bulletin – volume: 35 start-page: 100 issue: 2 year: 2013 ident: 2566_CR46 publication-title: Journal of Oil and Gas Technology – volume: 167 start-page: 857 year: 2018 ident: 2566_CR2 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2017.12.021 – volume: 33 start-page: 687 year: 2016 ident: 2566_CR37 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.05.060 – volume: 133 start-page: 167 year: 2015 ident: 2566_CR8 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2015.05.022 – ident: 2566_CR13 doi: 10.2118/147184-MS – volume: 7 start-page: 1023 year: 2017 ident: 2566_CR4 publication-title: Journal of Petroleum Exploration and Production doi: 10.1007/s13202-017-0360-0 – volume: 5 start-page: 395 year: 2019 ident: 2566_CR49 publication-title: Modeling Earth Systems and Environment. doi: 10.1007/s40808-018-0543-9 – volume: 45 start-page: 141 year: 2004 ident: 2566_CR21 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2004.08.005 – volume: 23 start-page: 871 issue: 10 year: 1995 ident: 2566_CR25 publication-title: Organic Geochemistry doi: 10.1016/0146-6380(95)00088-7 – volume: 78 start-page: 119 year: 2011 ident: 2566_CR22 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2011.05.010 – volume: 2 start-page: 155 year: 2015 ident: 2566_CR16 publication-title: Natural Gas Industry B doi: 10.1016/j.ngib.2015.07.004 – volume: 91 start-page: 405 issue: 4 year: 2007 ident: 2566_CR31 publication-title: AAPG Bulletin doi: 10.1306/10300606008 – ident: 2566_CR9 – ident: 2566_CR34 – volume: 74 start-page: 1777 year: 1990 ident: 2566_CR30 publication-title: American Association of Petroleum Geologists Bulletin – volume: 91 start-page: 475 year: 2007 ident: 2566_CR18 publication-title: AAPG Bulletin doi: 10.1306/12190606068 – volume: 58 start-page: 777 year: 2008 ident: 2566_CR38 publication-title: Gulf Coast Association of Geological Societies Transactions – volume: 5 start-page: 753 year: 2019 ident: 2566_CR50 publication-title: Modeling Earth Systems and Environment. doi: 10.1007/s40808-019-00583-1 – volume: 21 start-page: 1 issue: 5 year: 2016 ident: 2566_CR10 publication-title: China Petroleum Exploration – volume: 67 start-page: 2165 year: 1983 ident: 2566_CR35 publication-title: American Association of Petroleum Geologists Bulletin – ident: 2566_CR6 – ident: 2566_CR24 doi: 10.2118/21297-PA – ident: 2566_CR44 – volume: 33 start-page: 751 year: 2016 ident: 2566_CR47 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2016.05.041 – volume: 3 start-page: 407 year: 1988 ident: 2566_CR12 publication-title: SPE Formation Evaluation doi: 10.2118/15612-PA – volume: 26 start-page: 792 year: 2015 ident: 2566_CR42 publication-title: Journal of Natural Gas Science and Engineering doi: 10.1016/j.jngse.2015.07.008 – ident: 2566_CR39 – volume: 13 start-page: 227 year: 1996 ident: 2566_CR17 publication-title: Marine and Petroleum Geology – volume: 65 start-page: 2165 year: 1981 ident: 2566_CR33 publication-title: American Association of Petroleum Geologists Bulletin – volume: 35 start-page: 457 year: 2009 ident: 2566_CR19 publication-title: Computers and Geosciences – volume: 59 start-page: 779 year: 2009 ident: 2566_CR45 publication-title: Gulf Coast Association of Geological Societies Transactions – volume: 26 start-page: 1 year: 1945 ident: 2566_CR7 publication-title: American Association of Petroleum Geologists Bulletin – volume: 2 start-page: 148 issue: 2 year: 2018 ident: 2566_CR48 publication-title: Advances in Geo-Energy Research doi: 10.26804/ager.2018.02.04 – volume: 68 start-page: 121 year: 1984 ident: 2566_CR28 publication-title: American Association of Petroleum Geologists Bulletin – volume: 4 start-page: 373 issue: 3 year: 2016 ident: 2566_CR43 publication-title: Interpretation doi: 10.1190/INT-2015-0166.1 – volume: 10 start-page: 1105 issue: 4–6 year: 1986 ident: 2566_CR26 publication-title: Organic Geochemistry doi: 10.1016/S0146-6380(86)80051-1 – volume: 45 start-page: 261 year: 2011 ident: 2566_CR3 publication-title: Computers and Geosciences doi: 10.1016/j.cageo.2011.11.024 – volume: 80 start-page: 129 year: 2012 ident: 2566_CR11 publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2011.12.005 |
| SSID | ssj0017759 |
| Score | 2.3128498 |
| Snippet | Accurately estimating total organic carbon (TOC) from suites of well logs is essential as it is too costly and time consuming to take direct measurements from... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5451 |
| SubjectTerms | Algorithms Cores Correlation Data Earth and Environmental Science Earth Sciences Evaluation Geophysics/Geodesy Learning algorithms Machine learning Matching Methods Model accuracy Organic carbon Predictions Sampling Sedimentary rocks Shale Shale gas Shales Total organic carbon Well logs Wells |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKyQuqOUhthQ0B25gKXFsZ3PctlQVooDULvQWjR-hlbYJyqaX_o3-YWby2AoESJz9OGTGM98XzzcW4k1qUc9t5qXL84QJSiFd0IlUaJ03EYmFsHb49JM9WeoPF-ZiFIWtp2r36Uqyj9QbsRsfXi2Z7nCetpI4z7bhdl7kxUu12Nwd5LkZQG-WSW1MNkpl_rzHr-noHmP-di3aZ5vjHfF4hImwGOy6Kx7E-ol42Jdr-vVTcXfeEGiGQUjp4RBb19TwpeVbl96RgGUj8JGfQIMDbOvYdXB2SckAvsXVSlLAgyPsEBiEstAJsIbPFD2ur25jGIZOKUjz7ylYrL437VV3eQ3YwVfi1s3NGs6QS9Fp9Igr4Lkr6zOxPH5_fngix-cVJGZadTIYl6PNi5wxYAhVVVQ6LQigae2i0r7IVeWZ_yUqVklGPCTNNIYCo1URY8iei626qeMLAakKafQOg6bFMaQ4t04biqPKz4to3Uyk01cu_dh7nJ_AWJWbrsm9ZUqyTNlbpkxn4u1mzY-h88Y_Z-9PxivHU7guFWVeQ5woMTPxbjLo_fDfd9v7v-kvxSPFPtVLFPfFVtfexFeEVTr3unfNnxfM3uQ priority: 102 providerName: Springer Nature |
| Title | Total Organic Carbon Predictions from Lower Barnett Shale Well-log Data Applying an Optimized Data Matching Algorithm at Various Sampling Densities |
| URI | https://link.springer.com/article/10.1007/s00024-020-02566-1 https://www.proquest.com/docview/2471530605 |
| Volume | 177 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1420-9136 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1420-9136 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: BENPR dateStart: 20030501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1420-9136 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: 8FG dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1420-9136 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1420-9136 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017759 issn: 0033-4553 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFH7aWiFxQTBAFEblw25gkTi20xwQ6rZ208bKxFYYp8i_wpC6ZLTZhX-Dfxg_J2kFErvGsQ9-L5-_F7_vPYC9WCo-komhOk0jDFAyqi2PKFNSG-GUj0JQO3w2k8dzfnIlrrZg1mlhMK2yw8QA1LYy-I_8HfMoKjy_jcSH258Uu0bh7WrXQkO1rRXs-1BibBv6DCtj9aC_P5mdf17fK6SpaAhxklAuRNLKaIKYDsGBUwynkAdIGv99VG345z9XpuEkmj6GRy2FJOPG5k9gy5U78CCkcprVU_h9WXlCTRqRpSEHaqmrkpwv8UYmOBlBSQn5iO3RyL5alq6uycW1PyjIV7dYUA-G5FDViiBBRREUUSX55JHl5scvZ5uhMw_g-OuKjBff_SbV1zdE1eSLj7uruxW5UJim7kcPMTseK7Y-g_l0cnlwTNvWC1QlnNXUCp0qmWYp8kNriyIreJx58sa5doybLGWFwdgwYq6IEh-jxAlXNlNOMqecTZ5Dr6xK9wJIzGzsjFaW-8nOxmokNRceY5kZZU7qAcTdLuemrUuO7TEW-bqicrBM7i2TB8vk8QDerOfcNlU57n17tzNe3n6hq3zjTwN42xl0M_z_1V7ev9oreMjQh4JccRd69fLOvfa8pdZD2B5Nj4bQHx99O50MW9f0T-ds_AeA0evz |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RUNVeUJ9qgLZzaE_tqvZ6bccHVAEBhZKkqISWm9mXS6VgQ2JUtX-D_8Nv64wfiVqp3DivvQfPeOb7dvabYeyNHynZjQLDdRx7RFASrq30uFCRNqFTyEJIOzwcRf1j-ekkPFliN60Whq5VtjGxCtS2MHRG_kFgFA0R33rhx4tLTlOjqLrajtBQzWgFu1m1GGuEHQfu10-kcLPN_R7a-60Qe7vjnT5vpgxwFUhRchvqWEVxEhMUsjbLkkwis0caIbUT0iSxyAzRIE-4zAsQjvuBVDZRLhJOORvgvvfYigxkguRvZXt3dPhlXseI47AG4EHAZRgGjWynEu9RMJKc6Bvhjoj7f6fGBd79p0RbZb69R2y1gaywVfvYY7bk8ifsfnV11MyesutxgQAealGngR011UUOh1OqAFVODSRhgQGNY4NtNc1dWcLRGSYm-OYmE47BF3qqVECAmERXoHL4jJHs_MdvZ-ulISYMOiqDrcl3NEp5dg6qhK_I84urGRwpuhaPqz26jU8dYp-x4zsxwnO2nBe5e8HAF9Z3Risr8WVnfdWNtAwxpgvTTVykO8xvv3Jqmj7oNI5jks47OFeWSdEyaWWZ1O-wd_N3LuouILc-vdEaL20iwixd-G-HvW8Nulj-_25rt-_2mj3oj4eDdLA_OlhnDwX5UyWV3GDL5fTKvUTMVOpXjWMCO73rf-EPfRQlKw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4im2FJgDnMBq4tjO5oBQ6bK09EGlttBb8Cu00jYpu6kQ_A3-Db-OmTx2BRK99ezYh8x45hvPfDOMPY-1kUOdOG7TNKIAJePWy4gLo61TwWAUQtzh3T29eSQ_HKvjJfa758JQWWVvExtD7StHb-RrAq2oQnwbqbWiK4vYH43fnH_jNEGKMq39OI1WRbbDj-8Yvs1eb41Q1i-EGL873Njk3YQBbhIpau6VTY1Os5RgkPdFkRUSo3oMIaQNQrosFYWjECgSoYgShOJxIo3PTNAimOATPPcau55SF3diqY_fzzMYaapa6J0kXCqVdISdhrZHZkhyCtwIcWge_-0UF0j3n-Rs4_PGd9jtDqzCeqtdd9lSKO-xG03RqJvdZ78OK4Tu0NI5HWyYqa1K2J9S7qdRZyDyCuzQIDZ4a6ZlqGs4OEGXBJ_DZMLR7MLI1AYIChPdCkwJH9GGnZ3-DL5d2kVXQY9ksD75iiKoT87A1PAJI_zqYgYHhgricXVEdfjUG_YBO7oSETxky2VVhkcMYuHj4KzxEjcHH5uhtlKhNRdumAVtByzu_3Luug7oNIhjks97NzeSyVEyeSOZPB6wl_M9523_j0u_Xu2Fl3e2YJYvNHfAXvUCXSz__7SVy097xm7iDch3tva2H7NbgtSp4UiusuV6ehGeIFiq7dNGK4F9uepr8AdqWyLF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+Organic+Carbon+Predictions+from+Lower+Barnett+Shale+Well-log+Data+Applying+an+Optimized+Data+Matching+Algorithm+at+Various+Sampling+Densities&rft.jtitle=Pure+and+applied+geophysics&rft.au=Wood%2C+David+A.&rft.date=2020-11-01&rft.issn=0033-4553&rft.eissn=1420-9136&rft.volume=177&rft.issue=11&rft.spage=5451&rft.epage=5468&rft_id=info:doi/10.1007%2Fs00024-020-02566-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00024_020_02566_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-4553&client=summon |