Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm

Multi-frequency dielectric scanning logging is an advanced method that plays a critical role in evaluating unconventional oil and gas reserves and residual oil distribution. This method provides higher accuracy compared to conventional logging and can obtain essential formation parameters such as fo...

Full description

Saved in:
Bibliographic Details
Published inComputational geosciences Vol. 27; no. 4; pp. 537 - 549
Main Authors Jia, Bao, Xian, Chenggang, Jia, Wenfeng, Su, Jianzheng
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1420-0597
1573-1499
DOI10.1007/s10596-023-10217-2

Cover

Abstract Multi-frequency dielectric scanning logging is an advanced method that plays a critical role in evaluating unconventional oil and gas reserves and residual oil distribution. This method provides higher accuracy compared to conventional logging and can obtain essential formation parameters such as formation water salinity, pore textural index, and dispersive phase volume fraction. Despite its advantages, the inversion of permittivity and conductivity measurements at multiple frequencies into formation properties remains a "black box" problem. This challenge makes it challenging to understand specific implementation methods and inversion techniques without purchasing expensive software and hardware from oil field service companies. To address this issue, this work proposes a publicly available and advanced intelligent optimization algorithm. Our approach reduces calculation complexity and achieves high accuracy in evaluating petrophysical properties, including shaly sand reservoirs, without relying on costly software services from oil field companies. Our method offers distinct advantages over traditional approaches, such as the ability to derive formation properties from dielectric logging information with confidence, without specialized equipment or software from commercial providers. Additionally, the open-source code is readily available in various programming languages, including Python, R, and Matlab, making our approach accessible and easy to implement.
AbstractList Multi-frequency dielectric scanning logging is an advanced method that plays a critical role in evaluating unconventional oil and gas reserves and residual oil distribution. This method provides higher accuracy compared to conventional logging and can obtain essential formation parameters such as formation water salinity, pore textural index, and dispersive phase volume fraction. Despite its advantages, the inversion of permittivity and conductivity measurements at multiple frequencies into formation properties remains a "black box" problem. This challenge makes it challenging to understand specific implementation methods and inversion techniques without purchasing expensive software and hardware from oil field service companies. To address this issue, this work proposes a publicly available and advanced intelligent optimization algorithm. Our approach reduces calculation complexity and achieves high accuracy in evaluating petrophysical properties, including shaly sand reservoirs, without relying on costly software services from oil field companies. Our method offers distinct advantages over traditional approaches, such as the ability to derive formation properties from dielectric logging information with confidence, without specialized equipment or software from commercial providers. Additionally, the open-source code is readily available in various programming languages, including Python, R, and Matlab, making our approach accessible and easy to implement.
Author Jia, Wenfeng
Su, Jianzheng
Jia, Bao
Xian, Chenggang
Author_xml – sequence: 1
  givenname: Bao
  orcidid: 0000-0003-1953-0696
  surname: Jia
  fullname: Jia, Bao
  email: baojia90@gmail.com, baojia90@cup.edu.cn
  organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Unconventional Oil and Gas Institute, China University of Petroleum (Beijing)
– sequence: 2
  givenname: Chenggang
  surname: Xian
  fullname: Xian, Chenggang
  organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Unconventional Oil and Gas Institute, China University of Petroleum (Beijing)
– sequence: 3
  givenname: Wenfeng
  surname: Jia
  fullname: Jia, Wenfeng
  organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Unconventional Oil and Gas Institute, China University of Petroleum (Beijing)
– sequence: 4
  givenname: Jianzheng
  surname: Su
  fullname: Su, Jianzheng
  organization: Production Project Division, Sinopec Exploration & Production Research Institute
BookMark eNp9kE1LAzEQhoNU0Fb_gKeA59V87Da7Rym1FioWa_EYstlsm5ImNUkL---NrSB46Glm4H1mkqcPetZZBcAdRg8YIfYYMCqqYYYIzTAimGXkAlzjgqUxr6pe6nOCspRhV6AfwgYhVDGKr0GYbnfeHVQD5yp6t1t3QUth4Dz1yscOjg_C7EXUzkLXwsVamA4uhG3guwrKH5z2AS6Dtiv46hrd6rRp4lUHP51p4dRGZYxeKSsVfDIr53Vcb2_AZStMULe_dQCWz-OP0Us2e5tMR0-zTNCcxIyhkuZsWAxL0ZKCEsnKusKU1DVpRN7UpZRKFS3BWCDBylIyTAvcYlETWQtR0wG4P-1NP_zaqxD5xu29TSc5KfO8IghhmlLklJLeheBVy3deb4XvOEb8Ry4_yeVJLj_K5SRB5T9I6ni0FL3Q5jxKT2hId-xK-b9XnaG-AbiGkgo
CitedBy_id crossref_primary_10_3390_app14020731
crossref_primary_10_1016_j_apenergy_2024_123673
crossref_primary_10_3390_pr12040780
crossref_primary_10_3390_en17061479
crossref_primary_10_3390_pr12010147
Cites_doi 10.2118/116130-MS
10.1190/geo2018-0100.1
10.1103/PhysRevB.34.5145
10.6028/jres.056.001
10.30632/SPWLA-2021-0033
10.1016/j.advengsoft.2013.12.007
10.1190/1.1442870
10.2118/1863-A
10.1016/j.eswa.2015.10.039
10.2528/PIER06052601
10.1190/geo2018-0863.1
10.1109/eic.1982.7464457
10.2118/5504-MS
10.2118/6859-PA
10.1016/j.fuel.2019.116934
10.2118/spe-19577-ms
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10596-023-10217-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1573-1499
EndPage 549
ExternalDocumentID 10_1007_s10596_023_10217_2
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z81
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7UA
7XB
8AL
8FD
8FK
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a342t-7083476568af2532c78b9132bb2da4db8ccee5f211a0a788c71351f1ab2cbaab3
IEDL.DBID U2A
ISSN 1420-0597
IngestDate Tue Aug 12 16:41:12 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Wed Oct 01 04:44:05 EDT 2025
Fri Feb 21 02:42:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Water saturation
Shaly sand
Multi-objective optimization
Grey wolf optimization
Dielectric
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-7083476568af2532c78b9132bb2da4db8ccee5f211a0a788c71351f1ab2cbaab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1953-0696
PQID 2844920013
PQPubID 55381
PageCount 13
ParticipantIDs proquest_journals_2844920013
crossref_primary_10_1007_s10596_023_10217_2
crossref_citationtrail_10_1007_s10596_023_10217_2
springer_journals_10_1007_s10596_023_10217_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle Modeling, Simulation and Data Analysis
PublicationTitle Computational geosciences
PublicationTitleAbbrev Comput Geosci
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Gkortsas, V.M., Venkataramanan, L., Fellah, K.: Comparison of different dielectric models to calculate water saturation and estimate textural parameters in partially saturated cores (2018)
KnightREndresAA new concept in modeling the dielectric response of sandstones: Defining a wetted rock and bulk water systemGeophysics19905558659410.1190/1.1442870
Misra, S., Han, Y., Jin, Y., Tathed, P.: Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization. Elsevier (2021)
Aceves, J.M., Manuel Aceves, J., Couper, I.D.: Electrical conductivity in insulating materials. 1982 IEEE Intl. Conf. Electric. Insul. (1982). https://doi.org/10.1109/eic.1982.7464457
Clavier, C., Coates, G., Dumanoir, J.: Theoretical and Experimental Bases for the Dual-Water Model for Interpretation of Shaly Sands. SPE J 24(02):153–168. SPE-6859-PA (1984)
StroudDMiltonGWDeBRAnalytical model for the dielectric response of brine-saturated rocksPhys Rev B Condens Matter1986345145515310.1103/PhysRevB.34.5145
Lin, C.M.: Study of Dielectric Constant Logging Tools. Master thesis, University of Houston (2012)
Hizem, B., Deville, F.: Dielectric dispersion: A new wireline petrophysical measurement. SPE Annual Technical Conference and Exhibition (2008)
Zhang, Y.: Study of dielectric tools and dielectric property of rocks (2014)
Zhang, A., Wang, M.: Deep Dielectric-Based Water Saturation in Freshwater and Mixed Salinity Environments. SPWLA 62nd Annual Logging Symposium (2021)
Meador, R.A., Cox, P.T.: Dielectric constant logging, a salinity independent estimation of formation water volume: Trans. Eng of AIME Dallas, Texas(Sept 28-Ott 1) Paper SPE (1975)
Ara, T.S.: In-depth investigation of Archie equation in carbonate rocks (2003)
Waxman, M.H., Smits, L.J.M.: Electrical conductivities in oil-bearing shaly sands. Soc. Petrol. Eng. J. (1968)
Han, C., Suarez, D.: Continous estimate of cation exchange capacity from log data: A new approach based on dielectric dispersion analysis. SPWLA 53rd Annual Logging Symposium (2012)
ShahinAMyersMHathonLGlobal optimization to retrieve borehole-derived petrophysical properties of carbonatesGeophysics202085D758210.1190/geo2018-0863.1
Malmberg, M.: Dielectric Constant of Water from 00 to 1000 C. J. Res. Natl. Bur. Stand. A Phys. Chem. 56 (1956)
Wu, T., Berg, R.R.: Relationship of reservoir properties for shaly sandstones based on effective porosity. Petrophysics. 44(5) (2003)
Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho L dos S.: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert. Syst. Appl. 47:106–19 (2016)
ZhaoPFuJShiYLiGOstadhassanMLuoMHydrocarbon saturation in shale oil reservoirs by inversion of dielectric dispersion logsFuel202026611693410.1016/j.fuel.2019.116934
Donadille, Faivre, Leech. Fundamentals of Dielectric Dispersion Logging. Schlumberger Digital Marketing, Sugar Land, ISBN 2016.
Argaud, M., Giouse, H., Straley, C., Tomanic, J., Winkler, K.: Salinity and Saturation Effects on Shaly Sandstone Conductivity. SPE Annual Technical Conference and Exhibition (1989)https://doi.org/10.2118/spe-19577-ms
KoledintsevaMYDuBroffRESchwartzRWA maxwell garnett model for dielectric mixtures containing conducting particles at optical frequenciesProg. Electromag. Res.20066322324210.2528/PIER06052601
Seleznev, N.V., Habashy, T.M., Boyd, A.J.: Formation properties derived from a multi-frequency dielectric measurement. SPWLA 47th Annual (2006)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Adv Eng Softw 69:46–61 (2014)
Garcia, H.: Integrated characterization of multi-frequency dielectric dispersion measurements in mixed-wet rocks. SPWLA 59th Annual Logging Symposium (2018)
P Zhao (10217_CR20) 2020; 266
10217_CR10
10217_CR11
10217_CR12
10217_CR13
10217_CR6
10217_CR18
10217_CR5
10217_CR8
10217_CR7
10217_CR14
10217_CR9
10217_CR17
A Shahin (10217_CR19) 2020; 85
10217_CR2
10217_CR1
D Stroud (10217_CR23) 1986; 34
10217_CR4
10217_CR3
10217_CR21
10217_CR22
10217_CR24
R Knight (10217_CR16) 1990; 55
MY Koledintseva (10217_CR15) 2006; 63
10217_CR25
References_xml – reference: KoledintsevaMYDuBroffRESchwartzRWA maxwell garnett model for dielectric mixtures containing conducting particles at optical frequenciesProg. Electromag. Res.20066322324210.2528/PIER06052601
– reference: Waxman, M.H., Smits, L.J.M.: Electrical conductivities in oil-bearing shaly sands. Soc. Petrol. Eng. J. (1968)
– reference: Han, C., Suarez, D.: Continous estimate of cation exchange capacity from log data: A new approach based on dielectric dispersion analysis. SPWLA 53rd Annual Logging Symposium (2012)
– reference: Lin, C.M.: Study of Dielectric Constant Logging Tools. Master thesis, University of Houston (2012)
– reference: Zhang, Y.: Study of dielectric tools and dielectric property of rocks (2014)
– reference: Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Adv Eng Softw 69:46–61 (2014)
– reference: Wu, T., Berg, R.R.: Relationship of reservoir properties for shaly sandstones based on effective porosity. Petrophysics. 44(5) (2003)
– reference: Gkortsas, V.M., Venkataramanan, L., Fellah, K.: Comparison of different dielectric models to calculate water saturation and estimate textural parameters in partially saturated cores (2018)
– reference: ShahinAMyersMHathonLGlobal optimization to retrieve borehole-derived petrophysical properties of carbonatesGeophysics202085D758210.1190/geo2018-0863.1
– reference: Argaud, M., Giouse, H., Straley, C., Tomanic, J., Winkler, K.: Salinity and Saturation Effects on Shaly Sandstone Conductivity. SPE Annual Technical Conference and Exhibition (1989)https://doi.org/10.2118/spe-19577-ms
– reference: StroudDMiltonGWDeBRAnalytical model for the dielectric response of brine-saturated rocksPhys Rev B Condens Matter1986345145515310.1103/PhysRevB.34.5145
– reference: Malmberg, M.: Dielectric Constant of Water from 00 to 1000 C. J. Res. Natl. Bur. Stand. A Phys. Chem. 56 (1956)
– reference: Seleznev, N.V., Habashy, T.M., Boyd, A.J.: Formation properties derived from a multi-frequency dielectric measurement. SPWLA 47th Annual (2006)
– reference: Aceves, J.M., Manuel Aceves, J., Couper, I.D.: Electrical conductivity in insulating materials. 1982 IEEE Intl. Conf. Electric. Insul. (1982). https://doi.org/10.1109/eic.1982.7464457
– reference: Hizem, B., Deville, F.: Dielectric dispersion: A new wireline petrophysical measurement. SPE Annual Technical Conference and Exhibition (2008)
– reference: KnightREndresAA new concept in modeling the dielectric response of sandstones: Defining a wetted rock and bulk water systemGeophysics19905558659410.1190/1.1442870
– reference: Mirjalili, S., Saremi, S., Mirjalili, S.M., Coelho L dos S.: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert. Syst. Appl. 47:106–19 (2016)
– reference: Misra, S., Han, Y., Jin, Y., Tathed, P.: Multifrequency Electromagnetic Data Interpretation for Subsurface Characterization. Elsevier (2021)
– reference: Zhang, A., Wang, M.: Deep Dielectric-Based Water Saturation in Freshwater and Mixed Salinity Environments. SPWLA 62nd Annual Logging Symposium (2021)
– reference: Ara, T.S.: In-depth investigation of Archie equation in carbonate rocks (2003)
– reference: Clavier, C., Coates, G., Dumanoir, J.: Theoretical and Experimental Bases for the Dual-Water Model for Interpretation of Shaly Sands. SPE J 24(02):153–168. SPE-6859-PA (1984)
– reference: Meador, R.A., Cox, P.T.: Dielectric constant logging, a salinity independent estimation of formation water volume: Trans. Eng of AIME Dallas, Texas(Sept 28-Ott 1) Paper SPE (1975)
– reference: ZhaoPFuJShiYLiGOstadhassanMLuoMHydrocarbon saturation in shale oil reservoirs by inversion of dielectric dispersion logsFuel202026611693410.1016/j.fuel.2019.116934
– reference: Donadille, Faivre, Leech. Fundamentals of Dielectric Dispersion Logging. Schlumberger Digital Marketing, Sugar Land, ISBN 2016.
– reference: Garcia, H.: Integrated characterization of multi-frequency dielectric dispersion measurements in mixed-wet rocks. SPWLA 59th Annual Logging Symposium (2018)
– ident: 10217_CR2
– ident: 10217_CR12
– ident: 10217_CR14
– ident: 10217_CR11
  doi: 10.2118/116130-MS
– ident: 10217_CR17
  doi: 10.1190/geo2018-0100.1
– volume: 34
  start-page: 5145
  year: 1986
  ident: 10217_CR23
  publication-title: Phys Rev B Condens Matter
  doi: 10.1103/PhysRevB.34.5145
– ident: 10217_CR9
  doi: 10.6028/jres.056.001
– ident: 10217_CR18
  doi: 10.30632/SPWLA-2021-0033
– ident: 10217_CR10
– ident: 10217_CR21
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 10217_CR25
– volume: 55
  start-page: 586
  year: 1990
  ident: 10217_CR16
  publication-title: Geophysics
  doi: 10.1190/1.1442870
– ident: 10217_CR6
  doi: 10.2118/1863-A
– ident: 10217_CR13
– ident: 10217_CR22
  doi: 10.1016/j.eswa.2015.10.039
– volume: 63
  start-page: 223
  year: 2006
  ident: 10217_CR15
  publication-title: Prog. Electromag. Res.
  doi: 10.2528/PIER06052601
– volume: 85
  start-page: D75
  year: 2020
  ident: 10217_CR19
  publication-title: Geophysics
  doi: 10.1190/geo2018-0863.1
– ident: 10217_CR7
– ident: 10217_CR1
  doi: 10.1109/eic.1982.7464457
– ident: 10217_CR3
– ident: 10217_CR5
– ident: 10217_CR8
  doi: 10.2118/5504-MS
– ident: 10217_CR24
  doi: 10.2118/6859-PA
– volume: 266
  start-page: 116934
  year: 2020
  ident: 10217_CR20
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116934
– ident: 10217_CR4
  doi: 10.2118/spe-19577-ms
SSID ssj0009731
Score 2.3758595
Snippet Multi-frequency dielectric scanning logging is an advanced method that plays a critical role in evaluating unconventional oil and gas reserves and residual oil...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 537
SubjectTerms Accuracy
Algorithms
Data logging
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical Modeling and Industrial Mathematics
Oil and gas fields
Oil fields
Oils & fats
Optimization
Original Paper
Phase volume fraction
Programming languages
Reservoirs
Sand
Software
Soil Science & Conservation
Source code
Water salinity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5B0UpcEK_VlgXkAzewoI5TJ4cVAlReEhXioeUWje1kQeo23TaL1H_P2HUIIME5iQ8zjueb8cz3AezE6IpLScpVipJLGxmeCiu57uYFRXs0B103nHzV757fy8uH-GEO-vUsjGurrM9Ef1Db0rga-T4dozJ1DUDR4egfd6pR7na1ltDAIK1gf3mKsXlYEI4ZqwULx73-9U1Dw6u8QmFHCncFnKowRhOG6WLfkOt6tQioc_E-VDX488OVqY9Ep8uwFCAkO5r5fAXm8uEqfDvzEr3TNZjM6gS5ZU4tqxwFR7BrV3YfV1PWeyX4ZmXBbh9xMGW3OLTMdeGNn8un8YT5TgJ2VdqngjAqOyOHs9_loGAXbyg82dHgD5moevy7DvenvbuTcx6kFThGUlRcEfKSirBcgoWII2FUolNKTLUWFqXViaHgGReUHeIBUpZsvJJf0UEtjEbU0XdoDcth_gMYFgTZZKxthEpiN9FGUcpHWZg1SlM61oZObcXMBN5xJ38xyBrGZGf5jCyfectnog27r9-MZqwbX769WTsnC3_gJGv2Sxv2aoc1jz9fbePr1X7ColOcn_UAbkKrGv_PtwiXVHo7bLYXWyzeMw
  priority: 102
  providerName: ProQuest
Title Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm
URI https://link.springer.com/article/10.1007/s10596-023-10217-2
https://www.proquest.com/docview/2844920013
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: U2A
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oxMSL8RlRJHvwpk1gu2XbIxoeaiBEJOKp2UcrJNiSUk34984uLaBRE089dLuHme3ON7vfzIfQpcP14ZLrWczj1KLKlpZHFLVEPQgh2nNZrevi5G6v3hnS-5EzyorC5jnbPb-SNDv1RrGbYwizmksFQNqCjbfo6HZesIqHpLFutcuMCmGNEn3N67GsVObnOb6GozXG_HYtaqJNax_tZTARN5Z-PUBbQXSIdtpGhndxhObLs4BAYa2IFc8yY-O-PlpP0gVurpp44zjEgzGfLvCARwprpl3yEU-SOTZsAdyN1SQEHIrb4FT8HE9DfLfRphM3pq9xMknHb8do2Go-3XasTD7B4jYlqcUAXVEGeM3lIXFsIpkrPEg-hSCKUyVcCQHSCSED5FUOmbA0an1hjQsiBefCPkGFKI6CU4R5CLCMOkLZnFFed4VkkNZBpqUkE5BylVAtt6Ivs97iWuJi6q-7ImvL-2B531jeJyV0tfpmtuys8efocu4cP_vL5j6EVuppUphdQte5w9avf5_t7H_Dz9GuVplf8v7KqJAm78EFYJFUVNC222pXULHRfnlowvOm2es_VsyC_ATcRdix
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ4gxOiL8Wc8RNgHfdKN3HZ72z4Qg3BwJ9yFCETe6uxuKyTH9bgrmvvn_Nuc3dtSNZE3ntvOw8x0Z77ZmfkA3sToiktJylWKkksbGZ4KK7nu5AVFezSbHTecPBh2eqfy81l8tgS_6lkY11ZZn4n-oLalcTXyD3SMytQ1AEUfJ1fcsUa529WaQgMDtYLd8ivGwmDHQT7_SRButtXfJXu_FWKve7LT44FlgGMkRcUVJSFSUVqTYCHiSBiV6JQwmtbCorQ6MRRH4oKAEm4iAUbjSe2KNmphNKKOSO49WJGRTAn8rXzqDo--NGt_lWdEbEvhrpxTFcZ2wvBe7BuAXW8YAQMu_g6NTb77zxWtj3x7j-FRSFnZ9sLHnsBSPn4K9_c9JfD8GcwWdYncMsfOVU6C4dmRK_NPqznr3iwUZ2XBjs9xNGfHOLbMdf1Nf5QX0xnznQtsUNqLgnJitk8Oxr6Wo4L1_1gZyrZH38kk1fnlczi9EyW_gOVxOc5fAsOCUkQZaxuhkthJtFEEMQn1WaM0wb8WtGstZibsOXd0G6Os2dDsNJ-R5jOv-Uy04N3NN5PFlo9b316rjZOFP36WNf7Zgve1wZrH_5e2eru0DXjQOxkcZof94cEreOjY7hf9h2uwXE2v89eUE1V6PTgeg2937eu_ASbzG4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RUKteUOlD3UJbH8qptWAdZ50cEEKFXbY8hERRuaV-xAVpu9nupkX71_h1nXESUpDKjXMSH2Ymnvnsb-YD-BBrOlxKUq5SLbl0keWpcJKbXu4x22u72aPm5KPj3v6Z_HIeny_AddMLQ7TKZk8MG7UrLJ2Rb-A2KlMiAEUbvqZFnOz2tye_OClI0U1rI6dRhchBPr9C-DbbGu6ir9eF6O99_bzPa4UBriMpSq6wAJEKS5pEexFHwqrEpIjPjBFOS2cSizkk9giS9KZGsGiDoJ3vaiOs0dpEuO4jWFI0xZ261PuDduCvClqIXSnosjlVdcNO3bYXB-ovscIQEnBxOym2le6dy9mQ8_rPYLkuVtlOFV0rsJCPn8PjQRADnr-AWXUikTtGulzFpHY5O6ED_mk5Z3s3o8RZ4dnphR7N2akeO0Z8v-mf4nI6Y4GzwI4Kd-mxGmYDDC32rRh5NvxnWCjbGf1AB5QXP1_C2YOY-BUsjotx_hqY9lgcyti4SCupe4mxCsEl4j1nlUHg14FuY8XM1hPOSWhjlLWzmcnyGVo-C5bPRAc-3nwzqeZ73Pv2WuOcrP7XZ1kbmR341Disffz_1d7cv9p7eIIRnh0Ojw9W4SnJ3FfEwzVYLKe_87dYDJXmXYg6Bt8fOsz_AluFGRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Petrophysical+Property+Evaluation+of+Shaly+Sand+Reservoirs+Using+Modified+Grey+Wolf+Intelligence+Algorithm&rft.jtitle=Computational+geosciences&rft.au=Jia%2C+Bao&rft.au=Xian%2C+Chenggang&rft.au=Jia%2C+Wenfeng&rft.au=Su%2C+Jianzheng&rft.date=2023-08-01&rft.pub=Springer+International+Publishing&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=27&rft.issue=4&rft.spage=537&rft.epage=549&rft_id=info:doi/10.1007%2Fs10596-023-10217-2&rft.externalDocID=10_1007_s10596_023_10217_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon