Dynamic development of landslide susceptibility based on slope unit and deep neural networks
The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide preve...
Saved in:
| Published in | Landslides Vol. 18; no. 1; pp. 281 - 302 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1612-510X 1612-5118 |
| DOI | 10.1007/s10346-020-01444-0 |
Cover
| Abstract | The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide prevention. This work employs multi-source and three-temporal landslide monitoring data (geology, terrain, hydrology, and remote sensing data) to reveal the dynamic change of landslide susceptibility with time in the Badong-Zigui section in the Three Gorges area. Nine influence factors for landslides (land use, aspect, engineering rock group (ERG), slope, distance to river (DTR), relative relief, normalized difference water index (NDWI), normalized difference vegetation index (NDVI) and annual cumulative rainfall (ACR)) are generated from the monitoring data. The algorithms of slope unit segmentation and deep neural networks are adopted to conduct landslide susceptibility evaluations in the 3 years of 2002, 2007, and 2017 and to investigate the dynamic change of landslide susceptibility. Moreover, this work also reveals the dynamic response of landslide susceptibility to the changing factors of rainfall, reservoir water fluctuation, soil moisture, and land use. Some new viewpoints are suggested as follows. (1) The main factors affecting landslide occurrence are DTR, NDWI, relative relief, and ERG. Among them, DTR contributes most in all the 3 years; thus, reservoir water fluctuation has the most important impact on landslide occurrence in the study area. (2) From 2002 to 2007, the new high-susceptibility areas mainly appeared along the Yangtze River and also distributed around the roads. From 2007 to 2017, more than half of the new high-susceptibility areas were distributed around the roads, and susceptibility increases also occurred in the mountainous areas far from the Yangtze River. (3) The development of landslide susceptibility from 2002 to 2007 was mainly caused by the rising of reservoir water level as well as road construction. The change of landslide susceptibility from 2007 to 2017 was mainly caused by rainfall and road construction. This work may provide some clues on landslide prevention and control according to the dynamic development of landslide susceptibility and the causes of the susceptibility changes. |
|---|---|
| AbstractList | The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide prevention. This work employs multi-source and three-temporal landslide monitoring data (geology, terrain, hydrology, and remote sensing data) to reveal the dynamic change of landslide susceptibility with time in the Badong-Zigui section in the Three Gorges area. Nine influence factors for landslides (land use, aspect, engineering rock group (ERG), slope, distance to river (DTR), relative relief, normalized difference water index (NDWI), normalized difference vegetation index (NDVI) and annual cumulative rainfall (ACR)) are generated from the monitoring data. The algorithms of slope unit segmentation and deep neural networks are adopted to conduct landslide susceptibility evaluations in the 3 years of 2002, 2007, and 2017 and to investigate the dynamic change of landslide susceptibility. Moreover, this work also reveals the dynamic response of landslide susceptibility to the changing factors of rainfall, reservoir water fluctuation, soil moisture, and land use. Some new viewpoints are suggested as follows. (1) The main factors affecting landslide occurrence are DTR, NDWI, relative relief, and ERG. Among them, DTR contributes most in all the 3 years; thus, reservoir water fluctuation has the most important impact on landslide occurrence in the study area. (2) From 2002 to 2007, the new high-susceptibility areas mainly appeared along the Yangtze River and also distributed around the roads. From 2007 to 2017, more than half of the new high-susceptibility areas were distributed around the roads, and susceptibility increases also occurred in the mountainous areas far from the Yangtze River. (3) The development of landslide susceptibility from 2002 to 2007 was mainly caused by the rising of reservoir water level as well as road construction. The change of landslide susceptibility from 2007 to 2017 was mainly caused by rainfall and road construction. This work may provide some clues on landslide prevention and control according to the dynamic development of landslide susceptibility and the causes of the susceptibility changes. The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone to occur in the future under the influences of certain geoenvironmental and triggering conditions and is an important way for landslide prevention. This work employs multi-source and three-temporal landslide monitoring data (geology, terrain, hydrology, and remote sensing data) to reveal the dynamic change of landslide susceptibility with time in the Badong-Zigui section in the Three Gorges area. Nine influence factors for landslides (land use, aspect, engineering rock group (ERG), slope, distance to river (DTR), relative relief, normalized difference water index (NDWI), normalized difference vegetation index (NDVI) and annual cumulative rainfall (ACR)) are generated from the monitoring data. The algorithms of slope unit segmentation and deep neural networks are adopted to conduct landslide susceptibility evaluations in the 3 years of 2002, 2007, and 2017 and to investigate the dynamic change of landslide susceptibility. Moreover, this work also reveals the dynamic response of landslide susceptibility to the changing factors of rainfall, reservoir water fluctuation, soil moisture, and land use. Some new viewpoints are suggested as follows. (1) The main factors affecting landslide occurrence are DTR, NDWI, relative relief, and ERG. Among them, DTR contributes most in all the 3 years; thus, reservoir water fluctuation has the most important impact on landslide occurrence in the study area. (2) From 2002 to 2007, the new high-susceptibility areas mainly appeared along the Yangtze River and also distributed around the roads. From 2007 to 2017, more than half of the new high-susceptibility areas were distributed around the roads, and susceptibility increases also occurred in the mountainous areas far from the Yangtze River. (3) The development of landslide susceptibility from 2002 to 2007 was mainly caused by the rising of reservoir water level as well as road construction. The change of landslide susceptibility from 2007 to 2017 was mainly caused by rainfall and road construction. This work may provide some clues on landslide prevention and control according to the dynamic development of landslide susceptibility and the causes of the susceptibility changes. |
| Author | Wang, Xianmin Xu, Peiyun Li, Yongwei Xia, Wenxiang Hua, Ye |
| Author_xml | – sequence: 1 givenname: Ye surname: Hua fullname: Hua, Ye organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences – sequence: 2 givenname: Xianmin surname: Wang fullname: Wang, Xianmin email: xianminwang@163.com organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences – sequence: 3 givenname: Yongwei surname: Li fullname: Li, Yongwei organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences – sequence: 4 givenname: Peiyun surname: Xu fullname: Xu, Peiyun organization: School of Geography and Information Engineering, China University of Geosciences – sequence: 5 givenname: Wenxiang surname: Xia fullname: Xia, Wenxiang organization: Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZNPdPUr9BMGLggchJLuJpG6TNckq_fdGKwoeepo5vM-8wzNDE-edRuiYwCkBqM4iAVYuCqBQACnLsoA9NCULQgtOSD353eHpAM1iXAHQBlgzRc8XGyfXtsWdfte9H9baJewN7qXrYm87jeMYWz0kq2xv0wYrGXWHvcMxpzUenU04ZzOvB-z0GGSfR_rw4TUeon0j-6iPfuYcPV5dPixvirv769vl-V0hWUlT0TBQbVOXNaNcUlOpDlpoOmZIJ0EB7ZhsOGWSg1JEGcWqujScVw2tzQIMY3N0sr07BP826pjEyo_B5UpByxo4p5TxnKLbVBt8jEEbMQS7lmEjCIgvi2JrUWSL4tuigAzV_6DWJpmsdylI2-9G2RaNuce96PD31Q7qE6aeiS8 |
| CitedBy_id | crossref_primary_10_1007_s10064_022_02836_3 crossref_primary_10_3390_rs14081919 crossref_primary_10_3390_rs14112707 crossref_primary_10_3390_ijerph192114241 crossref_primary_10_1016_j_jrmge_2024_04_029 crossref_primary_10_1016_j_jag_2022_102713 crossref_primary_10_3390_w15173089 crossref_primary_10_1016_j_envsoft_2023_105657 crossref_primary_10_1080_10106049_2022_2158948 crossref_primary_10_1016_j_geomorph_2023_109033 crossref_primary_10_3390_app142210654 crossref_primary_10_1177_03091333241276523 crossref_primary_10_1007_s11069_023_06092_w crossref_primary_10_1007_s10346_022_01918_3 crossref_primary_10_1080_17538947_2023_2216029 crossref_primary_10_1007_s11356_023_31352_4 crossref_primary_10_1007_s11069_021_05083_z crossref_primary_10_1080_19475705_2025_2468323 crossref_primary_10_1515_geo_2022_0550 crossref_primary_10_1007_s10064_024_04008_x crossref_primary_10_1016_j_pce_2022_103161 crossref_primary_10_1007_s10346_021_01843_x crossref_primary_10_1016_j_cageo_2023_105364 crossref_primary_10_1155_2022_5298988 crossref_primary_10_3390_ijgi12050197 crossref_primary_10_1007_s10346_021_01781_8 crossref_primary_10_1016_j_ecoinf_2024_102862 crossref_primary_10_3390_rs16224218 crossref_primary_10_1007_s12145_024_01364_w crossref_primary_10_1016_j_earscirev_2021_103858 crossref_primary_10_1016_j_ecoinf_2024_102945 crossref_primary_10_3390_su142113739 crossref_primary_10_1016_j_aej_2024_06_054 crossref_primary_10_1016_j_foreco_2023_121288 crossref_primary_10_1016_j_gsf_2023_101770 crossref_primary_10_3390_rs16020347 crossref_primary_10_1016_j_asr_2022_01_043 crossref_primary_10_13168_AGG_2024_0019 crossref_primary_10_1016_j_mex_2024_103005 crossref_primary_10_1007_s11430_023_1306_8 crossref_primary_10_3390_rs14236068 crossref_primary_10_1002_esp_5777 crossref_primary_10_1016_j_engappai_2022_105457 crossref_primary_10_1038_s41893_021_00757_9 crossref_primary_10_1007_s10706_022_02333_0 crossref_primary_10_1007_s11356_023_25650_0 crossref_primary_10_3389_feart_2022_974442 crossref_primary_10_1016_j_earscirev_2024_104700 crossref_primary_10_1016_j_ecolind_2024_112073 crossref_primary_10_1109_JSTARS_2024_3437751 crossref_primary_10_1016_j_envsoft_2023_105759 crossref_primary_10_1016_j_jag_2024_104037 crossref_primary_10_1080_14498596_2024_2335262 crossref_primary_10_1080_19475705_2024_2413697 crossref_primary_10_3390_rs15225427 crossref_primary_10_1007_s12665_024_11501_9 crossref_primary_10_1007_s12145_024_01617_8 crossref_primary_10_1016_j_heliyon_2023_e20170 crossref_primary_10_1007_s11356_023_31232_x crossref_primary_10_1016_j_catena_2023_107590 crossref_primary_10_3389_feart_2024_1519771 crossref_primary_10_3390_ijerph17218055 crossref_primary_10_1016_j_jrmge_2023_11_001 crossref_primary_10_1007_s11004_023_10116_3 crossref_primary_10_1038_s41598_022_18757_w crossref_primary_10_1007_s10661_022_10075_y crossref_primary_10_1016_j_catena_2022_106866 crossref_primary_10_1016_j_catena_2023_107757 crossref_primary_10_3390_f13111908 crossref_primary_10_1155_2022_5390176 crossref_primary_10_20965_jdr_2021_p0501 crossref_primary_10_1007_s10064_024_03563_7 crossref_primary_10_1007_s12517_021_07124_0 crossref_primary_10_1007_s11069_023_06121_8 crossref_primary_10_1108_EC_07_2023_0374 crossref_primary_10_1061_NHREFO_NHENG_2004 crossref_primary_10_1080_17538947_2022_2062467 crossref_primary_10_1016_j_jafrearsci_2025_105633 crossref_primary_10_3389_fevo_2023_1339265 crossref_primary_10_3389_feart_2023_1132722 crossref_primary_10_1016_j_catena_2025_108771 crossref_primary_10_3390_rs16132394 |
| Cites_doi | 10.1016/j.geomorph.2006.02.011 10.1016/S0169-555X(99)00078-1 10.1109/JSTARS.2014.2308553 10.3390/app10010016 10.1007/s10346-004-0039-8 10.1109/MSP.2012.2205597 10.1201/9780203885284-c265 10.1007/s12665-015-5047-6 10.1016/j.earscirev.2012.02.001 10.1007/s41324-017-0160-0 10.1016/S1002-0160(08)60079-X 10.1016/j.catena.2019.104188 10.1016/j.enconman.2004.12.010 10.1007/s10346-015-0642-x 10.1016/j.scitotenv.2017.02.188 10.1007/s12583-010-0134-9 10.1002/wrcr.20418 10.1007/s12665-013-2863-4 10.1061/(ASCE)1090-0241(2003)129:12(1109) 10.1016/j.rse.2014.07.004 10.1007/s10064-018-1341-3 10.1007/s12518-018-0248-9 10.17576/jsm-2017-4609-23 10.1016/j.media.2016.05.004 10.1016/j.geomorph.2008.03.003 10.1007/s10346-018-0950-z 10.1007/s12303-015-0026-1 10.1016/j.catena.2018.12.018 10.1023/A:1010933404324 10.3390/app9224756 10.1007/s12665-015-4048-9 10.1016/j.geomorph.2006.04.007 10.1007/s12665-017-6731-5 10.1007/s10346-016-0771-x 10.1016/j.geomorph.2011.10.031 10.1007/s10346-015-0557-6 10.1007/s11269-019-2183-x 10.1016/j.catena.2018.03.003 10.1080/10106049.2016.1140824 10.1016/j.enggeo.2014.02.004 10.1080/10106049.2017.1323964 10.1016/j.rse.2011.05.013 10.1061/(ASCE)CF.1943-5509.0000997 10.3390/s19183940 10.1016/j.geomorph.2017.06.013 10.1109/CVPR.2014.214 10.3390/rs11212530 10.1007/s12145-018-0335-9 10.1016/j.enggeo.2016.10.011 10.1002/ese3.449 10.1007/s10346-015-0587-0 10.1007/s11629-017-4697-0 10.1109/MDM.2017.67 10.1016/j.cageo.2020.104470 10.1007/s11069-011-9847-z 10.1016/j.geomorph.2006.04.013 10.1016/j.catena.2018.12.013 10.1007/s12665-016-5400-4 10.1016/j.catena.2019.104451 10.1016/j.scitotenv.2019.02.263 10.1007/s11704-018-8049-1 10.3390/su11226323 10.1002/esp.3290200204 10.5194/nhess-13-2075-2013 10.1142/S1793351X16500045 10.1007/978-3-642-70911-1_20 10.1016/j.geomorph.2007.04.007 10.1016/j.enggeo.2013.12.017 10.1007/s11063-018-9883-8 10.1007/s10666-016-9538-y 10.1039/C5EM00434A 10.1016/S0169-555X(97)00064-0 10.1016/j.geomorph.2018.10.022 10.1007/s11069-018-3299-7 10.1007/s12665-013-2217-2 10.1016/j.geomorph.2017.04.002 10.1016/S0169-555X(98)00056-7 10.1016/j.cageo.2020.104445 10.1007/s10346-019-01286-5 10.1109/LMWC.2018.2888955 10.1056/NEJM199304293281704 10.3390/rs11161921 10.1109/TASLP.2014.2364452 10.1080/10106049.2017.1404141 10.1088/1755-1315/118/1/012037 10.1007/s00500-019-03856-0 10.1109/72.788646 10.3390/ijgi9030144 10.1016/j.enggeo.2008.03.016 10.1080/19475705.2018.1447027 10.1016/j.geomorph.2012.04.024 10.1007/s11042-018-6295-8 10.3390/f10090743 10.1007/s12303-014-0032-8 10.1007/s11629-017-4717-0 10.1007/s10346-010-0202-3 10.1016/j.landusepol.2019.104363 10.1016/j.enggeo.2008.03.010 10.3390/rs12030434 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U |
| DOI | 10.1007/s10346-020-01444-0 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Agricultural & Environmental Science Collection (subscription) ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database (subscription) Engineering Database (subscription) Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Agriculture |
| EISSN | 1612-5118 |
| EndPage | 302 |
| ExternalDocumentID | 10_1007_s10346_020_01444_0 |
| GeographicLocations | Yangtze River |
| GeographicLocations_xml | – name: Yangtze River |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (CN) grantid: 41372341 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6KP 6NX 7XC 88I 8CJ 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V L8X LAS LK5 LLZTM LMP M2P M4Y M7R M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PTHSS PYCSY Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TG 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-a342t-930bc9848325a2f7bd0c09d3f1da0b02d3a9523a50bb1bfb3784f557928f60f33 |
| IEDL.DBID | BENPR |
| ISSN | 1612-510X |
| IngestDate | Fri Jul 25 09:45:20 EDT 2025 Wed Oct 01 02:50:02 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Fri Feb 21 02:49:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | The Three Gorges Reservoir Deep neural networks Landslide susceptibility Slope unit |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-930bc9848325a2f7bd0c09d3f1da0b02d3a9523a50bb1bfb3784f557928f60f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2480552235 |
| PQPubID | 54509 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2480552235 crossref_primary_10_1007_s10346_020_01444_0 crossref_citationtrail_10_1007_s10346_020_01444_0 springer_journals_10_1007_s10346_020_01444_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210100 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationSubtitle | Journal of the International Consortium on Landslides |
| PublicationTitle | Landslides |
| PublicationTitleAbbrev | Landslides |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Mandal, Chakrabarty, Maity (CR62) 2018; 26 Martinović, Gavin, Reale (CR63) 2016; 215 Wang, Guo, Sawada, Lin, Zhang (CR96) 2016; 20 Xu, Du, Dai, Lee (CR108) 2015; 23 CR38 Zhang, Wu, Niu, Yang, Zhao (CR114) 2017; 76 Jo, Cho, Sang, Choi, Kim, Min, Park (CR49) 2018; 25 (CR65) 1988 Wu, Bai, Guo, Li (CR105) 2016; 21 Paolo, Elia, Bolla (CR74) 2013; 191 Ruette, Lehmann, Or (CR82) 2013; 49 Shirvani (CR88) 2020; 12 Gorsevski, Gessler, Boll, Elliot, Foltz (CR32) 2006; 80 Pamela, Yukni (CR73) 2017; 118 Pham, Prakash, Chen, Ly, Ho, Omidvar, Tran, Tien Bui (CR75) 2019; 11 Tanyas, Rossi, Alvioli, van Westen, Marchesini (CR90) 2019; 327 Dymond, Derose, Harmsworth (CR26) 1995; 20 Wu, Niu, Peng, Ren (CR103) 2013; 70 Sevgen, Kocaman, Nefeslioglu, Gokceoglu (CR85) 2019; 19 Chapelle, Haffner, Vapnik (CR17) 1999; 10 Stumpf, Kerle (CR89) 2011; 115 Zhou, Shao, Westen, Cees (CR117) 2014; 173 Guzzetti, Carrara, Cardinali, Reichenbach (CR35) 1999; 31 Kanungo, Sarkar, Sharma (CR51) 2011; 59 Torizin, Wang, Fuchs, Tong, Balzer, Wan, Kuhn, Li, Chen (CR93) 2018; 15 Kumar, Thakur, Dubey, Shukla (CR54) 2017; 295 Cao, Cao, Wang, Yin, Wang, Vidal (CR14) 2019; 78 Bui, Tuan, Klempe, Pradhan, Revhaug (CR12) 2016; 13 Gupta, Shukla, Thakur (CR34) 2018; 9 Giles, Franklin (CR31) 1998; 21 Chauhan, Sharma, Arora (CR18) 2010; 7 CR52 Ronoud, Asadi (CR80) 2019; 23 Zhu, Miao, Liu, Bai, Zeng, Ma, Hong (CR118) 2019; 183 Lee, Park, Lee (CR56) 2015; 74 Liang, Hui, Wu, Wu, Liu, Zhou, Zhang (CR58) 2016; 18 Anno (CR1) 1993; 34 Shi, Zhang, Li, Wang (CR87) 2019; 50 Liu, Cheng, Kong, Wang, Cui (CR60) 2019; 7 Li, Lan, Guo, Zhang, Li, Wu (CR57) 2017; 14 Oysal (CR72) 2005; 46 Guzzetti, Mondini, Cardinali, Fiorucci, Santangelo, Chang (CR37) 2012; 112 Yang (CR109) 2017; 31 Cui, Goel, Kingsbury (CR20) 2014; 23 Havaei, Davy, Wardefarley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR39) 2017; 35 He, Luo, Zuo, Xie (CR43) 2019; 33 Polykretis, Chalkias (CR76) 2018; 93 Zhao, Chen (CR115) 2020; 10 Barella, Sobreira, Zêzere (CR6) 2019; 78 CR61 Kim, Lee, Jung, Lee (CR53) 2018; 33 Chen, Li, Wang, Chen, Liu (CR19) 2014; 152 Meier, Masci (CR64) 2012; 32 Xing, Zhang, Shang (CR107) 2016; 10 Romstad, Etzelmüller (CR78) 2009 Owen, Kamp, Khattak, Harp, Keefer, Bauer (CR71) 2008; 94 Thomas, Mirus, Collins, Ning, Godt (CR92) 2018; 15 Bai, Jian, Guo-Nian, Zhou, Hou, Su-Ning (CR4) 2009; 19 Hongyo, Egashira, Hone, Yamaguchi (CR46) 2019; 29 Cao, Zhang, Wang, Liu, Zhang (CR15) 2019; 175 Wang, Chen, Chen (CR100) 2020; 9 Ling, Niu, Bo, Wu, Zhao, Ye (CR59) 2014; 204 Wang, Wu, Chen, Ren, Feng, Du (CR99) 2019; 16 Cascini (CR16) 2008; 102 Young, Palta, Dempsey, Skatrud, Weber, Badr (CR110) 1993; 328 Youssef, Al-Kathery, Pradhan (CR111) 2014; 19 He, Zhuang, Liu, He, Lin (CR42) 2018; 13 Kamp, Growley, Khattak, Owen (CR50) 2008; 101 Sharir, Roslee, Ern, Simon (CR86) 2017; 46 Rowbotham, Dudycha (CR81) 1998; 26 CR9 Mondal, Mandal (CR67) 2019; 11 Wang, Fang, Wang, Peng, Hong (CR101) 2020; 138 Hu, Zhou, Wang, Wang, Wang (CR47) 2019; 11 Fell, Corominas, Bonnard, Cascini, Leroi, Savage (CR29) 2007; 102 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (CR44) 2012; 29 Wang, Li, Wu, Pei, Xie (CR97) 2016; 75 Duo, Wang, Wang (CR25) 2019; 11 Wu, Fu, Niu (CR104) 2014; 71 Cama, Conoscenti, Lombardo, Rotigliano (CR13) 2016; 75 Wang, Fang, Hong (CR98) 2019; 666 Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (CR36) 2006; 81 Wei, Pourghasemi, Zhou (CR102) 2017; 32 Zêzere, Pereira, Melo, Oliveira, Garcia (CR113) 2017; 589 Ehret, Rohn, Dumperth, Eckstein, Ernstberger, Otte, Rudolph, Wiedenmann, Wei, Bi (CR27) 2010; 21 Bacha, Shafique, van der Werff (CR3) 2018; 15 Dieu, Shirzadi, Shahabi, Geertsema, Omidvar, Clague, Binh, Dou, Asl, Bin Ahmad, Lee (CR21) 2019; 10 Binh, Prakash (CR7) 2019; 34 Seide, Gang, Dong (CR84) 2012; 1-5 Montrasio, Schilirò, Terrone (CR68) 2015; 13 CR10 CR94 Niu, Wu, Yao, Ling, Li, Peng (CR70) 2017; 7 Ramachandra, Aithal, Kumar, Joshi (CR77) 2013; 6 CR91 Zhe, Yang, Yang, Jian, Qi (CR116) 2013; 53 Gaudio, Wasowski, Muscillo (CR30) 2013; 13 Yu, Cao, Zhou, Wang, Huo (CR112) 2019; 9 Binh, Prakash, Singh, Shirzadi, Shahabi, Thi-Thu-Trang, Dieu (CR8) 2019; 175 Miao, Wang, Yin, Toshitaka, Yuanyao (CR66) 2014; 171 Romstad, Etzelmüller (CR79) 2012; 139 Breiman (CR11) 2001; 45 Dou, Yunus, Dieu, Merghadi, Sahana, Zhu, Chen, Han, Binh (CR23) 2020; 17 Dong, Jaafari, Bayat, Mafi-Gholami, Qi, Moayedi, Tran, Hai-Bang, Tien-Thinh, Phan, Chinh, Nguyen, Bui, Binh (CR22) 2020; 188 Hong, Ilia, Tsangaratos, Chen, Xu (CR45) 2017; 290 He, Pan, Dai, Wang, Liu (CR40) 2012; 171 Nefeslioglu, Gorum (CR69) 2020; 91 He, Zhang, Ren, Sun (CR41) 2015; 1 CR28 Drăguţ, Blaschke (CR24) 2006; 81 Lagomarsino, Tofani, Segoni, Catani, Casagli (CR55) 2017; 22 Ba, Chen, Deng, Yang, Li (CR2) 2018; 11 van Westen, Castellanos, Kuriakose (CR95) 2008; 102 Gorsevski, Brown, Panter, Onasch, Simic, Snyder (CR33) 2016; 13 Huang, Zhao (CR48) 2018; 165 Saha, Gupta, Sarkar, Arora, Csaplovics (CR83) 2005; 2 Xie, Esaki, Zhou, Mitani (CR106) 2003; 129 Bai, Wang, Lü, Zhou, Hou, Xu (CR5) 2010; 115 J Cao (1444_CR14) 2019; 78 D Ehret (1444_CR27) 2010; 21 J Torizin (1444_CR93) 2018; 15 DN Rowbotham (1444_CR81) 1998; 26 L Montrasio (1444_CR68) 2015; 13 SP Mandal (1444_CR62) 2018; 26 1444_CR91 A Stumpf (1444_CR89) 2011; 115 1444_CR94 PV Gorsevski (1444_CR32) 2006; 80 1444_CR10 VD Dong (1444_CR22) 2020; 188 SR Yang (1444_CR109) 2017; 31 BT Pham (1444_CR75) 2019; 11 L Drăguţ (1444_CR24) 2006; 81 PT Giles (1444_CR31) 1998; 21 E Sevgen (1444_CR85) 2019; 19 G Shi (1444_CR87) 2019; 50 SB Bai (1444_CR5) 2010; 115 MGMR, Ministry of Geology and Mineral Resources (1444_CR65) 1988 L Cascini (1444_CR16) 2008; 102 X Wu (1444_CR104) 2014; 71 JR Dymond (1444_CR26) 1995; 20 LA Owen (1444_CR71) 2008; 94 AS Bacha (1444_CR3) 2018; 15 Y Liu (1444_CR60) 2019; 7 K Sharir (1444_CR86) 2017; 46 PV Gorsevski (1444_CR33) 2016; 13 L Zhe (1444_CR116) 2013; 53 S Ronoud (1444_CR80) 2019; 23 P Ling (1444_CR59) 2014; 204 1444_CR38 Anno (1444_CR1) 1993; 34 C Zhou (1444_CR117) 2014; 173 F Guzzetti (1444_CR35) 1999; 31 AM Youssef (1444_CR111) 2014; 19 Z Duo (1444_CR25) 2019; 11 D Kumar (1444_CR54) 2017; 295 Y Wang (1444_CR98) 2019; 666 G Wang (1444_CR100) 2020; 9 VD Gaudio (1444_CR30) 2013; 13 W Chen (1444_CR19) 2014; 152 D Lagomarsino (1444_CR55) 2017; 22 U Kamp (1444_CR50) 2008; 101 L Yu (1444_CR112) 2019; 9 1444_CR28 R Fell (1444_CR29) 2007; 102 K He (1444_CR41) 2015; 1 M Xie (1444_CR106) 2003; 129 X Zhao (1444_CR115) 2020; 10 C Polykretis (1444_CR76) 2018; 93 Q Wang (1444_CR97) 2016; 75 F Guzzetti (1444_CR36) 2006; 81 C Wei (1444_CR102) 2017; 32 O Chapelle (1444_CR17) 1999; 10 MA Thomas (1444_CR92) 2018; 15 X Wu (1444_CR103) 2013; 70 F Seide (1444_CR84) 2012; 1-5 Q Hu (1444_CR47) 2019; 11 Y Wang (1444_CR101) 2020; 138 J Cao (1444_CR15) 2019; 175 S Mondal (1444_CR67) 2019; 11 M Lee (1444_CR56) 2015; 74 J He (1444_CR42) 2018; 13 F Guzzetti (1444_CR37) 2012; 112 1444_CR52 G Liang (1444_CR58) 2016; 18 B Romstad (1444_CR78) 2009 R Hongyo (1444_CR46) 2019; 29 Y Wu (1444_CR105) 2016; 21 JL Zêzere (1444_CR113) 2017; 589 X He (1444_CR43) 2019; 33 H Hong (1444_CR45) 2017; 290 S He (1444_CR40) 2012; 171 K Martinović (1444_CR63) 2016; 215 SK Gupta (1444_CR34) 2018; 9 H Miao (1444_CR66) 2014; 171 R Niu (1444_CR70) 2017; 7 Q Ba (1444_CR2) 2018; 11 H Xing (1444_CR107) 2016; 10 Y Wang (1444_CR99) 2019; 16 L Li (1444_CR57) 2017; 14 Y Oysal (1444_CR72) 2005; 46 M Havaei (1444_CR39) 2017; 35 T Young (1444_CR110) 1993; 328 J Ruette (1444_CR82) 2013; 49 P Paolo (1444_CR74) 2013; 191 B Romstad (1444_CR79) 2012; 139 CJ van Westen (1444_CR95) 2008; 102 J Dou (1444_CR23) 2020; 17 SIA Pamela (1444_CR73) 2017; 118 DP Kanungo (1444_CR51) 2011; 59 S Chauhan (1444_CR18) 2010; 7 L Wang (1444_CR96) 2016; 20 X Cui (1444_CR20) 2014; 23 CF Barella (1444_CR6) 2019; 78 A Zhu (1444_CR118) 2019; 183 TP Binh (1444_CR8) 2019; 175 Z Shirvani (1444_CR88) 2020; 12 H Tanyas (1444_CR90) 2019; 327 M Cama (1444_CR13) 2016; 75 TV Ramachandra (1444_CR77) 2013; 6 Y Huang (1444_CR48) 2018; 165 J Kim (1444_CR53) 2018; 33 DT Bui (1444_CR12) 2016; 13 U Meier (1444_CR64) 2012; 32 Y Xu (1444_CR108) 2015; 23 TP Binh (1444_CR7) 2019; 34 AK Saha (1444_CR83) 2005; 2 K Zhang (1444_CR114) 2017; 76 SB Bai (1444_CR4) 2009; 19 1444_CR9 L Breiman (1444_CR11) 2001; 45 TB Dieu (1444_CR21) 2019; 10 1444_CR61 HA Nefeslioglu (1444_CR69) 2020; 91 G Hinton (1444_CR44) 2012; 29 YJ Jo (1444_CR49) 2018; 25 |
| References_xml | – volume: 2 start-page: 61 issue: 1 year: 2005 end-page: 69 ident: CR83 article-title: An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas publication-title: Landslides – volume: 589 start-page: 250 year: 2017 end-page: 267 ident: CR113 article-title: Mapping landslide susceptibility using data-driven methods publication-title: Sci Total Environ – volume: 19 start-page: 113 issue: 1 year: 2014 end-page: 134 ident: CR111 article-title: Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models publication-title: Geosci J – volume: 19 start-page: 3940 issue: 18 year: 2019 ident: CR85 article-title: A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest publication-title: Sensors. – volume: 129 start-page: 1109 issue: 12 year: 2003 end-page: 1118 ident: CR106 article-title: Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment publication-title: J Geotech Geoenviron Eng – volume: 15 start-page: 1299 issue: 6 year: 2018 end-page: 1318 ident: CR93 article-title: Statistical landslide susceptibility assessment in a dynamic environment: a case study for Lanzhou City, Gansu Province, NW China publication-title: J Mt Sci – volume: 80 start-page: 178 issue: 3–4 year: 2006 end-page: 198 ident: CR32 article-title: Spatially and temporally distributed modeling of landslide susceptibility publication-title: Geomorpholgy doi: 10.1016/j.geomorph.2006.02.011 – volume: 175 start-page: 203 year: 2019 end-page: 218 ident: CR8 article-title: Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: hybrid machine learning approaches publication-title: Catena – volume: 49 start-page: 6266 issue: 10 year: 2013 end-page: 6285 ident: CR82 article-title: Rainfall-triggered shallow landslides at catchment scale: threshold mechanics-based modeling for abruptness and localization publication-title: Water Resour Res – volume: 46 start-page: 1531 issue: 9 year: 2017 end-page: 1540 ident: CR86 article-title: Landslide factors and susceptibility mapping on natural and artificial slopes in Kundasang, Sabah publication-title: Sains Malaysiana – volume: 13 start-page: 361 issue: 2 year: 2016 end-page: 378 ident: CR12 article-title: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree publication-title: Landslides – volume: 21 start-page: 824 issue: 6 year: 2010 end-page: 834 ident: CR27 article-title: Frequency ratio analysis of mass movements in the Xiangxi catchment, Three Gorges Reservoir area, China publication-title: J Earth Sci – volume: 14 start-page: 727 issue: 2 year: 2017 end-page: 741 ident: CR57 article-title: A modified frequency ratio method for landslide susceptibility assessment publication-title: Landslides – volume: 81 start-page: 166 issue: 1 year: 2006 end-page: 184 ident: CR36 article-title: Estimating the quality of landslide susceptibility models publication-title: Geomorphology – volume: 75 start-page: 599 issue: 7 year: 2016 ident: CR97 article-title: Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China) publication-title: Environ Earth Sci – volume: 50 start-page: 57 issue: 1 year: 2019 end-page: 75 ident: CR87 article-title: Enhance the performance of deep neural networks via L2 regularization on the input of activations publication-title: Neural Process Lett – volume: 94 start-page: 1 issue: 1 year: 2008 end-page: 9 ident: CR71 article-title: Landslides triggered by the 8 October 2005 Kashmir earthquake publication-title: Geomorphology – volume: 59 start-page: 1491 issue: 3 year: 2011 end-page: 1512 ident: CR51 article-title: Combining neural network with fuzzy, certainty factor and likelihood ratio concepts for spatial prediction of landslides publication-title: Nat Hazards – volume: 165 start-page: 520 year: 2018 end-page: 529 ident: CR48 article-title: Review on landslide susceptibility mapping using support vector machines publication-title: Catena – year: 1988 ident: CR65 publication-title: Study on the bank stability in the Three Gorges engineering in Yangze River – volume: 10 start-page: 743 issue: 9 year: 2019 ident: CR21 article-title: New ensemble models for shallow landslide susceptibility modeling in a semi-arid watershed publication-title: Forests – volume: 34 start-page: 316 issue: 3 year: 2019 end-page: 333 ident: CR7 article-title: Evaluation and comparison of LogitBoost ensemble, Fisher’s linear discriminant analysis, logistic regression and support vector machines methods for landslide susceptibility mapping publication-title: Geocarto International – volume: 9 start-page: 144 issue: 3 year: 2020 ident: CR100 article-title: Spatial prediction of landslide susceptibility based on GIS and discriminant functions publication-title: ISPRS Int J Geo Inf – volume: 20 start-page: 131 issue: 2 year: 1995 end-page: 137 ident: CR26 article-title: Automated mapping of land components from digital elevation data publication-title: Earth Surf Process Landf – volume: 78 start-page: 3205 issue: 5 year: 2019 end-page: 3221 ident: CR6 article-title: A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil publication-title: Bull Eng Geol Environ – volume: 171 start-page: 59 issue: 8 year: 2014 end-page: 69 ident: CR66 article-title: Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China publication-title: Eng Geol – volume: 53 start-page: 873 issue: 4 year: 2013 end-page: 889 ident: CR116 article-title: Characterizing spatiotemporal variations of hourly rainfall by gauge and radar in the mountainous Three Gorges region publication-title: J Appl Meteorol Climatol – volume: 75 start-page: 238 issue: 3 year: 2016 ident: CR13 article-title: Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy) publication-title: Environ Earth Sci – ident: CR91 – volume: 11 start-page: 6323 issue: 22 year: 2019 ident: CR75 article-title: A novel intelligence approach of a sequential minimal optimization-based support vector machine for landslide susceptibility mapping publication-title: Sustainability – volume: 23 start-page: 1469 issue: 9 year: 2014 end-page: 1477 ident: CR20 article-title: Data augmentation for deep neural network acoustic modeling publication-title: IEEE Int Conf Acoust – volume: 26 start-page: 127 issue: 2 year: 2018 end-page: 141 ident: CR62 article-title: Comparative evaluation of information value and frequency ratio in landslide susceptibility analysis along national highways of Sikkim Himalaya publication-title: Spat Inf Res – volume: 118 start-page: 012037 year: 2017 ident: CR73 article-title: Weights of evidence method for landslide susceptibility mapping in Takengon, Central Aceh, Indonesia publication-title: IOP Conf Ser Earth Environ Sci – volume: 10 start-page: 417 issue: 3 year: 2016 end-page: 439 ident: CR107 article-title: Deep learning publication-title: Int J Semant Comput – ident: CR10 – volume: 6 start-page: 54 issue: 1 year: 2013 end-page: 64 ident: CR77 article-title: Prediction of shallow landslide prone regions in undulating terrains publication-title: Disaster Adv – volume: 175 start-page: 63 year: 2019 end-page: 76 ident: CR15 article-title: Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau publication-title: Catena – volume: 9 start-page: 471 issue: 1 year: 2018 end-page: 487 ident: CR34 article-title: Selection of weightages for causative factors used in preparation of landslide susceptibility zonation (LSZ) publication-title: Geomatics Nat Hazards Risk – volume: 93 start-page: 249 issue: 1 year: 2018 end-page: 274 ident: CR76 article-title: Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models publication-title: Nat Hazards – volume: 31 start-page: 181 issue: 1 year: 1999 end-page: 216 ident: CR35 article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy publication-title: Geomorphology – volume: 112 start-page: 42 issue: 1 year: 2012 end-page: 66 ident: CR37 article-title: Landslide inventory maps: new tools for an old problem publication-title: Earth Sci Rev – volume: 29 start-page: 146 issue: 2 year: 2019 end-page: 148 ident: CR46 article-title: Deep neural network-based digital predistorter for Doherty power amplifiers publication-title: IEEE Microw Wirel Components Lett – volume: 13 start-page: 1255 issue: 6 year: 2018 end-page: 1265 ident: CR42 article-title: Bayesian dual neural networks for recommendation publication-title: Front Comput Sci – start-page: 55 year: 2009 end-page: 60 ident: CR78 publication-title: Structuring the digital elevation model into landform elements through watershed segmentation of curvature – volume: 11 start-page: 373 issue: 3 year: 2018 end-page: 388 ident: CR2 article-title: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment publication-title: Earth Sci Inf – volume: 33 start-page: 1000 issue: 9 year: 2018 end-page: 1015 ident: CR53 article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea publication-title: Geocarto Int – ident: CR94 – volume: 152 start-page: 291 year: 2014 end-page: 301 ident: CR19 article-title: Forested landslide detection using LiDAR data and the random forest algorithm: a case study of the Three Gorges, China publication-title: Remote Sens Environ – volume: 23 start-page: 13139 issue: 24 year: 2019 end-page: 13159 ident: CR80 article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis publication-title: Soft Comput – volume: 21 start-page: 4427 issue: 14 year: 2016 end-page: 4434 ident: CR105 article-title: GIS-based landslide susceptibility analysis using support vector machine model at a regional scale publication-title: Electron J Geotech Eng – volume: 11 start-page: 1921 issue: 16 year: 2019 ident: CR25 article-title: Oceanic mesoscale eddy detection method based on deep learning publication-title: Remote Sens – ident: CR38 – ident: CR52 – volume: 7 start-page: 411 issue: 4 year: 2010 end-page: 423 ident: CR18 article-title: Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model publication-title: Landslides – volume: 666 start-page: 975 year: 2019 end-page: 993 ident: CR98 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China publication-title: Sci Total Environ – volume: 10 start-page: 16 issue: 1 year: 2020 ident: CR115 article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl Sci Basel – volume: 102 start-page: 112 issue: 3 year: 2008 end-page: 131 ident: CR95 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview publication-title: Eng Geol – volume: 7 start-page: 3979 issue: 9 year: 2017 end-page: 3992 ident: CR70 article-title: Susceptibility assessment of landslides triggered by the Lushan earthquake, April 20, 2013, China publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens – volume: 11 start-page: 2530 issue: 21 year: 2019 ident: CR47 article-title: Improving the accuracy of landslide detection in “off-site” area by machine learning model portability comparison: a case study of Jiuzhaigou earthquake, China publication-title: Remote Sens – volume: 15 start-page: 1265 issue: 7 year: 2018 end-page: 1277 ident: CR92 article-title: Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria publication-title: Landslides – volume: 46 start-page: 2656 issue: 15–16 year: 2005 end-page: 2668 ident: CR72 article-title: A comparative study of adaptive load frequency controller designs in a power system with dynamic neural network models publication-title: Energy Convers Manag – volume: 1-5 start-page: 444 year: 2012 ident: CR84 article-title: Conversational speech transcription using context-dependent deep neural networks publication-title: Int Coference Int Conf Mach Learn – volume: 26 start-page: 151 issue: 1 year: 1998 end-page: 170 ident: CR81 article-title: GIS modelling of slope stability in Phewa Tal watershed, Nepal publication-title: Geomorphology – volume: 31 start-page: 04017026 issue: 4 year: 2017 ident: CR109 article-title: Assessment of rainfall-induced landslide susceptibility using GIS-based slope unit approach publication-title: J Perform Constr Facil – volume: 183 start-page: 104188 year: 2019 ident: CR118 article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods publication-title: Catena – volume: 74 start-page: 413 issue: 1 year: 2015 end-page: 429 ident: CR56 article-title: Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: a case study of Seorak mountain area in Korea publication-title: Environ Earth Sci – volume: 139 start-page: 293 issue: 2 year: 2012 end-page: 302 ident: CR79 article-title: Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units publication-title: Geomorphology – volume: 12 start-page: 434 issue: 3 year: 2020 ident: CR88 article-title: A holistic analysis for landslide susceptibility mapping applying geographic object-based random forest: a comparison between protected and non-protected forests publication-title: Remote Sens – volume: 171 start-page: 30 year: 2012 end-page: 41 ident: CR40 article-title: Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China publication-title: Geomorphology – volume: 23 start-page: 7 issue: 1 year: 2015 end-page: 19 ident: CR108 article-title: A regression approach to speech enhancement based on deep neural networks publication-title: IEEE-ACM Trans Audio Speech Lang Process – volume: 81 start-page: 330 issue: 3 year: 2006 end-page: 344 ident: CR24 article-title: Automated classification of landform elements using object-based image analysis publication-title: Geomorphology – volume: 33 start-page: 1571 issue: 4 year: 2019 end-page: 1590 ident: CR43 article-title: Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks publication-title: Water Resour Manag – volume: 115 start-page: 2564 issue: 10 year: 2011 end-page: 2577 ident: CR89 article-title: Object-oriented mapping of landslides using random forests publication-title: Remote Sens Environ – volume: 11 start-page: 129 issue: 2 year: 2019 end-page: 146 ident: CR67 article-title: Landslide susceptibility mapping of Darjeeling Himalaya, India using index of entropy (IOE) model publication-title: Applied Geomatics – volume: 18 start-page: 246 issue: 2 year: 2016 end-page: 255 ident: CR58 article-title: Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China publication-title: Environ Sci Process Impacts – volume: 76 start-page: 405 issue: 11 year: 2017 ident: CR114 article-title: The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China publication-title: Environ Earth Sci – ident: CR61 – volume: 22 start-page: 201 issue: 3 year: 2017 end-page: 214 ident: CR55 article-title: A tool for classification and regression using random forest methodology: applications to landslide susceptibility mapping and soil thickness modeling publication-title: Environ Model Assess – volume: 25 start-page: 6800914 issue: 1 year: 2018 ident: CR49 article-title: Quantitative phase imaging and artificial intelligence: a review publication-title: IEEE J Sel Top Quantum Electron – volume: 10 start-page: 1055 issue: 5 year: 1999 end-page: 1064 ident: CR17 article-title: Support vector machines for histogram-based image classification publication-title: IEEE Trans Neural Netw – volume: 78 start-page: 29021 issue: 20 year: 2019 end-page: 29041 ident: CR14 article-title: Urban noise recognition with convolutional neural network publication-title: Multimed Tools Appl – volume: 91 start-page: 104363 year: 2020 ident: CR69 article-title: The use of landslide hazard maps to determine mitigation priorities in a dam reservoir and its protection area publication-title: Land Use Policy – volume: 1 start-page: 770 year: 2015 end-page: 778 ident: CR41 article-title: Deep residual learning for image recognition publication-title: IEEE Comput Soc – volume: 101 start-page: 631 issue: 4 year: 2008 end-page: 642 ident: CR50 article-title: GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region publication-title: Geomorphology – volume: 7 start-page: 2633 issue: 6 year: 2019 end-page: 2645 ident: CR60 article-title: Intelligent wind turbine blade icing detection using supervisory control and data acquisition data and ensemble deep learning publication-title: Energy Sci Eng – volume: 70 start-page: 1307 issue: 3 year: 2013 end-page: 1318 ident: CR103 article-title: Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China publication-title: Environ Earth Sci – volume: 204 start-page: 287 issue: 1 year: 2014 end-page: 301 ident: CR59 article-title: Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the Three Gorges area, China publication-title: Geomorphology – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: CR39 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal – volume: 13 start-page: 467 issue: 3 year: 2016 end-page: 484 ident: CR33 article-title: Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park, Ohio publication-title: Landslides – volume: 102 start-page: 85 issue: 3 year: 2007 end-page: 98 ident: CR29 article-title: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning publication-title: Eng Geol – ident: CR9 – volume: 21 start-page: 251 issue: 3 year: 1998 end-page: 264 ident: CR31 article-title: An automated approach to the classification of the slope units using digital data publication-title: Geomorphology – volume: 32 start-page: 333 issue: 1 year: 2012 end-page: 338 ident: CR64 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Netw – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR11 article-title: Random forests publication-title: Mach Learn – volume: 71 start-page: 4725 issue: 11 year: 2014 end-page: 4738 ident: CR104 article-title: Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China publication-title: Environ Earth Sci – volume: 13 start-page: 2075 issue: 8 year: 2013 end-page: 2087 ident: CR30 article-title: New developments in ambient noise analysis to characterise the seismic response of landslide prone slopes publication-title: Nat Hazards Earth Syst Sci – volume: 102 start-page: 164 issue: 3 year: 2008 end-page: 177 ident: CR16 article-title: Applicability of landslide susceptibility and hazard zoning at different scales publication-title: Eng Geol – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 ident: CR44 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Process Mag – volume: 295 start-page: 115 year: 2017 end-page: 125 ident: CR54 article-title: Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India publication-title: Geomorphology – volume: 9 start-page: 4756 issue: 22 year: 2019 ident: CR112 article-title: Landslide susceptibility mapping combining information gain ratio and support vector machines: a case study from Wushan segment in the Three Gorges Reservoir area, China publication-title: Appl Sci Basel – volume: 20 start-page: 117 issue: 1 year: 2016 end-page: 136 ident: CR96 article-title: A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network publication-title: Geosci J – volume: 13 start-page: 873 issue: 5 year: 2015 end-page: 883 ident: CR68 article-title: Physical and numerical modelling of shallow landslides publication-title: Landslides – volume: 16 start-page: 3683 issue: 3 year: 2019 ident: CR99 article-title: Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China publication-title: Int J Environ Res Public Health – volume: 173 start-page: 41 issue: 6 year: 2014 end-page: 53 ident: CR117 article-title: Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China publication-title: Eng Geol – volume: 115 start-page: 23 issue: 1 year: 2010 end-page: 31 ident: CR5 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China publication-title: Geomorphology – volume: 188 start-page: 104451 year: 2020 ident: CR22 article-title: A spatially explicit deep learning neural network model for the prediction of landslide susceptibility publication-title: Catena – volume: 34 start-page: 53 issue: 1 year: 1993 end-page: 79 ident: CR1 article-title: Landslide processes and landslide susceptibility analysis from an upland watershed: a case study from St. Andrew, Jamaica, West Indies publication-title: Eng Geol – volume: 19 start-page: 14 issue: 1 year: 2009 end-page: 20 ident: CR4 article-title: GIS-based and data-driven bivariate landslide-susceptibility mapping in the Three Gorges area, China publication-title: Pedosphere – volume: 32 start-page: 367 issue: 4 year: 2017 end-page: 385 ident: CR102 article-title: A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping publication-title: Geocarto Int – volume: 191 start-page: 75 issue: 5 year: 2013 end-page: 93 ident: CR74 article-title: Influence of filling―drawdown cycles of the Vajont reservoir on Mt. Toc slope stability publication-title: Geomorphology – volume: 290 start-page: 1 year: 2017 end-page: 16 ident: CR45 article-title: A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China publication-title: Geomorphology – volume: 15 start-page: 1354 issue: 6 year: 2018 end-page: 1370 ident: CR3 article-title: Landslide inventory and susceptibility modelling using geospatial tools, in Hunza-Nagar valley, northern Pakistan publication-title: J Mt Sci – volume: 215 start-page: 1 year: 2016 end-page: 9 ident: CR63 article-title: Development of a landslide susceptibility assessment for a rail network publication-title: Eng Geol – volume: 327 start-page: 126 year: 2019 end-page: 146 ident: CR90 article-title: A global slope unit-based method for the near real-time prediction of earthquake-induced landslides publication-title: Geomorphology – ident: CR28 – volume: 17 start-page: 641 issue: 3 year: 2020 end-page: 658 ident: CR23 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed publication-title: Landslides – volume: 138 start-page: 104445 year: 2020 ident: CR101 article-title: Comparative study of landslide susceptibility mapping with different recurrent neural networks publication-title: Comput Geosci – volume: 328 start-page: 1230 issue: 17 year: 1993 end-page: 1235 ident: CR110 article-title: The occurrence of sleep-disordered breathing among middle-aged adults publication-title: N Engl J Med – volume: 31 start-page: 181 issue: 1 year: 1999 ident: 1444_CR35 publication-title: Geomorphology doi: 10.1016/S0169-555X(99)00078-1 – volume: 7 start-page: 3979 issue: 9 year: 2017 ident: 1444_CR70 publication-title: IEEE J Sel Top Appl Earth Observ Remote Sens doi: 10.1109/JSTARS.2014.2308553 – volume: 10 start-page: 16 issue: 1 year: 2020 ident: 1444_CR115 publication-title: Appl Sci Basel doi: 10.3390/app10010016 – volume: 2 start-page: 61 issue: 1 year: 2005 ident: 1444_CR83 publication-title: Landslides doi: 10.1007/s10346-004-0039-8 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 1444_CR44 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2205597 – ident: 1444_CR38 doi: 10.1201/9780203885284-c265 – volume: 75 start-page: 238 issue: 3 year: 2016 ident: 1444_CR13 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-5047-6 – volume: 112 start-page: 42 issue: 1 year: 2012 ident: 1444_CR37 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2012.02.001 – volume: 26 start-page: 127 issue: 2 year: 2018 ident: 1444_CR62 publication-title: Spat Inf Res doi: 10.1007/s41324-017-0160-0 – volume: 19 start-page: 14 issue: 1 year: 2009 ident: 1444_CR4 publication-title: Pedosphere doi: 10.1016/S1002-0160(08)60079-X – volume: 183 start-page: 104188 year: 2019 ident: 1444_CR118 publication-title: Catena doi: 10.1016/j.catena.2019.104188 – volume: 46 start-page: 2656 issue: 15–16 year: 2005 ident: 1444_CR72 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2004.12.010 – volume: 21 start-page: 4427 issue: 14 year: 2016 ident: 1444_CR105 publication-title: Electron J Geotech Eng – volume: 13 start-page: 873 issue: 5 year: 2015 ident: 1444_CR68 publication-title: Landslides doi: 10.1007/s10346-015-0642-x – volume: 23 start-page: 1469 issue: 9 year: 2014 ident: 1444_CR20 publication-title: IEEE Int Conf Acoust – volume: 589 start-page: 250 year: 2017 ident: 1444_CR113 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.02.188 – volume: 21 start-page: 824 issue: 6 year: 2010 ident: 1444_CR27 publication-title: J Earth Sci doi: 10.1007/s12583-010-0134-9 – volume: 49 start-page: 6266 issue: 10 year: 2013 ident: 1444_CR82 publication-title: Water Resour Res doi: 10.1002/wrcr.20418 – volume: 71 start-page: 4725 issue: 11 year: 2014 ident: 1444_CR104 publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2863-4 – volume: 129 start-page: 1109 issue: 12 year: 2003 ident: 1444_CR106 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2003)129:12(1109) – volume: 152 start-page: 291 year: 2014 ident: 1444_CR19 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2014.07.004 – volume: 25 start-page: 6800914 issue: 1 year: 2018 ident: 1444_CR49 publication-title: IEEE J Sel Top Quantum Electron – ident: 1444_CR91 – volume: 78 start-page: 3205 issue: 5 year: 2019 ident: 1444_CR6 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1341-3 – volume: 11 start-page: 129 issue: 2 year: 2019 ident: 1444_CR67 publication-title: Applied Geomatics doi: 10.1007/s12518-018-0248-9 – volume: 46 start-page: 1531 issue: 9 year: 2017 ident: 1444_CR86 publication-title: Sains Malaysiana doi: 10.17576/jsm-2017-4609-23 – volume: 1 start-page: 770 year: 2015 ident: 1444_CR41 publication-title: IEEE Comput Soc – volume: 35 start-page: 18 year: 2017 ident: 1444_CR39 publication-title: Med Image Anal doi: 10.1016/j.media.2016.05.004 – volume: 101 start-page: 631 issue: 4 year: 2008 ident: 1444_CR50 publication-title: Geomorphology doi: 10.1016/j.geomorph.2008.03.003 – volume: 15 start-page: 1265 issue: 7 year: 2018 ident: 1444_CR92 publication-title: Landslides doi: 10.1007/s10346-018-0950-z – volume: 20 start-page: 117 issue: 1 year: 2016 ident: 1444_CR96 publication-title: Geosci J doi: 10.1007/s12303-015-0026-1 – volume: 34 start-page: 53 issue: 1 year: 1993 ident: 1444_CR1 publication-title: Eng Geol – volume: 16 start-page: 3683 issue: 3 year: 2019 ident: 1444_CR99 publication-title: Int J Environ Res Public Health – volume: 175 start-page: 203 year: 2019 ident: 1444_CR8 publication-title: Catena doi: 10.1016/j.catena.2018.12.018 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1444_CR11 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 9 start-page: 4756 issue: 22 year: 2019 ident: 1444_CR112 publication-title: Appl Sci Basel doi: 10.3390/app9224756 – volume: 102 start-page: 85 issue: 3 year: 2007 ident: 1444_CR29 publication-title: Eng Geol – volume: 74 start-page: 413 issue: 1 year: 2015 ident: 1444_CR56 publication-title: Environ Earth Sci doi: 10.1007/s12665-015-4048-9 – volume: 6 start-page: 54 issue: 1 year: 2013 ident: 1444_CR77 publication-title: Disaster Adv – volume: 81 start-page: 166 issue: 1 year: 2006 ident: 1444_CR36 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.007 – volume: 115 start-page: 23 issue: 1 year: 2010 ident: 1444_CR5 publication-title: Geomorphology – volume: 76 start-page: 405 issue: 11 year: 2017 ident: 1444_CR114 publication-title: Environ Earth Sci doi: 10.1007/s12665-017-6731-5 – volume: 53 start-page: 873 issue: 4 year: 2013 ident: 1444_CR116 publication-title: J Appl Meteorol Climatol – volume: 14 start-page: 727 issue: 2 year: 2017 ident: 1444_CR57 publication-title: Landslides doi: 10.1007/s10346-016-0771-x – volume: 139 start-page: 293 issue: 2 year: 2012 ident: 1444_CR79 publication-title: Geomorphology doi: 10.1016/j.geomorph.2011.10.031 – volume: 13 start-page: 361 issue: 2 year: 2016 ident: 1444_CR12 publication-title: Landslides doi: 10.1007/s10346-015-0557-6 – start-page: 55 volume-title: Structuring the digital elevation model into landform elements through watershed segmentation of curvature year: 2009 ident: 1444_CR78 – volume: 33 start-page: 1571 issue: 4 year: 2019 ident: 1444_CR43 publication-title: Water Resour Manag doi: 10.1007/s11269-019-2183-x – volume: 165 start-page: 520 year: 2018 ident: 1444_CR48 publication-title: Catena doi: 10.1016/j.catena.2018.03.003 – volume: 32 start-page: 367 issue: 4 year: 2017 ident: 1444_CR102 publication-title: Geocarto Int doi: 10.1080/10106049.2016.1140824 – volume: 173 start-page: 41 issue: 6 year: 2014 ident: 1444_CR117 publication-title: Eng Geol doi: 10.1016/j.enggeo.2014.02.004 – volume: 33 start-page: 1000 issue: 9 year: 2018 ident: 1444_CR53 publication-title: Geocarto Int doi: 10.1080/10106049.2017.1323964 – volume: 115 start-page: 2564 issue: 10 year: 2011 ident: 1444_CR89 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2011.05.013 – volume: 31 start-page: 04017026 issue: 4 year: 2017 ident: 1444_CR109 publication-title: J Perform Constr Facil doi: 10.1061/(ASCE)CF.1943-5509.0000997 – volume: 19 start-page: 3940 issue: 18 year: 2019 ident: 1444_CR85 publication-title: Sensors. doi: 10.3390/s19183940 – volume: 295 start-page: 115 year: 2017 ident: 1444_CR54 publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.06.013 – ident: 1444_CR94 doi: 10.1109/CVPR.2014.214 – volume: 11 start-page: 2530 issue: 21 year: 2019 ident: 1444_CR47 publication-title: Remote Sens doi: 10.3390/rs11212530 – volume: 11 start-page: 373 issue: 3 year: 2018 ident: 1444_CR2 publication-title: Earth Sci Inf doi: 10.1007/s12145-018-0335-9 – volume: 215 start-page: 1 year: 2016 ident: 1444_CR63 publication-title: Eng Geol doi: 10.1016/j.enggeo.2016.10.011 – volume: 7 start-page: 2633 issue: 6 year: 2019 ident: 1444_CR60 publication-title: Energy Sci Eng doi: 10.1002/ese3.449 – volume: 191 start-page: 75 issue: 5 year: 2013 ident: 1444_CR74 publication-title: Geomorphology – volume: 13 start-page: 467 issue: 3 year: 2016 ident: 1444_CR33 publication-title: Landslides doi: 10.1007/s10346-015-0587-0 – volume: 204 start-page: 287 issue: 1 year: 2014 ident: 1444_CR59 publication-title: Geomorphology – volume: 15 start-page: 1354 issue: 6 year: 2018 ident: 1444_CR3 publication-title: J Mt Sci doi: 10.1007/s11629-017-4697-0 – ident: 1444_CR52 doi: 10.1109/MDM.2017.67 – ident: 1444_CR28 doi: 10.1016/j.cageo.2020.104470 – volume: 59 start-page: 1491 issue: 3 year: 2011 ident: 1444_CR51 publication-title: Nat Hazards doi: 10.1007/s11069-011-9847-z – volume: 81 start-page: 330 issue: 3 year: 2006 ident: 1444_CR24 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.04.013 – ident: 1444_CR9 – volume: 80 start-page: 178 issue: 3–4 year: 2006 ident: 1444_CR32 publication-title: Geomorpholgy doi: 10.1016/j.geomorph.2006.02.011 – volume: 175 start-page: 63 year: 2019 ident: 1444_CR15 publication-title: Catena doi: 10.1016/j.catena.2018.12.013 – volume: 75 start-page: 599 issue: 7 year: 2016 ident: 1444_CR97 publication-title: Environ Earth Sci doi: 10.1007/s12665-016-5400-4 – volume: 188 start-page: 104451 year: 2020 ident: 1444_CR22 publication-title: Catena doi: 10.1016/j.catena.2019.104451 – volume: 666 start-page: 975 year: 2019 ident: 1444_CR98 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.263 – volume: 13 start-page: 1255 issue: 6 year: 2018 ident: 1444_CR42 publication-title: Front Comput Sci doi: 10.1007/s11704-018-8049-1 – volume: 11 start-page: 6323 issue: 22 year: 2019 ident: 1444_CR75 publication-title: Sustainability doi: 10.3390/su11226323 – volume: 20 start-page: 131 issue: 2 year: 1995 ident: 1444_CR26 publication-title: Earth Surf Process Landf doi: 10.1002/esp.3290200204 – volume: 13 start-page: 2075 issue: 8 year: 2013 ident: 1444_CR30 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-13-2075-2013 – volume: 10 start-page: 417 issue: 3 year: 2016 ident: 1444_CR107 publication-title: Int J Semant Comput doi: 10.1142/S1793351X16500045 – volume: 1-5 start-page: 444 year: 2012 ident: 1444_CR84 publication-title: Int Coference Int Conf Mach Learn – ident: 1444_CR61 doi: 10.1007/978-3-642-70911-1_20 – volume: 94 start-page: 1 issue: 1 year: 2008 ident: 1444_CR71 publication-title: Geomorphology doi: 10.1016/j.geomorph.2007.04.007 – volume: 171 start-page: 59 issue: 8 year: 2014 ident: 1444_CR66 publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.12.017 – volume: 50 start-page: 57 issue: 1 year: 2019 ident: 1444_CR87 publication-title: Neural Process Lett doi: 10.1007/s11063-018-9883-8 – volume-title: Study on the bank stability in the Three Gorges engineering in Yangze River year: 1988 ident: 1444_CR65 – volume: 22 start-page: 201 issue: 3 year: 2017 ident: 1444_CR55 publication-title: Environ Model Assess doi: 10.1007/s10666-016-9538-y – volume: 32 start-page: 333 issue: 1 year: 2012 ident: 1444_CR64 publication-title: Neural Netw – volume: 18 start-page: 246 issue: 2 year: 2016 ident: 1444_CR58 publication-title: Environ Sci Process Impacts doi: 10.1039/C5EM00434A – volume: 21 start-page: 251 issue: 3 year: 1998 ident: 1444_CR31 publication-title: Geomorphology doi: 10.1016/S0169-555X(97)00064-0 – volume: 327 start-page: 126 year: 2019 ident: 1444_CR90 publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.10.022 – volume: 93 start-page: 249 issue: 1 year: 2018 ident: 1444_CR76 publication-title: Nat Hazards doi: 10.1007/s11069-018-3299-7 – volume: 70 start-page: 1307 issue: 3 year: 2013 ident: 1444_CR103 publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2217-2 – volume: 290 start-page: 1 year: 2017 ident: 1444_CR45 publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.04.002 – volume: 26 start-page: 151 issue: 1 year: 1998 ident: 1444_CR81 publication-title: Geomorphology doi: 10.1016/S0169-555X(98)00056-7 – ident: 1444_CR10 – volume: 138 start-page: 104445 year: 2020 ident: 1444_CR101 publication-title: Comput Geosci doi: 10.1016/j.cageo.2020.104445 – volume: 17 start-page: 641 issue: 3 year: 2020 ident: 1444_CR23 publication-title: Landslides doi: 10.1007/s10346-019-01286-5 – volume: 29 start-page: 146 issue: 2 year: 2019 ident: 1444_CR46 publication-title: IEEE Microw Wirel Components Lett doi: 10.1109/LMWC.2018.2888955 – volume: 328 start-page: 1230 issue: 17 year: 1993 ident: 1444_CR110 publication-title: N Engl J Med doi: 10.1056/NEJM199304293281704 – volume: 11 start-page: 1921 issue: 16 year: 2019 ident: 1444_CR25 publication-title: Remote Sens doi: 10.3390/rs11161921 – volume: 23 start-page: 7 issue: 1 year: 2015 ident: 1444_CR108 publication-title: IEEE-ACM Trans Audio Speech Lang Process doi: 10.1109/TASLP.2014.2364452 – volume: 34 start-page: 316 issue: 3 year: 2019 ident: 1444_CR7 publication-title: Geocarto International doi: 10.1080/10106049.2017.1404141 – volume: 118 start-page: 012037 year: 2017 ident: 1444_CR73 publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/118/1/012037 – volume: 23 start-page: 13139 issue: 24 year: 2019 ident: 1444_CR80 publication-title: Soft Comput doi: 10.1007/s00500-019-03856-0 – volume: 10 start-page: 1055 issue: 5 year: 1999 ident: 1444_CR17 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788646 – volume: 9 start-page: 144 issue: 3 year: 2020 ident: 1444_CR100 publication-title: ISPRS Int J Geo Inf doi: 10.3390/ijgi9030144 – volume: 102 start-page: 164 issue: 3 year: 2008 ident: 1444_CR16 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.03.016 – volume: 9 start-page: 471 issue: 1 year: 2018 ident: 1444_CR34 publication-title: Geomatics Nat Hazards Risk doi: 10.1080/19475705.2018.1447027 – volume: 171 start-page: 30 year: 2012 ident: 1444_CR40 publication-title: Geomorphology doi: 10.1016/j.geomorph.2012.04.024 – volume: 78 start-page: 29021 issue: 20 year: 2019 ident: 1444_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-6295-8 – volume: 10 start-page: 743 issue: 9 year: 2019 ident: 1444_CR21 publication-title: Forests doi: 10.3390/f10090743 – volume: 19 start-page: 113 issue: 1 year: 2014 ident: 1444_CR111 publication-title: Geosci J doi: 10.1007/s12303-014-0032-8 – volume: 15 start-page: 1299 issue: 6 year: 2018 ident: 1444_CR93 publication-title: J Mt Sci doi: 10.1007/s11629-017-4717-0 – volume: 7 start-page: 411 issue: 4 year: 2010 ident: 1444_CR18 publication-title: Landslides doi: 10.1007/s10346-010-0202-3 – volume: 91 start-page: 104363 year: 2020 ident: 1444_CR69 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2019.104363 – volume: 102 start-page: 112 issue: 3 year: 2008 ident: 1444_CR95 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.03.010 – volume: 12 start-page: 434 issue: 3 year: 2020 ident: 1444_CR88 publication-title: Remote Sens doi: 10.3390/rs12030434 |
| SSID | ssj0029039 |
| Score | 2.5533662 |
| Snippet | The Three Gorges Reservoir is one of the areas with the most serious landslide hazards in China. Landslide susceptibility indicates where landslides are prone... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 281 |
| SubjectTerms | Agriculture Algorithms Annual rainfall Artificial neural networks Canyons Civil Engineering Construction Dynamic response Earth and Environmental Science Earth Sciences Geography Geological hazards Geology Highway construction Hydrology Land use Landslides Landslides & mudslides Monitoring Mountain regions Mountainous areas Natural Hazards Neural networks Normalized difference vegetative index Original Paper Prevention Rain Rainfall Remote sensing Reservoir water Reservoirs Rivers Road construction Roads & highways Segmentation Slopes Soil Soil moisture Soil water Susceptibility Vegetation index Water levels |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yEfUgOhWnU3LwpoU0P9b2ONQ5BD052EEo-anC6Ma6Hfbfm6TpqqKC576E8pLXvNd87_sAuEwNwUZSEaU8ExGVNHbNyjrqcYmJYqlEyDU4Pz71hiP6MGbj0BRW1mj3-krSf6k_NbsR6gCzDkhFKY1sob7JHJ2X3cUj3F-XWRny-mE2lbFlVozGoVXm5zm-HkdNjvntWtSfNoN9sBfSRNiv1vUAbOiiDXb7r_NAlaHbYDvol7-t2mDr3gv0rg7By20lMQ9VgwaCUwN9S-_kXWlYLksPZfGo2BV0x5iC0wKW1lrDpQ1xaG3teD2Dju3SvkZRYcXLIzAa3D3fDKOgoBBxQvEiyggSMkupDVvGsUmEQhJliphYcSQQVoRnthLlDAkRCyNIklLDWJLh1PSQIeQYtIppoU8A5NoJhCotBKc26TKOK0uKxChEE8MI74C4dmQuA724U7mY5A0xsnN-bp2fe-fnqAOu1mNmFbnGn9bden3yEGhljmmKmM0hCeuA63rNmse_z3b6P_MzsIMdmsX_fOmC1mK-1Oc2HVmIC7_7PgBtINUL priority: 102 providerName: Springer Nature |
| Title | Dynamic development of landslide susceptibility based on slope unit and deep neural networks |
| URI | https://link.springer.com/article/10.1007/s10346-020-01444-0 https://www.proquest.com/docview/2480552235 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1612-5118 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0029039 issn: 1612-510X databaseCode: ABDBF dateStart: 20110301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1612-5118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029039 issn: 1612-510X databaseCode: AFBBN dateStart: 20040301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1612-5118 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0029039 issn: 1612-510X databaseCode: BENPR dateStart: 20040301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1612-5118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029039 issn: 1612-510X databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1612-5118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029039 issn: 1612-510X databaseCode: U2A dateStart: 20040301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD60CYO-lG7daNo06GFvq6msS2w_lJK2ScrGwhgNZDAwukIh2GmdPOTfV1LsmhXWV-tiOEeXI-k73wfwNbWUWMVklIpMRkyx2Ccrm2goFKGapwpjn-D8cza8n7PvC77Yg1mTC-Nhlc2aGBZqXSp_R35JWIq5CxYov149RV41yr-uNhIaopZW0FeBYmwfusQzY3WgezOe_fr9egTLcNAWc2GOO4LFeFGn0dTJdJR5QK4HajHGIvzvVtXGn2-eTMNONDmCwzqERKOdzz_Cnik-wYdpkOjdHsPfu53IPNItHgiVFoWk3uWjNqjaVAHMEnCxW-Q3Mo3KAlWutkEbN8mRq-vamxXyfJfuZ8UOLV59hvlk_HB7H9UaCpGgjKyjjGKpspS5icsFsYnUWOFMUxtrgSUmmorMnUUFx1LG0kqapMxynmQktUNsKf0CnaIszAkgYbxEqDZSCubCLuvZspRMrMYssZyKHsSNuXJVE4x7nYtl3lIjexPnzsR5MHGOe_Dttc1qR6_xbu1-44W8nmpV3g6MHlw0nmmL_9_b6fu9ncEB8fiVcN3Sh876eWPOXQCylgPYTyfTAXRH0z8_xoN6jLmvczJ6AUrs2bc |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5CQtCLaFRcjaYPekoGe_qxM3MIonltTLKIJLAHYewnCGF2dXaR_XP-Nqt7ezIoJLecp6cHqmu6qrq_rz6At6XnzBuhs1JVOhNG5IGs7LKhMoxbWRpKA8H5YjwcXYnPEzlZgz8dFybAKrs9MW7UdmrCGfl7JkoqMVng8sPsZxZUo8LtaiehoZK0gt2PLcYSsePMLX9jCdfunx7ier9j7Pjo8mCUJZWBTHHB5lnFqTZVKdC1pWK-0JYaWlnuc6uopsxyVWG1piTVOtde86IUXsqiYqUfUh8ORDEEbAguKiz-Nj4djb98vSn5Khq1zDCtwpIvp5NE20nkPS4CADgAw4QQGf03NPb57n9XtDHyHT-GRyllJR9XPvYE1lyzBZsnURJ4-RS-Ha5E7Ynt8Udk6kkkEV__sI60izaCZyIOd0lC4LRk2pAWRzuywE2F4Fh8381I6K-JH2tW6PT2GVzdizWfw3ozbdwLIMoFSVLrtFYC0zwfunMZXXhLReElVwPIO3PVJjU0D7oa13XfijmYuEYT19HENR3A7s07s1U7jztHb3erUKdfu617RxzAXrcy_ePbZ3t592w78GB0eXFen5-Oz17BQxawM_GoZxvW578W7jUmP3P9JnkYge_37dR_AbSQEpk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiKdYWsAHOEFUx49NckAIsWxbChUHKu0BKfgpIVXZpdkV2r_Gr2PGSRqBRG89x3Gk8ZfxjP3NfAAvyihFdMpmpalsppzKqVg5ZFPjhPS6dJxTgfPn0-nRmfq40Isd-D3UwhCtcvCJyVH7paMz8gOhSq4xWJD6IPa0iC-z-dvVz4wUpOimdZDT6CByEra_MH1r3xzPcK1fCjH_8PX9UdYrDGRGKrHOKsmtq0qFsNZGxMJ67njlZcy94ZYLL02FmZrR3NrcRiuLUkWti0qUccojHYai-79RUBd3qlKfH14mexVPKmYYUGGyl_NFX7DTl-1JRdRfooQppTL-96Y4Rrr_XM6mPW9-F-70wSp716HrHuyE5j7cPExiwNsH8G3WydkzPzKP2DKyVD58_sMH1m7aRJtJDNwtoy3Ts2XDWhwd2AbdCcOx-H5YMeqsiR9rOl56-xDOrsWWj2C3WTbhMTATSIzUB2uNwgAvUl8uZ4vouSqilmYC-WCu2vWtzElR47wemzCTiWs0cZ1MXPMJvLp8Z9U18rhy9P6wCnX_U7f1CMEJvB5WZnz8_9meXD3bc7iFUK4_HZ-e7MFtQaSZdMazD7vri014ilHP2j5L8GLw_brx_AcgCRAz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+development+of+landslide+susceptibility+based+on+slope+unit+and+deep+neural+networks&rft.jtitle=Landslides&rft.au=Ye%2C+Hua&rft.au=Wang%2C+Xianmin&rft.au=Li%2C+Yongwei&rft.au=Xu+Peiyun&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1612-510X&rft.eissn=1612-5118&rft.volume=18&rft.issue=1&rft.spage=281&rft.epage=302&rft_id=info:doi/10.1007%2Fs10346-020-01444-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-510X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-510X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-510X&client=summon |