Putting Geological Focus Back into Rock Engineering Design
The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better cal...
Saved in:
| Published in | Rock mechanics and rock engineering Vol. 53; no. 10; pp. 4487 - 4508 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Vienna
Springer Vienna
01.10.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0723-2632 1434-453X |
| DOI | 10.1007/s00603-020-02177-1 |
Cover
| Abstract | The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative
GSI
charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion. |
|---|---|
| AbstractList | The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion. The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion. |
| Author | Marinos, Vassilis Carter, Trevor G. |
| Author_xml | – sequence: 1 givenname: Trevor G. surname: Carter fullname: Carter, Trevor G. organization: Golder Associates – sequence: 2 givenname: Vassilis orcidid: 0000-0001-7575-7006 surname: Marinos fullname: Marinos, Vassilis email: vmarinos14@gmail.com organization: School of Civil Engineering - Geotechnical Dept., National Technical University of Athens (NTUA) |
| BookMark | eNp9kEFLAzEQhYNUsK3-AU8LnlcnyTbZetPaVqGgSA_eQnZ3dkldk5qkB_-9u64geOhhmIF5783wTcjIOouEXFK4pgDyJgAI4Ckw6IpKmdITMqYZz9Jsxt9GZAyS8ZQJzs7IJIQdQLeU-ZjcvhxiNLZJ1uha15hSt8nKlYeQ3OvyPTE2uuTVddPSNsYi-l77gME09pyc1roNePHbp2S7Wm4Xj-nmef20uNukmmcspqIArWdlMRPznEM9FwXXnCECFrmuKqi4lHmFhWAMeYUMy7qkmItMVkWOlE_J1RC79-7zgCGqnTt4211ULJOUCgkAnYoNqtK7EDzWau_Nh_ZfioLqEakBkeoQqR9Eqo_O_5lKE3U0zkavTXvcygdr2PdI0P99dcT1DQCDfHY |
| CitedBy_id | crossref_primary_10_1007_s00603_021_02544_6 crossref_primary_10_1016_j_compgeo_2025_107190 crossref_primary_10_1002_cend_202400026 crossref_primary_10_1016_j_undsp_2022_07_006 crossref_primary_10_1016_j_eswa_2022_118303 crossref_primary_10_1016_j_tust_2021_103979 crossref_primary_10_1080_00288306_2020_1853181 crossref_primary_10_1007_s11069_023_06116_5 crossref_primary_10_1007_s10064_024_04013_0 crossref_primary_10_1016_j_tust_2022_104443 crossref_primary_10_1144_qjegh2021_039 crossref_primary_10_1007_s10706_021_01995_6 |
| Cites_doi | 10.1007/s00603-013-0442-3 10.1201/NOE0415444019-c34 10.1061/AJGEB6.0001029 10.1007/s100640000090 10.1007/BF01239496 10.1007/s10706-019-00980-4 10.1201/NOE0415450287.ch2 10.1201/NOE0415444019-c31 10.4324/9780203477663 10.1007/s10064-004-0270-5 10.1016/j.ijrmms.2005.06.005 10.1016/0040-1951(81)90116-5 10.1016/S0148-9062(99)00043-1 10.1144/GSL.QJEG.1999.032.P1.01 10.1016/j.jsg.2005.06.009 10.1016/j.enggeo.2014.02.005 10.28927/SR.302085 10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2 10.1016/j.jrmge.2014.04.003 10.1016/j.ijrmms.2018.06.021 10.1016/j.ijrmms.2004.09.015 10.1144/GSL.QJEG.1977.010.04.01 10.1680/geot.1983.33.3.187 10.1016/j.enggeo.2018.03.022 10.36487/ACG_rep/1308_08_Castro 10.1016/j.jrmge.2018.08.001 10.1007/s10064-017-1151-z 10.1016/0148-9062(76)90818-4 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Austria, part of Springer Nature 2020 Springer-Verlag GmbH Austria, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s00603-020-02177-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1434-453X |
| EndPage | 4508 |
| ExternalDocumentID | 10_1007_s00603_020_02177_1 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-a342t-6b0aa5cb569830f96b3a32ee0eb8add0d3778deb622e3de2ecfc1e8647db8e13 |
| IEDL.DBID | BENPR |
| ISSN | 0723-2632 |
| IngestDate | Fri Jul 25 19:07:47 EDT 2025 Wed Oct 01 04:12:42 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Fri Feb 21 02:35:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Rock engineering design Geological structural domaining Hoek–Brown failure criterion Geotechnical parameter definition Numerical modelling calibration Rock mass characterization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-6b0aa5cb569830f96b3a32ee0eb8add0d3778deb622e3de2ecfc1e8647db8e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7575-7006 |
| PQID | 2471167000 |
| PQPubID | 60272 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2471167000 crossref_primary_10_1007_s00603_020_02177_1 crossref_citationtrail_10_1007_s00603_020_02177_1 springer_journals_10_1007_s00603_020_02177_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201000 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Rock mechanics and rock engineering |
| PublicationTitleAbbrev | Rock Mech Rock Eng |
| PublicationYear | 2020 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | BieniawskiZTEngineering classification of jointed rock massesTrans S Afr Inst Civ Eng197315335344 Brox D (2020) Hydroelectric waterway inspections—risks and causes. TunnelTech Article. http://www.tunneltalk.com/TunnelTECH-Mar2020-Hydroelectric-tunnel-inspections.php Carter TG, Carvalho JL (2020) Suggested tensile test data interpretation for estimating Hoek-Brown mi. In: Proceedings of the 54th US rock mechanics conf., Paper ARMA 201860, Golden, Colorado Marinos V (2007) Geotechnical classification and engineering geological behaviour of weak and complex rock masses in tunneling. Doctoral thesis, School of Civil Engineering, Geotechnical Engineering Department, National Technical University of Athens (NTUA), Athens (In Greek) Anon (1978) Suggested methods for the quantitative description of discontinuities in rock masses. International Society for Rock Mechanics Working Group Compilation Report. Int J Rock Mech Min Sci Geomech Abstr 15:319–368 Carter TG, Marinos V (2014) Use of GSI for rock engineering design. In: Proceedings of the. 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June, 2014 LaubscherDHGeomechanics classification of jointed rock masses—mining applicationsTrans Inst Min Metall197786A1A8 Dershowitz W, Doe T, Uchida M, Hermanson J (2003) Correlations between fracture size, transmissivity, and aperture. In: Essen, P. Culligan, H. Einstein, and A. Whittle (eds) Soil Rock America. Proceedings of the 39th US rock mechanics symposium, Cambridge, MA. VGE, pp 887–891 Diederichs MS, Carvalho JL, Carter TG (2007) A modified approach for prediction of strength and post yield behaviour for high GSI rock masses in strong, brittle ground. In: Proceedings of 1st Can-US rock symposium. Meeting Society’s Challenges and Demands, June, Vancouver, pp 277–285 HoekEBrownETUnderground excavations in rock1980LondonInstitution of Mining and Metallurgy527 Potvin Y, Hudyma MR, Miller HDS (1989) Design guidelines for open stope support. CIM Bull v.82, #926 HoekEMarinosPA brief history of the development of the Hoek-Brown failure criterionSoils Rocks (São Paulo)20073028592 HoekEBrownETEmpirical strength criterion for rock massesJ Geotech Eng Div ASCE1980106GT910131035 Carter TG (2019) A suggested visual approach for estimating Hoek-Brown mi for different rock types. In: Proceedings of the 14th ISRM congress on rock mechanics and rock engineering, Sept. 13–18, Foz do Iguassu, Brazil, Paper #14356 Mathews KE, Hoek E, Wyllie DC, Stewart SBV (1981) Golder Associates Report 802-1571 to CanMet on prediction of stable excavation spans for mining at depths below 1000 metres in Hard Rock. CanMet Contract No.17SQ.23440-0-9020 Hoek E, Carranza-Torres CT, Corkum B (2002) Hoek-Brown failure criterion—2002 edition. In: Bawden HRW, Curran J, Telesnicki M (eds) Proceedings of the North American Rock Mechanics Society (NARMS-TAC 2002). Mining Innovation and Technology, Toronto, Canada, pp 267273 HoekEBrownETThe Hoek-Brown failure criterion and GSI—2018 editionJ Rock Mech Geotech Eng201810.1016/j.jrmge.2018.08.001 Carter TG (2010) Applicability of classifications for tunnelling—valuable for improving insight, but problematic for contractual support definition or final design. In: Proceedings of the world tunnelling conference (WTC 2010), 36th ITA Congress. Vancouver, Paper 00401, Session 6c Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: 47th US rock mechanics/geomechanics symposium, San Francisco: ARMA Paper 13-672 MarinosPHoekEEstimating the geotechnical properties of heterogeneous rock masses such as flyschBull Eng Geol Environ200160829210.1007/s100640000090 Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 97–106 SchlotfeldtPCarterTGA new and unified approach to improved scalability and volumetric fracture intensity quantification for GSI and rockmass strength and deformability estimationInt J Rock Mech Min Sci2019110486710.1016/j.ijrmms.2018.06.021 Hoek E, Wood D, Shah S (1992) A modified Hoek-Brown criterion for jointed rock masses. In: Hudson JA (ed) Proceedings of the rock characterization, Symp. Int. Soc. Rock Mech.: Eurock‘92. Lond Brit Geotech Soc, 209–214 DeereDUTechnical description of rock cores for engineering purposesRock Mech Eng Geol1964111722 HoekEStrength of rock and rock massesNews J Int Soc Rock Mech199422416 LaufferHGebirgsklassifizierung fur den StollenbauGeol Bauwesen1958744651 SheoreyPREmpirical rock failure criteria19971RotterdamA.A. Balkema Coates DF (1970) Rock mechanics principles. Mines Branch Monograph 874, Mining Research Centre, Department of Energy, Mines and Resources, Ottawa, Canada Carter TG (1992) Prediction and uncertainties in geological engineering and rock mass characterization assessment. In: Proceedings of the 4th Italian rock mechanics conference, Torino, pp 1.1–1.22 HoekEPutting numbers to geology—an engineer’s view-pointQ J Eng Geol199932111910.1144/GSL.QJEG.1999.032.P1.01 Rocscience (2018) https://www.rocscience.com/help/rs3/Geology/Materials/Parameter_Calculator.htm (in RocData Program) DayJJDiederichsMSHutchinsonDJComposite geological strength index approach with application to hydrothermal vein networks and other intrablock structures in complex rockmassesGeotech Geol Eng2019375285531410.1007/s10706-019-00980-4 MarinosVTunnel behaviour and support associated with the weak rock masses of flyschJ Rock Mech Geotech Eng2014622723910.1016/j.jrmge.2014.04.003 Carter TG (2014) Guidelines for use of the scaled span method for surface crown pillar stability assessment. In: Proceedings of the 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June MarinosVMarinosPHoekEThe geological strength index—applications and limitations»Bull Eng Geol Environ2005641556510.1007/s10064-004-0270-5 Skempton AW (1966) Some observations on tectonic shear zones. In: Congress of the international society for rock mechanics 1st proceedings, vol 1, pp 329–335 Marinos P, Marinos V, Hoek E (2007) Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses » . In: Romana, Perucho & Olalla (eds) Proceedings of the international workshop on rock mass classification in underground mining held in 1st Canada-US rock mechanics symposium, Also permitted to be published in: Underground works under special conditions. Taylor and Francis Publishing, Lisbon, pp 13–21 TchalenkoJSSimilarities between shear-zones of different magnitudesGeol Soc Am Bull1970811625164010.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2 Ganye J, Vasileiou A, Perras MA, Carter TG (2020) Influence of grain size and interlock on intact rock strength. In: Proceedings of the 54th US rock mechanics/geomechanics symposium, Golden, Colorado: ARMA Paper 20-2097 PalmstromAThe volumetric joint count - A useful and simple measure of the degree of rock mass jointing1982New DelhiIAEG CongressV.221V.228 Hoek E (1983) Strength of jointed rock masses. 1983 Rankine Lecture. Geotechnique 33(186):187–223 Hoek E, Brown ET (1988) The Hoek-Brown failure criterion—a 1988 update. In: Proceedings of the 15th Canadian rock mechanics symposium, pp 31–38 Castro LM, Carvalho J, Sá G (2013) Discussion on how to classify and estimate strength of weak rock masses. In: Dight PM (ed) Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp 205–217 Peck RB (1976) Rock foundations for structures. In: Proceedings of the specialty conference on rock engineering for foundations and slopes, vol 2, Boulder, Colorado, pp 1–21 Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geologie und Paleontologie B, 354–368 SonmezHUlusayRModifications to the Geological Strength Index (GSI) and their applicability to Stability of SlopesInt J Rock Mech Min Sci19993674376010.1016/S0148-9062(99)00043-1 Marinos V, Carter TG (2018) Maintaining geological reality in application of GSI for design of engineering structures in rock. J Eng Geol 239:282–297. Corrigendum to Maintaining geological reality in application of GSI for design of engineering structures in Rock PriestSDHudsonJADiscontinuity spacings in rockInt J Rock Mech Min Sci19761313514810.1016/0148-9062(76)90818-4 Dershowitz WS, Herda H (1992) Interpretation of fracture spacing and intensity. In: Proceedings, 32nd US rock mechanics symposium, Santa Fe, New Mexico BartlettWLFriedmanMLoganJMExperimental folding of rocks under confining pressure Part IX wrench faults in limestone layersTectonophysics19817925527710.1016/0040-1951(81)90116-5 RovidaATibaldiAPropagation of strike-slip faults across holocene volcano-sedimentary deposits, Pasto, ColombiaJ Struct Geol2005271838185510.1016/j.jsg.2005.06.009 Barton NR (1976) Recent experiences with the Q-system of tunnel support design. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 107–117 Carter TG (2018) Suggested standards for improving structural geological definition for open pit slope design. In: Proceedings of the XIV Congreso Internacional de Energia y Recursos Minerals: Slope Stability, 10–13 April, Sevilla Carter TG, Diederichs MS, Carvalho JL (2008) Application of modified Hoek-Brown transition relationships for assessing strength and post yield behaviour at both ends of the rock competence scale. In: Proceedings of the 6th international symposium on ground support in mining and civil engineering construction, 30 March–3 April 2008. Cape Town, South Africa, pp 37–59. J S Afr Inst Min Metall 108:325–338 Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: International symposium on the role of rock mechanics ISRM, Zacatecas, pp 49–53 Marinos P, Hoek E (2000) GSI: a geologically friendly tool for WL Bartlett (2177_CR5) 1981; 79 NR Barton (2177_CR8) 1974; 6 2177_CR10 2177_CR52 ZT Bieniawski (2177_CR11) 1989 2177_CR53 2177_CR14 2177_CR58 2177_CR15 2177_CR59 2177_CR12 2177_CR56 2177_CR13 E Hoek (2177_CR40) 2006; 43 2177_CR57 2177_CR18 2177_CR19 2177_CR16 DU Deere (2177_CR25) 1964; 1 2177_CR17 K Terzaghi (2177_CR70) 1946 E Hoek (2177_CR37) 1980 JJ Day (2177_CR101) 2019; 37 2177_CR43 2177_CR44 H Sonmez (2177_CR68) 1999; 36 E Hoek (2177_CR34) 1994; 2 2177_CR42 E Hoek (2177_CR45) 2005; 42 E Hoek (2177_CR39) 2018 JS Tchalenko (2177_CR69) 1970; 81 2177_CR46 V Marinos (2177_CR55) 2005; 64 2177_CR49 E Hoek (2177_CR41) 2007; 30 E Hoek (2177_CR36) 1980; 106 PR Sheorey (2177_CR66) 1997 cr-split#-2177_CR100.1 2177_CR32 X Feng (2177_CR103) 2014; 173 2177_CR33 P Marinos (2177_CR54) 2001; 60 2177_CR30 cr-split#-2177_CR100.2 2177_CR31 P Schlotfeldt (2177_CR65) 2019; 110 G Barla (2177_CR3) 2013; 46 2177_CR38 2177_CR2 SD Priest (2177_CR62) 1976; 13 2177_CR1 2177_CR4 2177_CR6 A Rovida (2177_CR64) 2005; 27 V Marinos (2177_CR50) 2014; 6 DH Laubscher (2177_CR47) 1977; 86 2177_CR61 2177_CR60 2177_CR21 A Palmstrom (2177_CR102) 1982 2177_CR22 2177_CR63 2177_CR20 E Hoek (2177_CR35) 1999; 32 2177_CR23 DU Deere (2177_CR26) 1968 2177_CR67 2177_CR24 2177_CR29 H Lauffer (2177_CR48) 1958; 74 V Marinos (2177_CR51) 2017 2177_CR27 2177_CR28 2177_CR105 ZT Bieniawski (2177_CR9) 1973; 15 2177_CR104 |
| References_xml | – reference: BieniawskiZTEngineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering1989New YorkWiley251 – reference: LaubscherDHGeomechanics classification of jointed rock masses—mining applicationsTrans Inst Min Metall197786A1A8 – reference: Marinos P, Marinos V, Hoek E (2007) Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses » . In: Romana, Perucho & Olalla (eds) Proceedings of the international workshop on rock mass classification in underground mining held in 1st Canada-US rock mechanics symposium, Also permitted to be published in: Underground works under special conditions. Taylor and Francis Publishing, Lisbon, pp 13–21 – reference: Anon (1977) The description of rock masses for engineering purposes. Geological Society Engineering Group Working Party Report. Q J Eng Geol 10:355–388 – reference: Hoek E, Carranza-Torres CT, Corkum B (2002) Hoek-Brown failure criterion—2002 edition. In: Bawden HRW, Curran J, Telesnicki M (eds) Proceedings of the North American Rock Mechanics Society (NARMS-TAC 2002). Mining Innovation and Technology, Toronto, Canada, pp 267273 – reference: Deere DU, Miller R (1966) Engineering classification and index properties for intact rock. Tech. Report No AFNL—AFWL-TR-65-116. Air Force Weapons Lab., Kirtland Air Force Base, New Mexico – reference: Coates DF (1970) Rock mechanics principles. Mines Branch Monograph 874, Mining Research Centre, Department of Energy, Mines and Resources, Ottawa, Canada – reference: BartlettWLFriedmanMLoganJMExperimental folding of rocks under confining pressure Part IX wrench faults in limestone layersTectonophysics19817925527710.1016/0040-1951(81)90116-5 – reference: Carter TG (1992) Prediction and uncertainties in geological engineering and rock mass characterization assessment. In: Proceedings of the 4th Italian rock mechanics conference, Torino, pp 1.1–1.22 – reference: Mathews KE, Hoek E, Wyllie DC, Stewart SBV (1981) Golder Associates Report 802-1571 to CanMet on prediction of stable excavation spans for mining at depths below 1000 metres in Hard Rock. CanMet Contract No.17SQ.23440-0-9020 – reference: MarinosVA revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flyschBull Eng Geol Environ201710.1007/s10064-017-1151-z – reference: PriestSDHudsonJADiscontinuity spacings in rockInt J Rock Mech Min Sci19761313514810.1016/0148-9062(76)90818-4 – reference: Carter TG (2010) Applicability of classifications for tunnelling—valuable for improving insight, but problematic for contractual support definition or final design. In: Proceedings of the world tunnelling conference (WTC 2010), 36th ITA Congress. Vancouver, Paper 00401, Session 6c – reference: HoekEPutting numbers to geology—an engineer’s view-pointQ J Eng Geol199932111910.1144/GSL.QJEG.1999.032.P1.01 – reference: BarlaGEinsteinHKovariKManuscripts using numerical distinct element methodsJ Rock Mech Rock Eng20134665510.1007/s00603-013-0442-3 – reference: Carter TG (2015) On increasing reliance on numerical modelling and synthetic data in rock engineering. In: Proceedings 13th ISRM international congress of rock mechanics, 10–13 May, Montreal, Canada (paper 821) – reference: Carter TG, Marinos V (2014) Use of GSI for rock engineering design. In: Proceedings of the. 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June, 2014 – reference: Murphy WL (1985) Geotechnical descriptions of rock and rock masses. Technical Report GL85-3, Geotechnical Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers PO Box 631 Vicksburg, Mississippi 39180-0631 – reference: TerzaghiKRock defects and load on tunnel supports, introduction to rock tunnelling with steel supports, a book by Proctor, R.V. and White, T.L1946YoungtownCommercial Shearing & Stamping Co – reference: Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Rotterdam: Balkema, reprinted by CRC Press. ISBN 9789054101871 – reference: PalmstromAThe volumetric joint count - A useful and simple measure of the degree of rock mass jointing1982New DelhiIAEG CongressV.221V.228 – reference: Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geologie und Paleontologie B, 354–368 – reference: HoekEMarinosPMarinosVCharacterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock massesInt J Rock Mech Min Sci200542227728510.1016/j.ijrmms.2004.09.015 – reference: Marinos V, Carter TG (2018) Maintaining geological reality in application of GSI for design of engineering structures in rock. J Eng Geol 239:282–297. Corrigendum to Maintaining geological reality in application of GSI for design of engineering structures in Rock – reference: Carter TG, Diederichs MS, Carvalho JL (2008) Application of modified Hoek-Brown transition relationships for assessing strength and post yield behaviour at both ends of the rock competence scale. In: Proceedings of the 6th international symposium on ground support in mining and civil engineering construction, 30 March–3 April 2008. Cape Town, South Africa, pp 37–59. J S Afr Inst Min Metall 108:325–338 – reference: Muir-Wood AM (2000) Tunnelling: management by design. Published by E & FN Spon. ISBN 0-419-23200. https://doi.org/10.4324/9780203477663 – reference: HoekEBrownETEmpirical strength criterion for rock massesJ Geotech Eng Div ASCE1980106GT910131035 – reference: Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rockmass strength estimation. In: Proceedings of the GeoEng2000 at the international conference on geotechnical and geological engineering, Melbourne, Technomic publishers, Lancaster, Pennsylvania, pp 1422–1446 – reference: BieniawskiZTEngineering classification of jointed rock massesTrans S Afr Inst Civ Eng197315335344 – reference: HoekEStrength of rock and rock massesNews J Int Soc Rock Mech199422416 – reference: SonmezHUlusayRModifications to the Geological Strength Index (GSI) and their applicability to Stability of SlopesInt J Rock Mech Min Sci19993674376010.1016/S0148-9062(99)00043-1 – reference: Skempton AW (1966) Some observations on tectonic shear zones. In: Congress of the international society for rock mechanics 1st proceedings, vol 1, pp 329–335 – reference: BartonNRLienRLundeJEngineering classification of rock masses for the design of tunnel supportRock Mech19746418923910.1007/BF01239496 – reference: Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: 47th US rock mechanics/geomechanics symposium, San Francisco: ARMA Paper 13-672 – reference: Barton NR (1976) Recent experiences with the Q-system of tunnel support design. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 107–117 – reference: LaufferHGebirgsklassifizierung fur den StollenbauGeol Bauwesen1958744651 – reference: Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: International symposium on the role of rock mechanics ISRM, Zacatecas, pp 49–53 – reference: Anon (1978) Suggested methods for the quantitative description of discontinuities in rock masses. International Society for Rock Mechanics Working Group Compilation Report. Int J Rock Mech Min Sci Geomech Abstr 15:319–368 – reference: Ganye J, Vasileiou A, Perras MA, Carter TG (2020) Influence of grain size and interlock on intact rock strength. In: Proceedings of the 54th US rock mechanics/geomechanics symposium, Golden, Colorado: ARMA Paper 20-2097 – reference: MarinosPHoekEEstimating the geotechnical properties of heterogeneous rock masses such as flyschBull Eng Geol Environ200160829210.1007/s100640000090 – reference: Carter TG (2014) Guidelines for use of the scaled span method for surface crown pillar stability assessment. In: Proceedings of the 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June – reference: MarinosVTunnel behaviour and support associated with the weak rock masses of flyschJ Rock Mech Geotech Eng2014622723910.1016/j.jrmge.2014.04.003 – reference: Carter TG, Marinos V (2020) Characterization of rockmass strength based on rock matrix competence (to be submitted for publication in Rock Mechanics and Rock Engineering) – reference: DeereDUTechnical description of rock cores for engineering purposesRock Mech Eng Geol1964111722 – reference: HoekEBrownETUnderground excavations in rock1980LondonInstitution of Mining and Metallurgy527 – reference: SheoreyPREmpirical rock failure criteria19971RotterdamA.A. Balkema – reference: Marinos V (2007) Geotechnical classification and engineering geological behaviour of weak and complex rock masses in tunneling. Doctoral thesis, School of Civil Engineering, Geotechnical Engineering Department, National Technical University of Athens (NTUA), Athens (In Greek) – reference: Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 97–106 – reference: DeereDUStaggKZienkiewiczOCGeological considerationsRock mechanics in engineering practice1968LondonWiley120 – reference: Carter TG, Carvalho JL (2020) Suggested tensile test data interpretation for estimating Hoek-Brown mi. In: Proceedings of the 54th US rock mechanics conf., Paper ARMA 201860, Golden, Colorado – reference: Potvin Y, Hudyma MR, Miller HDS (1989) Design guidelines for open stope support. CIM Bull v.82, #926 – reference: Dershowitz W, Doe T, Uchida M, Hermanson J (2003) Correlations between fracture size, transmissivity, and aperture. In: Essen, P. Culligan, H. Einstein, and A. Whittle (eds) Soil Rock America. Proceedings of the 39th US rock mechanics symposium, Cambridge, MA. VGE, pp 887–891 – reference: Dershowitz WS, Herda H (1992) Interpretation of fracture spacing and intensity. In: Proceedings, 32nd US rock mechanics symposium, Santa Fe, New Mexico – reference: Brox D (2020) Hydroelectric waterway inspections—risks and causes. TunnelTech Article. http://www.tunneltalk.com/TunnelTECH-Mar2020-Hydroelectric-tunnel-inspections.php – reference: Carter TG (2019) A suggested visual approach for estimating Hoek-Brown mi for different rock types. In: Proceedings of the 14th ISRM congress on rock mechanics and rock engineering, Sept. 13–18, Foz do Iguassu, Brazil, Paper #14356 – reference: Castro LM, Carvalho J, Sá G (2013) Discussion on how to classify and estimate strength of weak rock masses. In: Dight PM (ed) Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp 205–217 – reference: Carter TG (2018) Suggested standards for improving structural geological definition for open pit slope design. In: Proceedings of the XIV Congreso Internacional de Energia y Recursos Minerals: Slope Stability, 10–13 April, Sevilla – reference: Carvalho JL, Carter TG, Diederichs MS (2007) An approach for prediction of strength and post yield behaviour for rock masses of low intact strength. In: Proceedings 1st Can-US rock mechanics symposium, meeting society’s challenges & demands, Vancouver, Canada, pp 249–257 – reference: DayJJDiederichsMSHutchinsonDJComposite geological strength index approach with application to hydrothermal vein networks and other intrablock structures in complex rockmassesGeotech Geol Eng2019375285531410.1007/s10706-019-00980-4 – reference: HoekEBrownETThe Hoek-Brown failure criterion and GSI—2018 editionJ Rock Mech Geotech Eng201810.1016/j.jrmge.2018.08.001 – reference: SchlotfeldtPCarterTGA new and unified approach to improved scalability and volumetric fracture intensity quantification for GSI and rockmass strength and deformability estimationInt J Rock Mech Min Sci2019110486710.1016/j.ijrmms.2018.06.021 – reference: Barnett WP, Carter TG (2020) Structural domaining for engineering projects. In: Proceedings of the 54th US rock mechanics/geomechanics symposium, Golden, Colorado. ARMA Paper 20-2105 – reference: Hoek E (1983) Strength of jointed rock masses. 1983 Rankine Lecture. Geotechnique 33(186):187–223 – reference: Peck RB (1976) Rock foundations for structures. In: Proceedings of the specialty conference on rock engineering for foundations and slopes, vol 2, Boulder, Colorado, pp 1–21 – reference: HoekEMarinosPA brief history of the development of the Hoek-Brown failure criterionSoils Rocks (São Paulo)20073028592 – reference: Diederichs MS, Carvalho JL, Carter TG (2007) A modified approach for prediction of strength and post yield behaviour for high GSI rock masses in strong, brittle ground. In: Proceedings of 1st Can-US rock symposium. Meeting Society’s Challenges and Demands, June, Vancouver, pp 277–285 – reference: Douglas KJ (2002) The shear strength of rock masses. Unpublished Doctoral thesis. University of New South Wales, Sydney, Australia – reference: TchalenkoJSSimilarities between shear-zones of different magnitudesGeol Soc Am Bull1970811625164010.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2 – reference: FengXJimenezRBayesian prediction of elastic modulus of intact rocks using their uniaxial compressive strengthEng Geol2014173324010.1016/j.enggeo.2014.02.005 – reference: Hoek E, Brown ET (1988) The Hoek-Brown failure criterion—a 1988 update. In: Proceedings of the 15th Canadian rock mechanics symposium, pp 31–38 – reference: HoekEDiederichsMSEmpirical estimation of rock mass modulusInt J Rock Mech Min Sci20064320321510.1016/j.ijrmms.2005.06.005 – reference: RovidaATibaldiAPropagation of strike-slip faults across holocene volcano-sedimentary deposits, Pasto, ColombiaJ Struct Geol2005271838185510.1016/j.jsg.2005.06.009 – reference: MarinosVMarinosPHoekEThe geological strength index—applications and limitations»Bull Eng Geol Environ2005641556510.1007/s10064-004-0270-5 – reference: Rocscience (2018) https://www.rocscience.com/help/rs3/Geology/Materials/Parameter_Calculator.htm (in RocData Program) – reference: Hoek E, Wood D, Shah S (1992) A modified Hoek-Brown criterion for jointed rock masses. In: Hudson JA (ed) Proceedings of the rock characterization, Symp. Int. Soc. Rock Mech.: Eurock‘92. Lond Brit Geotech Soc, 209–214 – volume: 46 start-page: 655 year: 2013 ident: 2177_CR3 publication-title: J Rock Mech Rock Eng doi: 10.1007/s00603-013-0442-3 – ident: 2177_CR14 – ident: 2177_CR20 – ident: 2177_CR10 – ident: 2177_CR105 – ident: 2177_CR43 – ident: 2177_CR28 – ident: 2177_CR53 – ident: 2177_CR24 – ident: 2177_CR30 doi: 10.1201/NOE0415444019-c34 – volume: 86 start-page: A1 year: 1977 ident: 2177_CR47 publication-title: Trans Inst Min Metall – volume: 106 start-page: 1013 issue: GT9 year: 1980 ident: 2177_CR36 publication-title: J Geotech Eng Div ASCE doi: 10.1061/AJGEB6.0001029 – volume: 74 start-page: 46 year: 1958 ident: 2177_CR48 publication-title: Geol Bauwesen – volume: 60 start-page: 82 year: 2001 ident: 2177_CR54 publication-title: Bull Eng Geol Environ doi: 10.1007/s100640000090 – ident: 2177_CR38 – volume: 6 start-page: 189 issue: 4 year: 1974 ident: 2177_CR8 publication-title: Rock Mech doi: 10.1007/BF01239496 – ident: 2177_CR57 – volume: 37 start-page: 5285 year: 2019 ident: 2177_CR101 publication-title: Geotech Geol Eng doi: 10.1007/s10706-019-00980-4 – ident: 2177_CR56 doi: 10.1201/NOE0415450287.ch2 – ident: 2177_CR23 doi: 10.1201/NOE0415444019-c31 – ident: 2177_CR58 doi: 10.4324/9780203477663 – ident: 2177_CR17 – volume: 64 start-page: 55 issue: 1 year: 2005 ident: 2177_CR55 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-004-0270-5 – ident: 2177_CR13 – volume-title: Rock defects and load on tunnel supports, introduction to rock tunnelling with steel supports, a book by Proctor, R.V. and White, T.L year: 1946 ident: 2177_CR70 – ident: #cr-split#-2177_CR100.2 – ident: 2177_CR44 – ident: 2177_CR104 – volume-title: Empirical rock failure criteria year: 1997 ident: 2177_CR66 – ident: 2177_CR61 – volume: 43 start-page: 203 year: 2006 ident: 2177_CR40 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2005.06.005 – volume: 79 start-page: 255 year: 1981 ident: 2177_CR5 publication-title: Tectonophysics doi: 10.1016/0040-1951(81)90116-5 – volume: 36 start-page: 743 year: 1999 ident: 2177_CR68 publication-title: Int J Rock Mech Min Sci doi: 10.1016/S0148-9062(99)00043-1 – start-page: V.221 volume-title: The volumetric joint count - A useful and simple measure of the degree of rock mass jointing year: 1982 ident: 2177_CR102 – ident: 2177_CR4 – ident: 2177_CR27 – volume: 32 start-page: 1 issue: 1 year: 1999 ident: 2177_CR35 publication-title: Q J Eng Geol doi: 10.1144/GSL.QJEG.1999.032.P1.01 – volume: 27 start-page: 1838 year: 2005 ident: 2177_CR64 publication-title: J Struct Geol doi: 10.1016/j.jsg.2005.06.009 – start-page: 251 volume-title: Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering year: 1989 ident: 2177_CR11 – volume: 15 start-page: 335 year: 1973 ident: 2177_CR9 publication-title: Trans S Afr Inst Civ Eng – volume: 173 start-page: 32 year: 2014 ident: 2177_CR103 publication-title: Eng Geol doi: 10.1016/j.enggeo.2014.02.005 – ident: 2177_CR16 – ident: 2177_CR12 – volume: 30 start-page: 85 issue: 2 year: 2007 ident: 2177_CR41 publication-title: Soils Rocks (São Paulo) doi: 10.28927/SR.302085 – ident: 2177_CR22 – volume: 81 start-page: 1625 year: 1970 ident: 2177_CR69 publication-title: Geol Soc Am Bull doi: 10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2 – ident: 2177_CR60 – ident: 2177_CR29 – ident: 2177_CR49 – volume: 6 start-page: 227 year: 2014 ident: 2177_CR50 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.04.003 – ident: 2177_CR19 – ident: 2177_CR32 – volume: 2 start-page: 4 issue: 2 year: 1994 ident: 2177_CR34 publication-title: News J Int Soc Rock Mech – volume: 110 start-page: 48 year: 2019 ident: 2177_CR65 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.06.021 – start-page: 1 volume-title: Rock mechanics in engineering practice year: 1968 ident: 2177_CR26 – volume: 42 start-page: 277 issue: 2 year: 2005 ident: 2177_CR45 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.09.015 – ident: 2177_CR59 – ident: 2177_CR1 doi: 10.1144/GSL.QJEG.1977.010.04.01 – ident: 2177_CR15 – ident: 2177_CR33 doi: 10.1680/geot.1983.33.3.187 – ident: 2177_CR52 doi: 10.1016/j.enggeo.2018.03.022 – ident: 2177_CR42 – ident: 2177_CR21 – ident: #cr-split#-2177_CR100.1 doi: 10.36487/ACG_rep/1308_08_Castro – volume: 1 start-page: 17 issue: 1 year: 1964 ident: 2177_CR25 publication-title: Rock Mech Eng Geol – ident: 2177_CR46 – year: 2018 ident: 2177_CR39 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2018.08.001 – ident: 2177_CR67 – ident: 2177_CR63 – ident: 2177_CR2 – ident: 2177_CR31 – ident: 2177_CR18 – year: 2017 ident: 2177_CR51 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-017-1151-z – start-page: 527 volume-title: Underground excavations in rock year: 1980 ident: 2177_CR37 – ident: 2177_CR6 – volume: 13 start-page: 135 year: 1976 ident: 2177_CR62 publication-title: Int J Rock Mech Min Sci doi: 10.1016/0148-9062(76)90818-4 |
| SSID | ssj0014378 |
| Score | 2.351306 |
| Snippet | The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4487 |
| SubjectTerms | Calibration Civil Engineering Design engineering Domains Earth and Environmental Science Earth Sciences Geology Geophysics/Geodesy Illustrations Microprocessors Modelling Original Paper Rocks Spalling Variability |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iCHoQrYrVKjl408DmveutPmoRFJEWegvJbhZE2YrdHvz3JtlHq6jgcXcnOXyZnZkwM98AcOpuADLKuUbUuJsOw8Yg4_w8spIlzEqn19pndO8fxHDM7iZ8UjeFzZpq9yYlGSx12-zmqUN8zjFCPo6WyN151rin83JaPCb9NnfAaGV_JaHIs5HXrTI_7_HVHS1izG9p0eBtBttgqw4TYb861x2wYosO2FwiD-yA9dswlPdjF1w8zkP1MqzeeNjhYJrOZ_BSpy_wuSin8MnZPbi0Hl6H0o09MBrcjK6GqJ6JgDRlpETCRFrz1HCRxDTKE2GopsTayJrYmaooo1LGmTWCEEszS2yap9jGgsnMxBbTfbBaTAt7AKAmQtMk48JJMc4zg3Mq3ZPhRGPLRBfgBhmV1nzhfmzFq2qZjgOayqGpApoKd8FZu-atYsv4U7rXAK7qP2emiPOW2PcORV1w3hzC4vPvux3-T_wIbBCvB6EurwdWy_e5PXbxRWlOgjp9AsETwyA priority: 102 providerName: Springer Nature |
| Title | Putting Geological Focus Back into Rock Engineering Design |
| URI | https://link.springer.com/article/10.1007/s00603-020-02177-1 https://www.proquest.com/docview/2471167000 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1434-453X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1434-453X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_chqAPolNxfow8-KbB5qNJK4hM3SaKYwyF-VSSNgNRtqnbg_-9SdZuU9DHpkke7q6XS-_u9wM4tjcAGQxChZm2Nx1OtMbanvPYSB5zI61dK5fRfeiI2yd-1w_7K9ApemFcWWXhE72jzkap-0d-Rq0XJa6nJLgcv2PHGuWyqwWFhsqpFbILDzFWggp1yFhlqFw1O93ePK_A2cw3S8qwQyrP22h8M52DJnE5zQC7OF1i8vOoWsSfv1Km_iRqbcJGHkKixkznW7BihlVYXwIWrMJq2xP2fm3DeXfqK5vRbMSpBLVG6fQTXan0Fb0MJyPUsz4RLa1HN76sYwceW83H61uc8yVgxTidYKEDpcJUhyKOWDCIhWaKUWMCoyPrxoKMSRllRgtKDcsMNekgJSYSXGY6MoTtQnk4Gpo9QIoKxeIsFHYWD8NMkwGT9kmHVBHDRQ1IIZkkzbHEHaXFWzJHQfbSTKw0Ey_NhNTgZL5mPEPS-Hf2YSHwJP-qPpOFDdTgtFDC4vXfu-3_v9sBrFGnd1-jdwjlycfUHNlYY6LrUIpa7TpUGu3n-2Y9Nyc7-kQb34RN0CM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xEIIeqvISKWnxAU5gsX6svVspqkpDCK8IRUHKzbJ3HQmBkrRJhPhx_W-1nd2EIpVbjrtr-zD-POPZmfkG4NB5ADLqxRoz4zwdTozBxtl5bCVPuZUO19pHdG9bonnPr7pxdwn-lLUwPq2y1IlBUeeDzP8jP6VOixJfUxJ9H_7CvmuUj66WLTR00VohrwWKsaKw49q-PDsXblS7rLv9PqK0cd752cRFlwGsGadjLEykdZyZWKQJi3qpMEwzam1kTeIOf5QzKZPcGkGpZbmlNutlxCaCy9wkljC37DKscsZT5_utnp237tqzMAZnU1MgKcOeGL2o2gm1e54JxYdQI-zdAonJv5Zxft19E6ENhq_xCT4WN1b0YwqxTViy_S348IrHcAvWLkJ_4Jdt-HY3CYnUaPrGIwA1BtlkhM509oge-uMBajsVjF7NR_WQRbIDnUUIbhdW-oO-3QOkqdAszWPhRvE4zg3pMemeTEw1sVxUgJSSUVlBXe47aDypGelykKZy0lRBmopU4Hg2Zzgl7nh3dLUUuCoO8UjNIVeBk3IT5p__v9rn91c7gPVm5_ZG3Vy2rvdhg3oMhPTAKqyMf0_sF3fNGZuvBZgQqAXD9y_CqQtT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RqlbtoeIplld9gFNrET9iJ0hVVboNu9AihBaJm2UnjoSKssDuquKn8e-wnWSXViq3PSaxfRh_nvFkZr4B2HMegIzKWGNmnKfDiTHYODuPreQpt9LhWvuI7q8z0bvkJ1fx1QI8trUwPq2y1YlBURfD3P8jP6BOixJfUxIdlE1axHk3-3p7h30HKR9pbdtp1BA5tQ9_nPs2-tLvur3epzT7Mfjew02HAawZp2MsTKR1nJtYpAmLylQYphm1NrImcQc_KpiUSWGNoNSywlKblzmxieCyMIklzC37Cl5LT-Lui9Sz42kAg7PaCEjKsKdEb-p1QtWe50DxwdMIe4dAYvK3TZxddP-JzQaTly3Bh-auir7V4FqGBVutwPtnDIYr8OY4dAZ-WIXD80lIoUb1G7_3KBvmkxE60vlvdF2Nh-jCKV_0bD7qhvyRNRjMQ2zrsFgNK7sBSFOhWVrEwo3icVwYUjLpnkxMNbFcdIC0klF5Q1rue2fcqCndcpCmctJUQZqKdODTdM5tTdnx4ujtVuCqOb4jNQNbBz63mzD7_P_VNl9e7SO8daBVP_tnp1vwjnoIhLzAbVgc30_sjrvfjM1uQBICNWfkPgFo2gjt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Putting+Geological+Focus+Back+into+Rock+Engineering+Design&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Carter%2C+Trevor+G&rft.au=Marinos+Vassilis&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=53&rft.issue=10&rft.spage=4487&rft.epage=4508&rft_id=info:doi/10.1007%2Fs00603-020-02177-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |