Dynamic development of landslide susceptibility based on slope unit and deep neural networks

The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide preve...

Full description

Saved in:
Bibliographic Details
Published inLandslides Vol. 18; no. 1; pp. 281 - 302
Main Authors Hua, Ye, Wang, Xianmin, Li, Yongwei, Xu, Peiyun, Xia, Wenxiang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1612-510X
1612-5118
DOI10.1007/s10346-020-01444-0

Cover

Abstract The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide prevention. This work employs multi-source and three-temporal landslide monitoring data (geology, terrain, hydrology, and remote sensing data) to reveal the dynamic change of landslide susceptibility with time in the Badong-Zigui section in the Three Gorges area. Nine influence factors for landslides (land use, aspect, engineering rock group (ERG), slope, distance to river (DTR), relative relief, normalized difference water index (NDWI), normalized difference vegetation index (NDVI) and annual cumulative rainfall (ACR)) are generated from the monitoring data. The algorithms of slope unit segmentation and deep neural networks are adopted to conduct landslide susceptibility evaluations in the 3 years of 2002, 2007, and 2017 and to investigate the dynamic change of landslide susceptibility. Moreover, this work also reveals the dynamic response of landslide susceptibility to the changing factors of rainfall, reservoir water fluctuation, soil moisture, and land use. Some new viewpoints are suggested as follows. (1) The main factors affecting landslide occurrence are DTR, NDWI, relative relief, and ERG. Among them, DTR contributes most in all the 3 years; thus, reservoir water fluctuation has the most important impact on landslide occurrence in the study area. (2) From 2002 to 2007, the new high-susceptibility areas mainly appeared along the Yangtze River and also distributed around the roads. From 2007 to 2017, more than half of the new high-susceptibility areas were distributed around the roads, and susceptibility increases also occurred in the mountainous areas far from the Yangtze River. (3) The development of landslide susceptibility from 2002 to 2007 was mainly caused by the rising of reservoir water level as well as road construction. The change of landslide susceptibility from 2007 to 2017 was mainly caused by rainfall and road construction. This work may provide some clues on landslide prevention and control according to the dynamic development of landslide susceptibility and the causes of the susceptibility changes.
AbstractList The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide prevention. This work employs multi-source and three-temporal landslide monitoring data (geology, terrain, hydrology, and remote sensing data) to reveal the dynamic change of landslide susceptibility with time in the Badong-Zigui section in the Three Gorges area. Nine influence factors for landslides (land use, aspect, engineering rock group (ERG), slope, distance to river (DTR), relative relief, normalized difference water index (NDWI), normalized difference vegetation index (NDVI) and annual cumulative rainfall (ACR)) are generated from the monitoring data. The algorithms of slope unit segmentation and deep neural networks are adopted to conduct landslide susceptibility evaluations in the 3 years of 2002, 2007, and 2017 and to investigate the dynamic change of landslide susceptibility. Moreover, this work also reveals the dynamic response of landslide susceptibility to the changing factors of rainfall, reservoir water fluctuation, soil moisture, and land use. Some new viewpoints are suggested as follows. (1) The main factors affecting landslide occurrence are DTR, NDWI, relative relief, and ERG. Among them, DTR contributes most in all the 3 years; thus, reservoir water fluctuation has the most important impact on landslide occurrence in the study area. (2) From 2002 to 2007, the new high-susceptibility areas mainly appeared along the Yangtze River and also distributed around the roads. From 2007 to 2017, more than half of the new high-susceptibility areas were distributed around the roads, and susceptibility increases also occurred in the mountainous areas far from the Yangtze River. (3) The development of landslide susceptibility from 2002 to 2007 was mainly caused by the rising of reservoir water level as well as road construction. The change of landslide susceptibility from 2007 to 2017 was mainly caused by rainfall and road construction. This work may provide some clues on landslide prevention and control according to the dynamic development of landslide susceptibility and the causes of the susceptibility changes.
The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide prevention. This work employs multi-source and three-temporal landslide monitoring data (geology, terrain, hydrology, and remote sensing data) to reveal the dynamic change of landslide susceptibility with time in the Badong-Zigui section in the Three Gorges area. Nine influence factors for landslides (land use, aspect, engineering rock group (ERG), slope, distance to river (DTR), relative relief, normalized difference water index (NDWI), normalized difference vegetation index (NDVI) and annual cumulative rainfall (ACR)) are generated from the monitoring data. The algorithms of slope unit segmentation and deep neural networks are adopted to conduct landslide susceptibility evaluations in the 3 years of 2002, 2007, and 2017 and to investigate the dynamic change of landslide susceptibility. Moreover, this work also reveals the dynamic response of landslide susceptibility to the changing factors of rainfall, reservoir water fluctuation, soil moisture, and land use. Some new viewpoints are suggested as follows. (1) The main factors affecting landslide occurrence are DTR, NDWI, relative relief, and ERG. Among them, DTR contributes most in all the 3 years; thus, reservoir water fluctuation has the most important impact on landslide occurrence in the study area. (2) From 2002 to 2007, the new high-susceptibility areas mainly appeared along the Yangtze River and also distributed around the roads. From 2007 to 2017, more than half of the new high-susceptibility areas were distributed around the roads, and susceptibility increases also occurred in the mountainous areas far from the Yangtze River. (3) The development of landslide susceptibility from 2002 to 2007 was mainly caused by the rising of reservoir water level as well as road construction. The change of landslide susceptibility from 2007 to 2017 was mainly caused by rainfall and road construction. This work may provide some clues on landslide prevention and control according to the dynamic development of landslide susceptibility and the causes of the susceptibility changes.
Author Wang, Xianmin
Xu, Peiyun
Li, Yongwei
Xia, Wenxiang
Hua, Ye
Author_xml – sequence: 1
  givenname: Ye
  surname: Hua
  fullname: Hua, Ye
  organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences
– sequence: 2
  givenname: Xianmin
  surname: Wang
  fullname: Wang, Xianmin
  email: xianminwang@163.com
  organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences
– sequence: 3
  givenname: Yongwei
  surname: Li
  fullname: Li, Yongwei
  organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences
– sequence: 4
  givenname: Peiyun
  surname: Xu
  fullname: Xu, Peiyun
  organization: School of Geography and Information Engineering, China University of Geosciences
– sequence: 5
  givenname: Wenxiang
  surname: Xia
  fullname: Xia, Wenxiang
  organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZNPdPUr9BMGLggchJLuJpG6TNckq_fdGKwoeepo5vM-8wzNDE-edRuiYwCkBqM4iAVYuCqBQACnLsoA9NCULQgtOSD353eHpAM1iXAHQBlgzRc8XGyfXtsWdfte9H9baJewN7qXrYm87jeMYWz0kq2xv0wYrGXWHvcMxpzUenU04ZzOvB-z0GGSfR_rw4TUeon0j-6iPfuYcPV5dPixvirv769vl-V0hWUlT0TBQbVOXNaNcUlOpDlpoOmZIJ0EB7ZhsOGWSg1JEGcWqujScVw2tzQIMY3N0sr07BP826pjEyo_B5UpByxo4p5TxnKLbVBt8jEEbMQS7lmEjCIgvi2JrUWSL4tuigAzV_6DWJpmsdylI2-9G2RaNuce96PD31Q7qE6aeiS8
CitedBy_id crossref_primary_10_1007_s10064_022_02836_3
crossref_primary_10_3390_rs14081919
crossref_primary_10_3390_rs14112707
crossref_primary_10_3390_ijerph192114241
crossref_primary_10_1016_j_jrmge_2024_04_029
crossref_primary_10_1016_j_jag_2022_102713
crossref_primary_10_3390_w15173089
crossref_primary_10_1016_j_envsoft_2023_105657
crossref_primary_10_1080_10106049_2022_2158948
crossref_primary_10_1016_j_geomorph_2023_109033
crossref_primary_10_3390_app142210654
crossref_primary_10_1177_03091333241276523
crossref_primary_10_1007_s11069_023_06092_w
crossref_primary_10_1007_s10346_022_01918_3
crossref_primary_10_1080_17538947_2023_2216029
crossref_primary_10_1007_s11356_023_31352_4
crossref_primary_10_1007_s11069_021_05083_z
crossref_primary_10_1080_19475705_2025_2468323
crossref_primary_10_1515_geo_2022_0550
crossref_primary_10_1007_s10064_024_04008_x
crossref_primary_10_1016_j_pce_2022_103161
crossref_primary_10_1007_s10346_021_01843_x
crossref_primary_10_1016_j_cageo_2023_105364
crossref_primary_10_1155_2022_5298988
crossref_primary_10_3390_ijgi12050197
crossref_primary_10_1007_s10346_021_01781_8
crossref_primary_10_1016_j_ecoinf_2024_102862
crossref_primary_10_3390_rs16224218
crossref_primary_10_1007_s12145_024_01364_w
crossref_primary_10_1016_j_earscirev_2021_103858
crossref_primary_10_1016_j_ecoinf_2024_102945
crossref_primary_10_3390_su142113739
crossref_primary_10_1016_j_aej_2024_06_054
crossref_primary_10_1016_j_foreco_2023_121288
crossref_primary_10_1016_j_gsf_2023_101770
crossref_primary_10_3390_rs16020347
crossref_primary_10_1016_j_asr_2022_01_043
crossref_primary_10_13168_AGG_2024_0019
crossref_primary_10_1016_j_mex_2024_103005
crossref_primary_10_1007_s11430_023_1306_8
crossref_primary_10_3390_rs14236068
crossref_primary_10_1002_esp_5777
crossref_primary_10_1016_j_engappai_2022_105457
crossref_primary_10_1038_s41893_021_00757_9
crossref_primary_10_1007_s10706_022_02333_0
crossref_primary_10_1007_s11356_023_25650_0
crossref_primary_10_3389_feart_2022_974442
crossref_primary_10_1016_j_earscirev_2024_104700
crossref_primary_10_1016_j_ecolind_2024_112073
crossref_primary_10_1109_JSTARS_2024_3437751
crossref_primary_10_1016_j_envsoft_2023_105759
crossref_primary_10_1016_j_jag_2024_104037
crossref_primary_10_1080_14498596_2024_2335262
crossref_primary_10_1080_19475705_2024_2413697
crossref_primary_10_3390_rs15225427
crossref_primary_10_1007_s12665_024_11501_9
crossref_primary_10_1007_s12145_024_01617_8
crossref_primary_10_1016_j_heliyon_2023_e20170
crossref_primary_10_1007_s11356_023_31232_x
crossref_primary_10_1016_j_catena_2023_107590
crossref_primary_10_3389_feart_2024_1519771
crossref_primary_10_3390_ijerph17218055
crossref_primary_10_1016_j_jrmge_2023_11_001
crossref_primary_10_1007_s11004_023_10116_3
crossref_primary_10_1038_s41598_022_18757_w
crossref_primary_10_1007_s10661_022_10075_y
crossref_primary_10_1016_j_catena_2022_106866
crossref_primary_10_1016_j_catena_2023_107757
crossref_primary_10_3390_f13111908
crossref_primary_10_1155_2022_5390176
crossref_primary_10_20965_jdr_2021_p0501
crossref_primary_10_1007_s10064_024_03563_7
crossref_primary_10_1007_s12517_021_07124_0
crossref_primary_10_1007_s11069_023_06121_8
crossref_primary_10_1108_EC_07_2023_0374
crossref_primary_10_1061_NHREFO_NHENG_2004
crossref_primary_10_1080_17538947_2022_2062467
crossref_primary_10_1016_j_jafrearsci_2025_105633
crossref_primary_10_3389_fevo_2023_1339265
crossref_primary_10_3389_feart_2023_1132722
crossref_primary_10_1016_j_catena_2025_108771
crossref_primary_10_3390_rs16132394
Cites_doi 10.1016/j.geomorph.2006.02.011
10.1016/S0169-555X(99)00078-1
10.1109/JSTARS.2014.2308553
10.3390/app10010016
10.1007/s10346-004-0039-8
10.1109/MSP.2012.2205597
10.1201/9780203885284-c265
10.1007/s12665-015-5047-6
10.1016/j.earscirev.2012.02.001
10.1007/s41324-017-0160-0
10.1016/S1002-0160(08)60079-X
10.1016/j.catena.2019.104188
10.1016/j.enconman.2004.12.010
10.1007/s10346-015-0642-x
10.1016/j.scitotenv.2017.02.188
10.1007/s12583-010-0134-9
10.1002/wrcr.20418
10.1007/s12665-013-2863-4
10.1061/(ASCE)1090-0241(2003)129:12(1109)
10.1016/j.rse.2014.07.004
10.1007/s10064-018-1341-3
10.1007/s12518-018-0248-9
10.17576/jsm-2017-4609-23
10.1016/j.media.2016.05.004
10.1016/j.geomorph.2008.03.003
10.1007/s10346-018-0950-z
10.1007/s12303-015-0026-1
10.1016/j.catena.2018.12.018
10.1023/A:1010933404324
10.3390/app9224756
10.1007/s12665-015-4048-9
10.1016/j.geomorph.2006.04.007
10.1007/s12665-017-6731-5
10.1007/s10346-016-0771-x
10.1016/j.geomorph.2011.10.031
10.1007/s10346-015-0557-6
10.1007/s11269-019-2183-x
10.1016/j.catena.2018.03.003
10.1080/10106049.2016.1140824
10.1016/j.enggeo.2014.02.004
10.1080/10106049.2017.1323964
10.1016/j.rse.2011.05.013
10.1061/(ASCE)CF.1943-5509.0000997
10.3390/s19183940
10.1016/j.geomorph.2017.06.013
10.1109/CVPR.2014.214
10.3390/rs11212530
10.1007/s12145-018-0335-9
10.1016/j.enggeo.2016.10.011
10.1002/ese3.449
10.1007/s10346-015-0587-0
10.1007/s11629-017-4697-0
10.1109/MDM.2017.67
10.1016/j.cageo.2020.104470
10.1007/s11069-011-9847-z
10.1016/j.geomorph.2006.04.013
10.1016/j.catena.2018.12.013
10.1007/s12665-016-5400-4
10.1016/j.catena.2019.104451
10.1016/j.scitotenv.2019.02.263
10.1007/s11704-018-8049-1
10.3390/su11226323
10.1002/esp.3290200204
10.5194/nhess-13-2075-2013
10.1142/S1793351X16500045
10.1007/978-3-642-70911-1_20
10.1016/j.geomorph.2007.04.007
10.1016/j.enggeo.2013.12.017
10.1007/s11063-018-9883-8
10.1007/s10666-016-9538-y
10.1039/C5EM00434A
10.1016/S0169-555X(97)00064-0
10.1016/j.geomorph.2018.10.022
10.1007/s11069-018-3299-7
10.1007/s12665-013-2217-2
10.1016/j.geomorph.2017.04.002
10.1016/S0169-555X(98)00056-7
10.1016/j.cageo.2020.104445
10.1007/s10346-019-01286-5
10.1109/LMWC.2018.2888955
10.1056/NEJM199304293281704
10.3390/rs11161921
10.1109/TASLP.2014.2364452
10.1080/10106049.2017.1404141
10.1088/1755-1315/118/1/012037
10.1007/s00500-019-03856-0
10.1109/72.788646
10.3390/ijgi9030144
10.1016/j.enggeo.2008.03.016
10.1080/19475705.2018.1447027
10.1016/j.geomorph.2012.04.024
10.1007/s11042-018-6295-8
10.3390/f10090743
10.1007/s12303-014-0032-8
10.1007/s11629-017-4717-0
10.1007/s10346-010-0202-3
10.1016/j.landusepol.2019.104363
10.1016/j.enggeo.2008.03.010
10.3390/rs12030434
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOI 10.1007/s10346-020-01444-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest)
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database (subscription)
Engineering Database (subscription)
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Agriculture
EISSN 1612-5118
EndPage 302
ExternalDocumentID 10_1007_s10346_020_01444_0
GeographicLocations Yangtze River
GeographicLocations_xml – name: Yangtze River
GrantInformation_xml – fundername: National Natural Science Foundation of China (CN)
  grantid: 41372341
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6KP
6NX
7XC
88I
8CJ
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
L8X
LAS
LK5
LLZTM
LMP
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a342t-930bc9848325a2f7bd0c09d3f1da0b02d3a9523a50bb1bfb3784f557928f60f33
IEDL.DBID BENPR
ISSN 1612-510X
IngestDate Fri Jul 25 09:45:20 EDT 2025
Wed Oct 01 02:50:02 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Fri Feb 21 02:49:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords The Three Gorges Reservoir
Deep neural networks
Landslide susceptibility
Slope unit
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-930bc9848325a2f7bd0c09d3f1da0b02d3a9523a50bb1bfb3784f557928f60f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2480552235
PQPubID 54509
PageCount 22
ParticipantIDs proquest_journals_2480552235
crossref_primary_10_1007_s10346_020_01444_0
crossref_citationtrail_10_1007_s10346_020_01444_0
springer_journals_10_1007_s10346_020_01444_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationSubtitle Journal of the International Consortium on Landslides
PublicationTitle Landslides
PublicationTitleAbbrev Landslides
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Mandal, Chakrabarty, Maity (CR62) 2018; 26
Martinović, Gavin, Reale (CR63) 2016; 215
Wang, Guo, Sawada, Lin, Zhang (CR96) 2016; 20
Xu, Du, Dai, Lee (CR108) 2015; 23
CR38
Zhang, Wu, Niu, Yang, Zhao (CR114) 2017; 76
Jo, Cho, Sang, Choi, Kim, Min, Park (CR49) 2018; 25
(CR65) 1988
Wu, Bai, Guo, Li (CR105) 2016; 21
Paolo, Elia, Bolla (CR74) 2013; 191
Ruette, Lehmann, Or (CR82) 2013; 49
Shirvani (CR88) 2020; 12
Gorsevski, Gessler, Boll, Elliot, Foltz (CR32) 2006; 80
Pamela, Yukni (CR73) 2017; 118
Pham, Prakash, Chen, Ly, Ho, Omidvar, Tran, Tien Bui (CR75) 2019; 11
Tanyas, Rossi, Alvioli, van Westen, Marchesini (CR90) 2019; 327
Dymond, Derose, Harmsworth (CR26) 1995; 20
Wu, Niu, Peng, Ren (CR103) 2013; 70
Sevgen, Kocaman, Nefeslioglu, Gokceoglu (CR85) 2019; 19
Chapelle, Haffner, Vapnik (CR17) 1999; 10
Stumpf, Kerle (CR89) 2011; 115
Zhou, Shao, Westen, Cees (CR117) 2014; 173
Guzzetti, Carrara, Cardinali, Reichenbach (CR35) 1999; 31
Kanungo, Sarkar, Sharma (CR51) 2011; 59
Torizin, Wang, Fuchs, Tong, Balzer, Wan, Kuhn, Li, Chen (CR93) 2018; 15
Kumar, Thakur, Dubey, Shukla (CR54) 2017; 295
Cao, Cao, Wang, Yin, Wang, Vidal (CR14) 2019; 78
Bui, Tuan, Klempe, Pradhan, Revhaug (CR12) 2016; 13
Gupta, Shukla, Thakur (CR34) 2018; 9
Giles, Franklin (CR31) 1998; 21
Chauhan, Sharma, Arora (CR18) 2010; 7
CR52
Ronoud, Asadi (CR80) 2019; 23
Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (CR118) 2019; 183
Lee, Park, Lee (CR56) 2015; 74
Liang, Hui, Wu, Wu, Liu, Zhou, Zhang (CR58) 2016; 18
Anno (CR1) 1993; 34
Shi, Zhang, Li, Wang (CR87) 2019; 50
Liu, Cheng, Kong, Wang, Cui (CR60) 2019; 7
Li, Lan, Guo, Zhang, Li, Wu (CR57) 2017; 14
Oysal (CR72) 2005; 46
Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (CR37) 2012; 112
Yang (CR109) 2017; 31
Cui, Goel, Kingsbury (CR20) 2014; 23
Havaei, Davy, Wardefarley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR39) 2017; 35
He, Luo, Zuo, Xie (CR43) 2019; 33
Polykretis, Chalkias (CR76) 2018; 93
Zhao, Chen (CR115) 2020; 10
Barella, Sobreira, Zêzere (CR6) 2019; 78
CR61
Kim, Lee, Jung, Lee (CR53) 2018; 33
Chen, Li, Wang, Chen, Liu (CR19) 2014; 152
Meier, Masci (CR64) 2012; 32
Xing, Zhang, Shang (CR107) 2016; 10
Romstad, Etzelmüller (CR78) 2009
Owen, Kamp, Khattak, Harp, Keefer, Bauer (CR71) 2008; 94
Thomas, Mirus, Collins, Ning, Godt (CR92) 2018; 15
Bai, Jian, Guo-Nian, Zhou, Hou, Su-Ning (CR4) 2009; 19
Hongyo, Egashira, Hone, Yamaguchi (CR46) 2019; 29
Cao, Zhang, Wang, Liu, Zhang (CR15) 2019; 175
Wang, Chen, Chen (CR100) 2020; 9
Ling, Niu, Bo, Wu, Zhao, Ye (CR59) 2014; 204
Wang, Wu, Chen, Ren, Feng, Du (CR99) 2019; 16
Cascini (CR16) 2008; 102
Young, Palta, Dempsey, Skatrud, Weber, Badr (CR110) 1993; 328
Youssef, Al-Kathery, Pradhan (CR111) 2014; 19
He, Zhuang, Liu, He, Lin (CR42) 2018; 13
Kamp, Growley, Khattak, Owen (CR50) 2008; 101
Sharir, Roslee, Ern, Simon (CR86) 2017; 46
Rowbotham, Dudycha (CR81) 1998; 26
CR9
Mondal, Mandal (CR67) 2019; 11
Wang, Fang, Wang, Peng, Hong (CR101) 2020; 138
Hu, Zhou, Wang, Wang, Wang (CR47) 2019; 11
Fell, Corominas, Bonnard, Cascini, Leroi, Savage (CR29) 2007; 102
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (CR44) 2012; 29
Wang, Li, Wu, Pei, Xie (CR97) 2016; 75
Duo, Wang, Wang (CR25) 2019; 11
Wu, Fu, Niu (CR104) 2014; 71
Cama, Conoscenti, Lombardo, Rotigliano (CR13) 2016; 75
Wang, Fang, Hong (CR98) 2019; 666
Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (CR36) 2006; 81
Wei, Pourghasemi, Zhou (CR102) 2017; 32
Zêzere, Pereira, Melo, Oliveira, Garcia (CR113) 2017; 589
Ehret, Rohn, Dumperth, Eckstein, Ernstberger, Otte, Rudolph, Wiedenmann, Wei, Bi (CR27) 2010; 21
Bacha, Shafique, van der Werff (CR3) 2018; 15
Dieu, Shirzadi, Shahabi, Geertsema, Omidvar, Clague, Binh, Dou, Asl, Bin Ahmad, Lee (CR21) 2019; 10
Binh, Prakash (CR7) 2019; 34
Seide, Gang, Dong (CR84) 2012; 1-5
Montrasio, Schilirò, Terrone (CR68) 2015; 13
CR10
CR94
Niu, Wu, Yao, Ling, Li, Peng (CR70) 2017; 7
Ramachandra, Aithal, Kumar, Joshi (CR77) 2013; 6
CR91
Zhe, Yang, Yang, Jian, Qi (CR116) 2013; 53
Gaudio, Wasowski, Muscillo (CR30) 2013; 13
Yu, Cao, Zhou, Wang, Huo (CR112) 2019; 9
Binh, Prakash, Singh, Shirzadi, Shahabi, Thi-Thu-Trang, Dieu (CR8) 2019; 175
Miao, Wang, Yin, Toshitaka, Yuanyao (CR66) 2014; 171
Romstad, Etzelmüller (CR79) 2012; 139
Breiman (CR11) 2001; 45
Dou, Yunus, Dieu, Merghadi, Sahana, Zhu, Chen, Han, Binh (CR23) 2020; 17
Dong, Jaafari, Bayat, Mafi-Gholami, Qi, Moayedi, Tran, Hai-Bang, Tien-Thinh, Phan, Chinh, Nguyen, Bui, Binh (CR22) 2020; 188
Hong, Ilia, Tsangaratos, Chen, Xu (CR45) 2017; 290
He, Pan, Dai, Wang, Liu (CR40) 2012; 171
Nefeslioglu, Gorum (CR69) 2020; 91
He, Zhang, Ren, Sun (CR41) 2015; 1
CR28
Drăguţ, Blaschke (CR24) 2006; 81
Lagomarsino, Tofani, Segoni, Catani, Casagli (CR55) 2017; 22
Ba, Chen, Deng, Yang, Li (CR2) 2018; 11
van Westen, Castellanos, Kuriakose (CR95) 2008; 102
Gorsevski, Brown, Panter, Onasch, Simic, Snyder (CR33) 2016; 13
Huang, Zhao (CR48) 2018; 165
Saha, Gupta, Sarkar, Arora, Csaplovics (CR83) 2005; 2
Xie, Esaki, Zhou, Mitani (CR106) 2003; 129
Bai, Wang, Lü, Zhou, Hou, Xu (CR5) 2010; 115
J Cao (1444_CR14) 2019; 78
D Ehret (1444_CR27) 2010; 21
J Torizin (1444_CR93) 2018; 15
DN Rowbotham (1444_CR81) 1998; 26
L Montrasio (1444_CR68) 2015; 13
SP Mandal (1444_CR62) 2018; 26
1444_CR91
A Stumpf (1444_CR89) 2011; 115
1444_CR94
PV Gorsevski (1444_CR32) 2006; 80
1444_CR10
VD Dong (1444_CR22) 2020; 188
SR Yang (1444_CR109) 2017; 31
BT Pham (1444_CR75) 2019; 11
L Drăguţ (1444_CR24) 2006; 81
PT Giles (1444_CR31) 1998; 21
E Sevgen (1444_CR85) 2019; 19
G Shi (1444_CR87) 2019; 50
SB Bai (1444_CR5) 2010; 115
MGMR, Ministry of Geology and Mineral Resources (1444_CR65) 1988
L Cascini (1444_CR16) 2008; 102
X Wu (1444_CR104) 2014; 71
JR Dymond (1444_CR26) 1995; 20
LA Owen (1444_CR71) 2008; 94
AS Bacha (1444_CR3) 2018; 15
Y Liu (1444_CR60) 2019; 7
K Sharir (1444_CR86) 2017; 46
PV Gorsevski (1444_CR33) 2016; 13
L Zhe (1444_CR116) 2013; 53
S Ronoud (1444_CR80) 2019; 23
P Ling (1444_CR59) 2014; 204
1444_CR38
Anno (1444_CR1) 1993; 34
C Zhou (1444_CR117) 2014; 173
F Guzzetti (1444_CR35) 1999; 31
AM Youssef (1444_CR111) 2014; 19
Z Duo (1444_CR25) 2019; 11
D Kumar (1444_CR54) 2017; 295
Y Wang (1444_CR98) 2019; 666
G Wang (1444_CR100) 2020; 9
VD Gaudio (1444_CR30) 2013; 13
W Chen (1444_CR19) 2014; 152
D Lagomarsino (1444_CR55) 2017; 22
U Kamp (1444_CR50) 2008; 101
L Yu (1444_CR112) 2019; 9
1444_CR28
R Fell (1444_CR29) 2007; 102
K He (1444_CR41) 2015; 1
M Xie (1444_CR106) 2003; 129
X Zhao (1444_CR115) 2020; 10
C Polykretis (1444_CR76) 2018; 93
Q Wang (1444_CR97) 2016; 75
F Guzzetti (1444_CR36) 2006; 81
C Wei (1444_CR102) 2017; 32
O Chapelle (1444_CR17) 1999; 10
MA Thomas (1444_CR92) 2018; 15
X Wu (1444_CR103) 2013; 70
F Seide (1444_CR84) 2012; 1-5
Q Hu (1444_CR47) 2019; 11
Y Wang (1444_CR101) 2020; 138
J Cao (1444_CR15) 2019; 175
S Mondal (1444_CR67) 2019; 11
M Lee (1444_CR56) 2015; 74
J He (1444_CR42) 2018; 13
F Guzzetti (1444_CR37) 2012; 112
1444_CR52
G Liang (1444_CR58) 2016; 18
B Romstad (1444_CR78) 2009
R Hongyo (1444_CR46) 2019; 29
Y Wu (1444_CR105) 2016; 21
JL Zêzere (1444_CR113) 2017; 589
X He (1444_CR43) 2019; 33
H Hong (1444_CR45) 2017; 290
S He (1444_CR40) 2012; 171
K Martinović (1444_CR63) 2016; 215
SK Gupta (1444_CR34) 2018; 9
H Miao (1444_CR66) 2014; 171
R Niu (1444_CR70) 2017; 7
Q Ba (1444_CR2) 2018; 11
H Xing (1444_CR107) 2016; 10
Y Wang (1444_CR99) 2019; 16
L Li (1444_CR57) 2017; 14
Y Oysal (1444_CR72) 2005; 46
M Havaei (1444_CR39) 2017; 35
T Young (1444_CR110) 1993; 328
J Ruette (1444_CR82) 2013; 49
P Paolo (1444_CR74) 2013; 191
B Romstad (1444_CR79) 2012; 139
CJ van Westen (1444_CR95) 2008; 102
J Dou (1444_CR23) 2020; 17
SIA Pamela (1444_CR73) 2017; 118
DP Kanungo (1444_CR51) 2011; 59
S Chauhan (1444_CR18) 2010; 7
L Wang (1444_CR96) 2016; 20
X Cui (1444_CR20) 2014; 23
CF Barella (1444_CR6) 2019; 78
A Zhu (1444_CR118) 2019; 183
TP Binh (1444_CR8) 2019; 175
Z Shirvani (1444_CR88) 2020; 12
H Tanyas (1444_CR90) 2019; 327
M Cama (1444_CR13) 2016; 75
TV Ramachandra (1444_CR77) 2013; 6
Y Huang (1444_CR48) 2018; 165
J Kim (1444_CR53) 2018; 33
DT Bui (1444_CR12) 2016; 13
U Meier (1444_CR64) 2012; 32
Y Xu (1444_CR108) 2015; 23
TP Binh (1444_CR7) 2019; 34
AK Saha (1444_CR83) 2005; 2
K Zhang (1444_CR114) 2017; 76
SB Bai (1444_CR4) 2009; 19
1444_CR9
L Breiman (1444_CR11) 2001; 45
TB Dieu (1444_CR21) 2019; 10
1444_CR61
HA Nefeslioglu (1444_CR69) 2020; 91
G Hinton (1444_CR44) 2012; 29
YJ Jo (1444_CR49) 2018; 25
References_xml – volume: 2
  start-page: 61
  issue: 1
  year: 2005
  end-page: 69
  ident: CR83
  article-title: An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas
  publication-title: Landslides
– volume: 589
  start-page: 250
  year: 2017
  end-page: 267
  ident: CR113
  article-title: Mapping landslide susceptibility using data-driven methods
  publication-title: Sci Total Environ
– volume: 19
  start-page: 113
  issue: 1
  year: 2014
  end-page: 134
  ident: CR111
  article-title: Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models
  publication-title: Geosci J
– volume: 19
  start-page: 3940
  issue: 18
  year: 2019
  ident: CR85
  article-title: A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest
  publication-title: Sensors.
– volume: 129
  start-page: 1109
  issue: 12
  year: 2003
  end-page: 1118
  ident: CR106
  article-title: Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment
  publication-title: J Geotech Geoenviron Eng
– volume: 15
  start-page: 1299
  issue: 6
  year: 2018
  end-page: 1318
  ident: CR93
  article-title: Statistical landslide susceptibility assessment in a dynamic environment: a case study for Lanzhou City, Gansu Province, NW China
  publication-title: J Mt Sci
– volume: 80
  start-page: 178
  issue: 3–4
  year: 2006
  end-page: 198
  ident: CR32
  article-title: Spatially and temporally distributed modeling of landslide susceptibility
  publication-title: Geomorpholgy
  doi: 10.1016/j.geomorph.2006.02.011
– volume: 175
  start-page: 203
  year: 2019
  end-page: 218
  ident: CR8
  article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: hybrid machine learning approaches
  publication-title: Catena
– volume: 49
  start-page: 6266
  issue: 10
  year: 2013
  end-page: 6285
  ident: CR82
  article-title: Rainfall-triggered shallow landslides at catchment scale: threshold mechanics-based modeling for abruptness and localization
  publication-title: Water Resour Res
– volume: 46
  start-page: 1531
  issue: 9
  year: 2017
  end-page: 1540
  ident: CR86
  article-title: Landslide factors and susceptibility mapping on natural and artificial slopes in Kundasang, Sabah
  publication-title: Sains Malaysiana
– volume: 13
  start-page: 361
  issue: 2
  year: 2016
  end-page: 378
  ident: CR12
  article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree
  publication-title: Landslides
– volume: 21
  start-page: 824
  issue: 6
  year: 2010
  end-page: 834
  ident: CR27
  article-title: Frequency ratio analysis of mass movements in the Xiangxi catchment, Three Gorges Reservoir area, China
  publication-title: J Earth Sci
– volume: 14
  start-page: 727
  issue: 2
  year: 2017
  end-page: 741
  ident: CR57
  article-title: A modified frequency ratio method for landslide susceptibility assessment
  publication-title: Landslides
– volume: 81
  start-page: 166
  issue: 1
  year: 2006
  end-page: 184
  ident: CR36
  article-title: Estimating the quality of landslide susceptibility models
  publication-title: Geomorphology
– volume: 75
  start-page: 599
  issue: 7
  year: 2016
  ident: CR97
  article-title: Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China)
  publication-title: Environ Earth Sci
– volume: 50
  start-page: 57
  issue: 1
  year: 2019
  end-page: 75
  ident: CR87
  article-title: Enhance the performance of deep neural networks via L2 regularization on the input of activations
  publication-title: Neural Process Lett
– volume: 94
  start-page: 1
  issue: 1
  year: 2008
  end-page: 9
  ident: CR71
  article-title: Landslides triggered by the 8 October 2005 Kashmir earthquake
  publication-title: Geomorphology
– volume: 59
  start-page: 1491
  issue: 3
  year: 2011
  end-page: 1512
  ident: CR51
  article-title: Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides
  publication-title: Nat Hazards
– volume: 165
  start-page: 520
  year: 2018
  end-page: 529
  ident: CR48
  article-title: Review on landslide susceptibility mapping using support vector machines
  publication-title: Catena
– year: 1988
  ident: CR65
  publication-title: Study on the bank stability in the Three Gorges engineering in Yangze River
– volume: 10
  start-page: 743
  issue: 9
  year: 2019
  ident: CR21
  article-title: New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed
  publication-title: Forests
– volume: 34
  start-page: 316
  issue: 3
  year: 2019
  end-page: 333
  ident: CR7
  article-title: Evaluation and comparison of LogitBoost ensemble, Fisher’s linear discriminant analysis, logistic regression and support vector machines methods for landslide susceptibility mapping
  publication-title: Geocarto International
– volume: 9
  start-page: 144
  issue: 3
  year: 2020
  ident: CR100
  article-title: Spatial prediction of landslide susceptibility based on GIS and discriminant functions
  publication-title: ISPRS Int J Geo Inf
– volume: 20
  start-page: 131
  issue: 2
  year: 1995
  end-page: 137
  ident: CR26
  article-title: Automated mapping of land components from digital elevation data
  publication-title: Earth Surf Process Landf
– volume: 78
  start-page: 3205
  issue: 5
  year: 2019
  end-page: 3221
  ident: CR6
  article-title: A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil
  publication-title: Bull Eng Geol Environ
– volume: 171
  start-page: 59
  issue: 8
  year: 2014
  end-page: 69
  ident: CR66
  article-title: Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China
  publication-title: Eng Geol
– volume: 53
  start-page: 873
  issue: 4
  year: 2013
  end-page: 889
  ident: CR116
  article-title: Characterizing spatiotemporal variations of hourly rainfall by gauge and radar in the mountainous Three Gorges region
  publication-title: J Appl Meteorol Climatol
– volume: 75
  start-page: 238
  issue: 3
  year: 2016
  ident: CR13
  article-title: Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy)
  publication-title: Environ Earth Sci
– ident: CR91
– volume: 11
  start-page: 6323
  issue: 22
  year: 2019
  ident: CR75
  article-title: A novel intelligence approach of a sequential minimal optimization-based support vector machine for landslide susceptibility mapping
  publication-title: Sustainability
– volume: 23
  start-page: 1469
  issue: 9
  year: 2014
  end-page: 1477
  ident: CR20
  article-title: Data augmentation for deep neural network acoustic modeling
  publication-title: IEEE Int Conf Acoust
– volume: 26
  start-page: 127
  issue: 2
  year: 2018
  end-page: 141
  ident: CR62
  article-title: Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya
  publication-title: Spat Inf Res
– volume: 118
  start-page: 012037
  year: 2017
  ident: CR73
  article-title: Weights of evidence method for landslide susceptibility mapping in Takengon, Central Aceh, Indonesia
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 10
  start-page: 417
  issue: 3
  year: 2016
  end-page: 439
  ident: CR107
  article-title: Deep learning
  publication-title: Int J Semant Comput
– ident: CR10
– volume: 6
  start-page: 54
  issue: 1
  year: 2013
  end-page: 64
  ident: CR77
  article-title: Prediction of shallow landslide prone regions in undulating terrains
  publication-title: Disaster Adv
– volume: 175
  start-page: 63
  year: 2019
  end-page: 76
  ident: CR15
  article-title: Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau
  publication-title: Catena
– volume: 9
  start-page: 471
  issue: 1
  year: 2018
  end-page: 487
  ident: CR34
  article-title: Selection of weightages for causative factors used in preparation of landslide susceptibility zonation (LSZ)
  publication-title: Geomatics Nat Hazards Risk
– volume: 93
  start-page: 249
  issue: 1
  year: 2018
  end-page: 274
  ident: CR76
  article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models
  publication-title: Nat Hazards
– volume: 31
  start-page: 181
  issue: 1
  year: 1999
  end-page: 216
  ident: CR35
  article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy
  publication-title: Geomorphology
– volume: 112
  start-page: 42
  issue: 1
  year: 2012
  end-page: 66
  ident: CR37
  article-title: Landslide inventory maps: new tools for an old problem
  publication-title: Earth Sci Rev
– volume: 29
  start-page: 146
  issue: 2
  year: 2019
  end-page: 148
  ident: CR46
  article-title: Deep neural network-based digital predistorter for Doherty power amplifiers
  publication-title: IEEE Microw Wirel Components Lett
– volume: 13
  start-page: 1255
  issue: 6
  year: 2018
  end-page: 1265
  ident: CR42
  article-title: Bayesian dual neural networks for recommendation
  publication-title: Front Comput Sci
– start-page: 55
  year: 2009
  end-page: 60
  ident: CR78
  publication-title: Structuring the digital elevation model into landform elements through watershed segmentation of curvature
– volume: 11
  start-page: 373
  issue: 3
  year: 2018
  end-page: 388
  ident: CR2
  article-title: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment
  publication-title: Earth Sci Inf
– volume: 33
  start-page: 1000
  issue: 9
  year: 2018
  end-page: 1015
  ident: CR53
  article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea
  publication-title: Geocarto Int
– ident: CR94
– volume: 152
  start-page: 291
  year: 2014
  end-page: 301
  ident: CR19
  article-title: Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China
  publication-title: Remote Sens Environ
– volume: 23
  start-page: 13139
  issue: 24
  year: 2019
  end-page: 13159
  ident: CR80
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft Comput
– volume: 21
  start-page: 4427
  issue: 14
  year: 2016
  end-page: 4434
  ident: CR105
  article-title: GIS-based landslide susceptibility analysis using support vector machine model at a regional scale
  publication-title: Electron J Geotech Eng
– volume: 11
  start-page: 1921
  issue: 16
  year: 2019
  ident: CR25
  article-title: Oceanic mesoscale eddy detection method based on deep learning
  publication-title: Remote Sens
– ident: CR38
– ident: CR52
– volume: 7
  start-page: 411
  issue: 4
  year: 2010
  end-page: 423
  ident: CR18
  article-title: Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model
  publication-title: Landslides
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: CR98
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci Total Environ
– volume: 10
  start-page: 16
  issue: 1
  year: 2020
  ident: CR115
  article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl Sci Basel
– volume: 102
  start-page: 112
  issue: 3
  year: 2008
  end-page: 131
  ident: CR95
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview
  publication-title: Eng Geol
– volume: 7
  start-page: 3979
  issue: 9
  year: 2017
  end-page: 3992
  ident: CR70
  article-title: Susceptibility assessment of landslides triggered by the Lushan earthquake, April 20, 2013, China
  publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens
– volume: 11
  start-page: 2530
  issue: 21
  year: 2019
  ident: CR47
  article-title: Improving the accuracy of landslide detection in “off-site” area by machine learning model portability comparison: a case study of Jiuzhaigou earthquake, China
  publication-title: Remote Sens
– volume: 15
  start-page: 1265
  issue: 7
  year: 2018
  end-page: 1277
  ident: CR92
  article-title: Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria
  publication-title: Landslides
– volume: 46
  start-page: 2656
  issue: 15–16
  year: 2005
  end-page: 2668
  ident: CR72
  article-title: A comparative study of adaptive load frequency controller designs in a power system with dynamic neural network models
  publication-title: Energy Convers Manag
– volume: 1-5
  start-page: 444
  year: 2012
  ident: CR84
  article-title: Conversational speech transcription using context-dependent deep neural networks
  publication-title: Int Coference Int Conf Mach Learn
– volume: 26
  start-page: 151
  issue: 1
  year: 1998
  end-page: 170
  ident: CR81
  article-title: GIS modelling of slope stability in Phewa Tal watershed, Nepal
  publication-title: Geomorphology
– volume: 31
  start-page: 04017026
  issue: 4
  year: 2017
  ident: CR109
  article-title: Assessment of rainfall-induced landslide susceptibility using GIS-based slope unit approach
  publication-title: J Perform Constr Facil
– volume: 183
  start-page: 104188
  year: 2019
  ident: CR118
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
– volume: 74
  start-page: 413
  issue: 1
  year: 2015
  end-page: 429
  ident: CR56
  article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea
  publication-title: Environ Earth Sci
– volume: 139
  start-page: 293
  issue: 2
  year: 2012
  end-page: 302
  ident: CR79
  article-title: Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units
  publication-title: Geomorphology
– volume: 12
  start-page: 434
  issue: 3
  year: 2020
  ident: CR88
  article-title: A holistic analysis for landslide susceptibility mapping applying geographic object-based random forest: a comparison between protected and non-protected forests
  publication-title: Remote Sens
– volume: 171
  start-page: 30
  year: 2012
  end-page: 41
  ident: CR40
  article-title: Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China
  publication-title: Geomorphology
– volume: 23
  start-page: 7
  issue: 1
  year: 2015
  end-page: 19
  ident: CR108
  article-title: A regression approach to speech enhancement based on deep neural networks
  publication-title: IEEE-ACM Trans Audio Speech Lang Process
– volume: 81
  start-page: 330
  issue: 3
  year: 2006
  end-page: 344
  ident: CR24
  article-title: Automated classification of landform elements using object-based image analysis
  publication-title: Geomorphology
– volume: 33
  start-page: 1571
  issue: 4
  year: 2019
  end-page: 1590
  ident: CR43
  article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks
  publication-title: Water Resour Manag
– volume: 115
  start-page: 2564
  issue: 10
  year: 2011
  end-page: 2577
  ident: CR89
  article-title: Object-oriented mapping of landslides using random forests
  publication-title: Remote Sens Environ
– volume: 11
  start-page: 129
  issue: 2
  year: 2019
  end-page: 146
  ident: CR67
  article-title: Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model
  publication-title: Applied Geomatics
– volume: 18
  start-page: 246
  issue: 2
  year: 2016
  end-page: 255
  ident: CR58
  article-title: Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China
  publication-title: Environ Sci Process Impacts
– volume: 76
  start-page: 405
  issue: 11
  year: 2017
  ident: CR114
  article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China
  publication-title: Environ Earth Sci
– ident: CR61
– volume: 22
  start-page: 201
  issue: 3
  year: 2017
  end-page: 214
  ident: CR55
  article-title: A tool for classification and regression using random forest methodology: applications to landslide susceptibility mapping and soil thickness modeling
  publication-title: Environ Model Assess
– volume: 25
  start-page: 6800914
  issue: 1
  year: 2018
  ident: CR49
  article-title: Quantitative phase imaging and artificial intelligence: a review
  publication-title: IEEE J Sel Top Quantum Electron
– volume: 10
  start-page: 1055
  issue: 5
  year: 1999
  end-page: 1064
  ident: CR17
  article-title: Support vector machines for histogram-based image classification
  publication-title: IEEE Trans Neural Netw
– volume: 78
  start-page: 29021
  issue: 20
  year: 2019
  end-page: 29041
  ident: CR14
  article-title: Urban noise recognition with convolutional neural network
  publication-title: Multimed Tools Appl
– volume: 91
  start-page: 104363
  year: 2020
  ident: CR69
  article-title: The use of landslide hazard maps to determine mitigation priorities in a dam reservoir and its protection area
  publication-title: Land Use Policy
– volume: 1
  start-page: 770
  year: 2015
  end-page: 778
  ident: CR41
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Comput Soc
– volume: 101
  start-page: 631
  issue: 4
  year: 2008
  end-page: 642
  ident: CR50
  article-title: GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region
  publication-title: Geomorphology
– volume: 7
  start-page: 2633
  issue: 6
  year: 2019
  end-page: 2645
  ident: CR60
  article-title: Intelligent wind turbine blade icing detection using supervisory control and data acquisition data and ensemble deep learning
  publication-title: Energy Sci Eng
– volume: 70
  start-page: 1307
  issue: 3
  year: 2013
  end-page: 1318
  ident: CR103
  article-title: Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China
  publication-title: Environ Earth Sci
– volume: 204
  start-page: 287
  issue: 1
  year: 2014
  end-page: 301
  ident: CR59
  article-title: Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the Three Gorges area, China
  publication-title: Geomorphology
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR39
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
– volume: 13
  start-page: 467
  issue: 3
  year: 2016
  end-page: 484
  ident: CR33
  article-title: Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio
  publication-title: Landslides
– volume: 102
  start-page: 85
  issue: 3
  year: 2007
  end-page: 98
  ident: CR29
  article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning
  publication-title: Eng Geol
– ident: CR9
– volume: 21
  start-page: 251
  issue: 3
  year: 1998
  end-page: 264
  ident: CR31
  article-title: An automated approach to the classification of the slope units using digital data
  publication-title: Geomorphology
– volume: 32
  start-page: 333
  issue: 1
  year: 2012
  end-page: 338
  ident: CR64
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Netw
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR11
  article-title: Random forests
  publication-title: Mach Learn
– volume: 71
  start-page: 4725
  issue: 11
  year: 2014
  end-page: 4738
  ident: CR104
  article-title: Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China
  publication-title: Environ Earth Sci
– volume: 13
  start-page: 2075
  issue: 8
  year: 2013
  end-page: 2087
  ident: CR30
  article-title: New developments in ambient noise analysis to characterise the seismic response of landslide prone slopes
  publication-title: Nat Hazards Earth Syst Sci
– volume: 102
  start-page: 164
  issue: 3
  year: 2008
  end-page: 177
  ident: CR16
  article-title: Applicability of landslide susceptibility and hazard zoning at different scales
  publication-title: Eng Geol
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  ident: CR44
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Process Mag
– volume: 295
  start-page: 115
  year: 2017
  end-page: 125
  ident: CR54
  article-title: Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India
  publication-title: Geomorphology
– volume: 9
  start-page: 4756
  issue: 22
  year: 2019
  ident: CR112
  article-title: Landslide susceptibility mapping combining information gain ratio and support vector machines: a case study from Wushan segment in the Three Gorges Reservoir area, China
  publication-title: Appl Sci Basel
– volume: 20
  start-page: 117
  issue: 1
  year: 2016
  end-page: 136
  ident: CR96
  article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network
  publication-title: Geosci J
– volume: 13
  start-page: 873
  issue: 5
  year: 2015
  end-page: 883
  ident: CR68
  article-title: Physical and numerical modelling of shallow landslides
  publication-title: Landslides
– volume: 16
  start-page: 3683
  issue: 3
  year: 2019
  ident: CR99
  article-title: Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China
  publication-title: Int J Environ Res Public Health
– volume: 173
  start-page: 41
  issue: 6
  year: 2014
  end-page: 53
  ident: CR117
  article-title: Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China
  publication-title: Eng Geol
– volume: 115
  start-page: 23
  issue: 1
  year: 2010
  end-page: 31
  ident: CR5
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China
  publication-title: Geomorphology
– volume: 188
  start-page: 104451
  year: 2020
  ident: CR22
  article-title: A spatially explicit deep learning neural network model for the prediction of landslide susceptibility
  publication-title: Catena
– volume: 34
  start-page: 53
  issue: 1
  year: 1993
  end-page: 79
  ident: CR1
  article-title: Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St. Andrew, Jamaica, West Indies
  publication-title: Eng Geol
– volume: 19
  start-page: 14
  issue: 1
  year: 2009
  end-page: 20
  ident: CR4
  article-title: GIS-based and data-driven bivariate landslide-susceptibility mapping in the Three Gorges area, China
  publication-title: Pedosphere
– volume: 32
  start-page: 367
  issue: 4
  year: 2017
  end-page: 385
  ident: CR102
  article-title: A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping
  publication-title: Geocarto Int
– volume: 191
  start-page: 75
  issue: 5
  year: 2013
  end-page: 93
  ident: CR74
  article-title: Influence of filling―drawdown cycles of the Vajont reservoir on Mt. Toc slope stability
  publication-title: Geomorphology
– volume: 290
  start-page: 1
  year: 2017
  end-page: 16
  ident: CR45
  article-title: A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China
  publication-title: Geomorphology
– volume: 15
  start-page: 1354
  issue: 6
  year: 2018
  end-page: 1370
  ident: CR3
  article-title: Landslide inventory and susceptibility modelling using geospatial tools, in Hunza-Nagar valley, northern Pakistan
  publication-title: J Mt Sci
– volume: 215
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR63
  article-title: Development of a landslide susceptibility assessment for a rail network
  publication-title: Eng Geol
– volume: 327
  start-page: 126
  year: 2019
  end-page: 146
  ident: CR90
  article-title: A global slope unit-based method for the near real-time prediction of earthquake-induced landslides
  publication-title: Geomorphology
– ident: CR28
– volume: 17
  start-page: 641
  issue: 3
  year: 2020
  end-page: 658
  ident: CR23
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed
  publication-title: Landslides
– volume: 138
  start-page: 104445
  year: 2020
  ident: CR101
  article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks
  publication-title: Comput Geosci
– volume: 328
  start-page: 1230
  issue: 17
  year: 1993
  end-page: 1235
  ident: CR110
  article-title: The occurrence of sleep-disordered breathing among middle-aged adults
  publication-title: N Engl J Med
– volume: 31
  start-page: 181
  issue: 1
  year: 1999
  ident: 1444_CR35
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(99)00078-1
– volume: 7
  start-page: 3979
  issue: 9
  year: 2017
  ident: 1444_CR70
  publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2014.2308553
– volume: 10
  start-page: 16
  issue: 1
  year: 2020
  ident: 1444_CR115
  publication-title: Appl Sci Basel
  doi: 10.3390/app10010016
– volume: 2
  start-page: 61
  issue: 1
  year: 2005
  ident: 1444_CR83
  publication-title: Landslides
  doi: 10.1007/s10346-004-0039-8
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 1444_CR44
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2205597
– ident: 1444_CR38
  doi: 10.1201/9780203885284-c265
– volume: 75
  start-page: 238
  issue: 3
  year: 2016
  ident: 1444_CR13
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-5047-6
– volume: 112
  start-page: 42
  issue: 1
  year: 2012
  ident: 1444_CR37
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2012.02.001
– volume: 26
  start-page: 127
  issue: 2
  year: 2018
  ident: 1444_CR62
  publication-title: Spat Inf Res
  doi: 10.1007/s41324-017-0160-0
– volume: 19
  start-page: 14
  issue: 1
  year: 2009
  ident: 1444_CR4
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(08)60079-X
– volume: 183
  start-page: 104188
  year: 2019
  ident: 1444_CR118
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104188
– volume: 46
  start-page: 2656
  issue: 15–16
  year: 2005
  ident: 1444_CR72
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2004.12.010
– volume: 21
  start-page: 4427
  issue: 14
  year: 2016
  ident: 1444_CR105
  publication-title: Electron J Geotech Eng
– volume: 13
  start-page: 873
  issue: 5
  year: 2015
  ident: 1444_CR68
  publication-title: Landslides
  doi: 10.1007/s10346-015-0642-x
– volume: 23
  start-page: 1469
  issue: 9
  year: 2014
  ident: 1444_CR20
  publication-title: IEEE Int Conf Acoust
– volume: 589
  start-page: 250
  year: 2017
  ident: 1444_CR113
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.188
– volume: 21
  start-page: 824
  issue: 6
  year: 2010
  ident: 1444_CR27
  publication-title: J Earth Sci
  doi: 10.1007/s12583-010-0134-9
– volume: 49
  start-page: 6266
  issue: 10
  year: 2013
  ident: 1444_CR82
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20418
– volume: 71
  start-page: 4725
  issue: 11
  year: 2014
  ident: 1444_CR104
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2863-4
– volume: 129
  start-page: 1109
  issue: 12
  year: 2003
  ident: 1444_CR106
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2003)129:12(1109)
– volume: 152
  start-page: 291
  year: 2014
  ident: 1444_CR19
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2014.07.004
– volume: 25
  start-page: 6800914
  issue: 1
  year: 2018
  ident: 1444_CR49
  publication-title: IEEE J Sel Top Quantum Electron
– ident: 1444_CR91
– volume: 78
  start-page: 3205
  issue: 5
  year: 2019
  ident: 1444_CR6
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1341-3
– volume: 11
  start-page: 129
  issue: 2
  year: 2019
  ident: 1444_CR67
  publication-title: Applied Geomatics
  doi: 10.1007/s12518-018-0248-9
– volume: 46
  start-page: 1531
  issue: 9
  year: 2017
  ident: 1444_CR86
  publication-title: Sains Malaysiana
  doi: 10.17576/jsm-2017-4609-23
– volume: 1
  start-page: 770
  year: 2015
  ident: 1444_CR41
  publication-title: IEEE Comput Soc
– volume: 35
  start-page: 18
  year: 2017
  ident: 1444_CR39
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.05.004
– volume: 101
  start-page: 631
  issue: 4
  year: 2008
  ident: 1444_CR50
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2008.03.003
– volume: 15
  start-page: 1265
  issue: 7
  year: 2018
  ident: 1444_CR92
  publication-title: Landslides
  doi: 10.1007/s10346-018-0950-z
– volume: 20
  start-page: 117
  issue: 1
  year: 2016
  ident: 1444_CR96
  publication-title: Geosci J
  doi: 10.1007/s12303-015-0026-1
– volume: 34
  start-page: 53
  issue: 1
  year: 1993
  ident: 1444_CR1
  publication-title: Eng Geol
– volume: 16
  start-page: 3683
  issue: 3
  year: 2019
  ident: 1444_CR99
  publication-title: Int J Environ Res Public Health
– volume: 175
  start-page: 203
  year: 2019
  ident: 1444_CR8
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.018
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1444_CR11
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 4756
  issue: 22
  year: 2019
  ident: 1444_CR112
  publication-title: Appl Sci Basel
  doi: 10.3390/app9224756
– volume: 102
  start-page: 85
  issue: 3
  year: 2007
  ident: 1444_CR29
  publication-title: Eng Geol
– volume: 74
  start-page: 413
  issue: 1
  year: 2015
  ident: 1444_CR56
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4048-9
– volume: 6
  start-page: 54
  issue: 1
  year: 2013
  ident: 1444_CR77
  publication-title: Disaster Adv
– volume: 81
  start-page: 166
  issue: 1
  year: 2006
  ident: 1444_CR36
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.007
– volume: 115
  start-page: 23
  issue: 1
  year: 2010
  ident: 1444_CR5
  publication-title: Geomorphology
– volume: 76
  start-page: 405
  issue: 11
  year: 2017
  ident: 1444_CR114
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6731-5
– volume: 53
  start-page: 873
  issue: 4
  year: 2013
  ident: 1444_CR116
  publication-title: J Appl Meteorol Climatol
– volume: 14
  start-page: 727
  issue: 2
  year: 2017
  ident: 1444_CR57
  publication-title: Landslides
  doi: 10.1007/s10346-016-0771-x
– volume: 139
  start-page: 293
  issue: 2
  year: 2012
  ident: 1444_CR79
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2011.10.031
– volume: 13
  start-page: 361
  issue: 2
  year: 2016
  ident: 1444_CR12
  publication-title: Landslides
  doi: 10.1007/s10346-015-0557-6
– start-page: 55
  volume-title: Structuring the digital elevation model into landform elements through watershed segmentation of curvature
  year: 2009
  ident: 1444_CR78
– volume: 33
  start-page: 1571
  issue: 4
  year: 2019
  ident: 1444_CR43
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-2183-x
– volume: 165
  start-page: 520
  year: 2018
  ident: 1444_CR48
  publication-title: Catena
  doi: 10.1016/j.catena.2018.03.003
– volume: 32
  start-page: 367
  issue: 4
  year: 2017
  ident: 1444_CR102
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2016.1140824
– volume: 173
  start-page: 41
  issue: 6
  year: 2014
  ident: 1444_CR117
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2014.02.004
– volume: 33
  start-page: 1000
  issue: 9
  year: 2018
  ident: 1444_CR53
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2017.1323964
– volume: 115
  start-page: 2564
  issue: 10
  year: 2011
  ident: 1444_CR89
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2011.05.013
– volume: 31
  start-page: 04017026
  issue: 4
  year: 2017
  ident: 1444_CR109
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0000997
– volume: 19
  start-page: 3940
  issue: 18
  year: 2019
  ident: 1444_CR85
  publication-title: Sensors.
  doi: 10.3390/s19183940
– volume: 295
  start-page: 115
  year: 2017
  ident: 1444_CR54
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.06.013
– ident: 1444_CR94
  doi: 10.1109/CVPR.2014.214
– volume: 11
  start-page: 2530
  issue: 21
  year: 2019
  ident: 1444_CR47
  publication-title: Remote Sens
  doi: 10.3390/rs11212530
– volume: 11
  start-page: 373
  issue: 3
  year: 2018
  ident: 1444_CR2
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-018-0335-9
– volume: 215
  start-page: 1
  year: 2016
  ident: 1444_CR63
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2016.10.011
– volume: 7
  start-page: 2633
  issue: 6
  year: 2019
  ident: 1444_CR60
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.449
– volume: 191
  start-page: 75
  issue: 5
  year: 2013
  ident: 1444_CR74
  publication-title: Geomorphology
– volume: 13
  start-page: 467
  issue: 3
  year: 2016
  ident: 1444_CR33
  publication-title: Landslides
  doi: 10.1007/s10346-015-0587-0
– volume: 204
  start-page: 287
  issue: 1
  year: 2014
  ident: 1444_CR59
  publication-title: Geomorphology
– volume: 15
  start-page: 1354
  issue: 6
  year: 2018
  ident: 1444_CR3
  publication-title: J Mt Sci
  doi: 10.1007/s11629-017-4697-0
– ident: 1444_CR52
  doi: 10.1109/MDM.2017.67
– ident: 1444_CR28
  doi: 10.1016/j.cageo.2020.104470
– volume: 59
  start-page: 1491
  issue: 3
  year: 2011
  ident: 1444_CR51
  publication-title: Nat Hazards
  doi: 10.1007/s11069-011-9847-z
– volume: 81
  start-page: 330
  issue: 3
  year: 2006
  ident: 1444_CR24
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.04.013
– ident: 1444_CR9
– volume: 80
  start-page: 178
  issue: 3–4
  year: 2006
  ident: 1444_CR32
  publication-title: Geomorpholgy
  doi: 10.1016/j.geomorph.2006.02.011
– volume: 175
  start-page: 63
  year: 2019
  ident: 1444_CR15
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.013
– volume: 75
  start-page: 599
  issue: 7
  year: 2016
  ident: 1444_CR97
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5400-4
– volume: 188
  start-page: 104451
  year: 2020
  ident: 1444_CR22
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104451
– volume: 666
  start-page: 975
  year: 2019
  ident: 1444_CR98
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 13
  start-page: 1255
  issue: 6
  year: 2018
  ident: 1444_CR42
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-018-8049-1
– volume: 11
  start-page: 6323
  issue: 22
  year: 2019
  ident: 1444_CR75
  publication-title: Sustainability
  doi: 10.3390/su11226323
– volume: 20
  start-page: 131
  issue: 2
  year: 1995
  ident: 1444_CR26
  publication-title: Earth Surf Process Landf
  doi: 10.1002/esp.3290200204
– volume: 13
  start-page: 2075
  issue: 8
  year: 2013
  ident: 1444_CR30
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-13-2075-2013
– volume: 10
  start-page: 417
  issue: 3
  year: 2016
  ident: 1444_CR107
  publication-title: Int J Semant Comput
  doi: 10.1142/S1793351X16500045
– volume: 1-5
  start-page: 444
  year: 2012
  ident: 1444_CR84
  publication-title: Int Coference Int Conf Mach Learn
– ident: 1444_CR61
  doi: 10.1007/978-3-642-70911-1_20
– volume: 94
  start-page: 1
  issue: 1
  year: 2008
  ident: 1444_CR71
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2007.04.007
– volume: 171
  start-page: 59
  issue: 8
  year: 2014
  ident: 1444_CR66
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2013.12.017
– volume: 50
  start-page: 57
  issue: 1
  year: 2019
  ident: 1444_CR87
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-018-9883-8
– volume-title: Study on the bank stability in the Three Gorges engineering in Yangze River
  year: 1988
  ident: 1444_CR65
– volume: 22
  start-page: 201
  issue: 3
  year: 2017
  ident: 1444_CR55
  publication-title: Environ Model Assess
  doi: 10.1007/s10666-016-9538-y
– volume: 32
  start-page: 333
  issue: 1
  year: 2012
  ident: 1444_CR64
  publication-title: Neural Netw
– volume: 18
  start-page: 246
  issue: 2
  year: 2016
  ident: 1444_CR58
  publication-title: Environ Sci Process Impacts
  doi: 10.1039/C5EM00434A
– volume: 21
  start-page: 251
  issue: 3
  year: 1998
  ident: 1444_CR31
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(97)00064-0
– volume: 327
  start-page: 126
  year: 2019
  ident: 1444_CR90
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2018.10.022
– volume: 93
  start-page: 249
  issue: 1
  year: 2018
  ident: 1444_CR76
  publication-title: Nat Hazards
  doi: 10.1007/s11069-018-3299-7
– volume: 70
  start-page: 1307
  issue: 3
  year: 2013
  ident: 1444_CR103
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-013-2217-2
– volume: 290
  start-page: 1
  year: 2017
  ident: 1444_CR45
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2017.04.002
– volume: 26
  start-page: 151
  issue: 1
  year: 1998
  ident: 1444_CR81
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(98)00056-7
– ident: 1444_CR10
– volume: 138
  start-page: 104445
  year: 2020
  ident: 1444_CR101
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104445
– volume: 17
  start-page: 641
  issue: 3
  year: 2020
  ident: 1444_CR23
  publication-title: Landslides
  doi: 10.1007/s10346-019-01286-5
– volume: 29
  start-page: 146
  issue: 2
  year: 2019
  ident: 1444_CR46
  publication-title: IEEE Microw Wirel Components Lett
  doi: 10.1109/LMWC.2018.2888955
– volume: 328
  start-page: 1230
  issue: 17
  year: 1993
  ident: 1444_CR110
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199304293281704
– volume: 11
  start-page: 1921
  issue: 16
  year: 2019
  ident: 1444_CR25
  publication-title: Remote Sens
  doi: 10.3390/rs11161921
– volume: 23
  start-page: 7
  issue: 1
  year: 2015
  ident: 1444_CR108
  publication-title: IEEE-ACM Trans Audio Speech Lang Process
  doi: 10.1109/TASLP.2014.2364452
– volume: 34
  start-page: 316
  issue: 3
  year: 2019
  ident: 1444_CR7
  publication-title: Geocarto International
  doi: 10.1080/10106049.2017.1404141
– volume: 118
  start-page: 012037
  year: 2017
  ident: 1444_CR73
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/118/1/012037
– volume: 23
  start-page: 13139
  issue: 24
  year: 2019
  ident: 1444_CR80
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03856-0
– volume: 10
  start-page: 1055
  issue: 5
  year: 1999
  ident: 1444_CR17
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788646
– volume: 9
  start-page: 144
  issue: 3
  year: 2020
  ident: 1444_CR100
  publication-title: ISPRS Int J Geo Inf
  doi: 10.3390/ijgi9030144
– volume: 102
  start-page: 164
  issue: 3
  year: 2008
  ident: 1444_CR16
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.03.016
– volume: 9
  start-page: 471
  issue: 1
  year: 2018
  ident: 1444_CR34
  publication-title: Geomatics Nat Hazards Risk
  doi: 10.1080/19475705.2018.1447027
– volume: 171
  start-page: 30
  year: 2012
  ident: 1444_CR40
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2012.04.024
– volume: 78
  start-page: 29021
  issue: 20
  year: 2019
  ident: 1444_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-018-6295-8
– volume: 10
  start-page: 743
  issue: 9
  year: 2019
  ident: 1444_CR21
  publication-title: Forests
  doi: 10.3390/f10090743
– volume: 19
  start-page: 113
  issue: 1
  year: 2014
  ident: 1444_CR111
  publication-title: Geosci J
  doi: 10.1007/s12303-014-0032-8
– volume: 15
  start-page: 1299
  issue: 6
  year: 2018
  ident: 1444_CR93
  publication-title: J Mt Sci
  doi: 10.1007/s11629-017-4717-0
– volume: 7
  start-page: 411
  issue: 4
  year: 2010
  ident: 1444_CR18
  publication-title: Landslides
  doi: 10.1007/s10346-010-0202-3
– volume: 91
  start-page: 104363
  year: 2020
  ident: 1444_CR69
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2019.104363
– volume: 102
  start-page: 112
  issue: 3
  year: 2008
  ident: 1444_CR95
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 12
  start-page: 434
  issue: 3
  year: 2020
  ident: 1444_CR88
  publication-title: Remote Sens
  doi: 10.3390/rs12030434
SSID ssj0029039
Score 2.5533662
Snippet The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 281
SubjectTerms Agriculture
Algorithms
Annual rainfall
Artificial neural networks
Canyons
Civil Engineering
Construction
Dynamic response
Earth and Environmental Science
Earth Sciences
Geography
Geological hazards
Geology
Highway construction
Hydrology
Land use
Landslides
Landslides & mudslides
Monitoring
Mountain regions
Mountainous areas
Natural Hazards
Neural networks
Normalized difference vegetative index
Original Paper
Prevention
Rain
Rainfall
Remote sensing
Reservoir water
Reservoirs
Rivers
Road construction
Roads & highways
Segmentation
Slopes
Soil
Soil moisture
Soil water
Susceptibility
Vegetation index
Water levels
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yEfUgOhWnU3LwpoU0P9b2ONQ5BD052EEo-anC6Ma6Hfbfm6TpqqKC576E8pLXvNd87_sAuEwNwUZSEaU8ExGVNHbNyjrqcYmJYqlEyDU4Pz71hiP6MGbj0BRW1mj3-krSf6k_NbsR6gCzDkhFKY1sob7JHJ2X3cUj3F-XWRny-mE2lbFlVozGoVXm5zm-HkdNjvntWtSfNoN9sBfSRNiv1vUAbOiiDXb7r_NAlaHbYDvol7-t2mDr3gv0rg7By20lMQ9VgwaCUwN9S-_kXWlYLksPZfGo2BV0x5iC0wKW1lrDpQ1xaG3teD2Dju3SvkZRYcXLIzAa3D3fDKOgoBBxQvEiyggSMkupDVvGsUmEQhJliphYcSQQVoRnthLlDAkRCyNIklLDWJLh1PSQIeQYtIppoU8A5NoJhCotBKc26TKOK0uKxChEE8MI74C4dmQuA724U7mY5A0xsnN-bp2fe-fnqAOu1mNmFbnGn9bden3yEGhljmmKmM0hCeuA63rNmse_z3b6P_MzsIMdmsX_fOmC1mK-1Oc2HVmIC7_7PgBtINUL
  priority: 102
  providerName: Springer Nature
Title Dynamic development of landslide susceptibility based on slope unit and deep neural networks
URI https://link.springer.com/article/10.1007/s10346-020-01444-0
https://www.proquest.com/docview/2480552235
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1612-5118
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0029039
  issn: 1612-510X
  databaseCode: ABDBF
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1612-5118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029039
  issn: 1612-510X
  databaseCode: AFBBN
  dateStart: 20040301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1612-5118
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0029039
  issn: 1612-510X
  databaseCode: BENPR
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1612-5118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029039
  issn: 1612-510X
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1612-5118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029039
  issn: 1612-510X
  databaseCode: U2A
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60CYO-lG7daNo06GFvq6msS2w_lJK2ScrGwhgNZDAwukIh2GmdPOTfV1LsmhXWV-tiOEeXI-k73wfwNbWUWMVklIpMRkyx2Ccrm2goFKGapwpjn-D8cza8n7PvC77Yg1mTC-Nhlc2aGBZqXSp_R35JWIq5CxYov149RV41yr-uNhIaopZW0FeBYmwfusQzY3WgezOe_fr9egTLcNAWc2GOO4LFeFGn0dTJdJR5QK4HajHGIvzvVtXGn2-eTMNONDmCwzqERKOdzz_Cnik-wYdpkOjdHsPfu53IPNItHgiVFoWk3uWjNqjaVAHMEnCxW-Q3Mo3KAlWutkEbN8mRq-vamxXyfJfuZ8UOLV59hvlk_HB7H9UaCpGgjKyjjGKpspS5icsFsYnUWOFMUxtrgSUmmorMnUUFx1LG0kqapMxynmQktUNsKf0CnaIszAkgYbxEqDZSCubCLuvZspRMrMYssZyKHsSNuXJVE4x7nYtl3lIjexPnzsR5MHGOe_Dttc1qR6_xbu1-44W8nmpV3g6MHlw0nmmL_9_b6fu9ncEB8fiVcN3Sh876eWPOXQCylgPYTyfTAXRH0z8_xoN6jLmvczJ6AUrs2bc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5CQtCLaFRcjaYPekoGe_qxM3MIonltTLKIJLAHYewnCGF2dXaR_XP-Nqt7ezIoJLecp6cHqmu6qrq_rz6At6XnzBuhs1JVOhNG5IGs7LKhMoxbWRpKA8H5YjwcXYnPEzlZgz8dFybAKrs9MW7UdmrCGfl7JkoqMVng8sPsZxZUo8LtaiehoZK0gt2PLcYSsePMLX9jCdfunx7ier9j7Pjo8mCUJZWBTHHB5lnFqTZVKdC1pWK-0JYaWlnuc6uopsxyVWG1piTVOtde86IUXsqiYqUfUh8ORDEEbAguKiz-Nj4djb98vSn5Khq1zDCtwpIvp5NE20nkPS4CADgAw4QQGf03NPb57n9XtDHyHT-GRyllJR9XPvYE1lyzBZsnURJ4-RS-Ha5E7Ynt8Udk6kkkEV__sI60izaCZyIOd0lC4LRk2pAWRzuywE2F4Fh8381I6K-JH2tW6PT2GVzdizWfw3ozbdwLIMoFSVLrtFYC0zwfunMZXXhLReElVwPIO3PVJjU0D7oa13XfijmYuEYT19HENR3A7s07s1U7jztHb3erUKdfu617RxzAXrcy_ePbZ3t592w78GB0eXFen5-Oz17BQxawM_GoZxvW578W7jUmP3P9JnkYge_37dR_AbSQEpk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiKdYWsAHOEFUx49NckAIsWxbChUHKu0BKfgpIVXZpdkV2r_Gr2PGSRqBRG89x3Gk8ZfxjP3NfAAvyihFdMpmpalsppzKqVg5ZFPjhPS6dJxTgfPn0-nRmfq40Isd-D3UwhCtcvCJyVH7paMz8gOhSq4xWJD6IPa0iC-z-dvVz4wUpOimdZDT6CByEra_MH1r3xzPcK1fCjH_8PX9UdYrDGRGKrHOKsmtq0qFsNZGxMJ67njlZcy94ZYLL02FmZrR3NrcRiuLUkWti0qUccojHYai-79RUBd3qlKfH14mexVPKmYYUGGyl_NFX7DTl-1JRdRfooQppTL-96Y4Rrr_XM6mPW9-F-70wSp716HrHuyE5j7cPExiwNsH8G3WydkzPzKP2DKyVD58_sMH1m7aRJtJDNwtoy3Ts2XDWhwd2AbdCcOx-H5YMeqsiR9rOl56-xDOrsWWj2C3WTbhMTATSIzUB2uNwgAvUl8uZ4vouSqilmYC-WCu2vWtzElR47wemzCTiWs0cZ1MXPMJvLp8Z9U18rhy9P6wCnX_U7f1CMEJvB5WZnz8_9meXD3bc7iFUK4_HZ-e7MFtQaSZdMazD7vri014ilHP2j5L8GLw_brx_AcgCRAz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+development+of+landslide+susceptibility+based+on+slope+unit+and+deep+neural+networks&rft.jtitle=Landslides&rft.au=Ye%2C+Hua&rft.au=Wang%2C+Xianmin&rft.au=Li%2C+Yongwei&rft.au=Xu+Peiyun&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1612-510X&rft.eissn=1612-5118&rft.volume=18&rft.issue=1&rft.spage=281&rft.epage=302&rft_id=info:doi/10.1007%2Fs10346-020-01444-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-510X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-510X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-510X&client=summon