Putting Geological Focus Back into Rock Engineering Design

The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better cal...

Full description

Saved in:
Bibliographic Details
Published inRock mechanics and rock engineering Vol. 53; no. 10; pp. 4487 - 4508
Main Authors Carter, Trevor G., Marinos, Vassilis
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0723-2632
1434-453X
DOI10.1007/s00603-020-02177-1

Cover

Abstract The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion.
AbstractList The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion.
The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and characterization of geology and rockmass variability, so that rock–structure interaction effects can be analysed more realistically in better calibrated models. This paper is thus directed towards focussing attention on risk-based geological characterization as basis for helping modellers and designers improve calibration of their models. A sequential approach of appropriate input parameter refinement is outlined as a path forward methodology for consistently achieving maximum reliability in modelling. Processes that are needed for identifying key controlling geological structural features and rockmass domain characteristics that may be critical influences on true rockmass behaviour are explored so that rationalization steps can be followed in model building to ensure that actual behaviour drivers are not only properly represented, but are reliably characterized through rigorous calibration. Suggestions for the use of the observational and quantitative GSI charts at various scales appropriate to specific geological domains are presented as a means for achieving such calibration. Illustration is then given of how quantification can be achieved of rock quality variability throughout the complete range of rock competence, from intact pseudo-homogeneous high strength rockmasses subject to brittle spalling, through blocky, folded or foliated rockmasses, where kinematic controls are typically of paramount importance, through to completely degraded, fault process core zones and saprolites, where material matrix strength almost entirely dominates behaviour. Guidelines are given for suggested ranges of classification applicability for use with the Hoek–Brown failure criterion.
Author Marinos, Vassilis
Carter, Trevor G.
Author_xml – sequence: 1
  givenname: Trevor G.
  surname: Carter
  fullname: Carter, Trevor G.
  organization: Golder Associates
– sequence: 2
  givenname: Vassilis
  orcidid: 0000-0001-7575-7006
  surname: Marinos
  fullname: Marinos, Vassilis
  email: vmarinos14@gmail.com
  organization: School of Civil Engineering - Geotechnical Dept., National Technical University of Athens (NTUA)
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnlcnyTbZetPaVqGgSA_eQnZ3dkldk5qkB_-9u64geOhhmIF5783wTcjIOouEXFK4pgDyJgAI4Ckw6IpKmdITMqYZz9Jsxt9GZAyS8ZQJzs7IJIQdQLeU-ZjcvhxiNLZJ1uha15hSt8nKlYeQ3OvyPTE2uuTVddPSNsYi-l77gME09pyc1roNePHbp2S7Wm4Xj-nmef20uNukmmcspqIArWdlMRPznEM9FwXXnCECFrmuKqi4lHmFhWAMeYUMy7qkmItMVkWOlE_J1RC79-7zgCGqnTt4211ULJOUCgkAnYoNqtK7EDzWau_Nh_ZfioLqEakBkeoQqR9Eqo_O_5lKE3U0zkavTXvcygdr2PdI0P99dcT1DQCDfHY
CitedBy_id crossref_primary_10_1007_s00603_021_02544_6
crossref_primary_10_1016_j_compgeo_2025_107190
crossref_primary_10_1002_cend_202400026
crossref_primary_10_1016_j_undsp_2022_07_006
crossref_primary_10_1016_j_eswa_2022_118303
crossref_primary_10_1016_j_tust_2021_103979
crossref_primary_10_1080_00288306_2020_1853181
crossref_primary_10_1007_s11069_023_06116_5
crossref_primary_10_1007_s10064_024_04013_0
crossref_primary_10_1016_j_tust_2022_104443
crossref_primary_10_1144_qjegh2021_039
crossref_primary_10_1007_s10706_021_01995_6
Cites_doi 10.1007/s00603-013-0442-3
10.1201/NOE0415444019-c34
10.1061/AJGEB6.0001029
10.1007/s100640000090
10.1007/BF01239496
10.1007/s10706-019-00980-4
10.1201/NOE0415450287.ch2
10.1201/NOE0415444019-c31
10.4324/9780203477663
10.1007/s10064-004-0270-5
10.1016/j.ijrmms.2005.06.005
10.1016/0040-1951(81)90116-5
10.1016/S0148-9062(99)00043-1
10.1144/GSL.QJEG.1999.032.P1.01
10.1016/j.jsg.2005.06.009
10.1016/j.enggeo.2014.02.005
10.28927/SR.302085
10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2
10.1016/j.jrmge.2014.04.003
10.1016/j.ijrmms.2018.06.021
10.1016/j.ijrmms.2004.09.015
10.1144/GSL.QJEG.1977.010.04.01
10.1680/geot.1983.33.3.187
10.1016/j.enggeo.2018.03.022
10.36487/ACG_rep/1308_08_Castro
10.1016/j.jrmge.2018.08.001
10.1007/s10064-017-1151-z
10.1016/0148-9062(76)90818-4
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria, part of Springer Nature 2020
Springer-Verlag GmbH Austria, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Austria, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00603-020-02177-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 4508
ExternalDocumentID 10_1007_s00603_020_02177_1
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a342t-6b0aa5cb569830f96b3a32ee0eb8add0d3778deb622e3de2ecfc1e8647db8e13
IEDL.DBID BENPR
ISSN 0723-2632
IngestDate Fri Jul 25 19:07:47 EDT 2025
Wed Oct 01 04:12:42 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Fri Feb 21 02:35:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Rock engineering design
Geological structural domaining
Hoek–Brown failure criterion
Geotechnical parameter definition
Numerical modelling calibration
Rock mass characterization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-6b0aa5cb569830f96b3a32ee0eb8add0d3778deb622e3de2ecfc1e8647db8e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7575-7006
PQID 2471167000
PQPubID 60272
PageCount 22
ParticipantIDs proquest_journals_2471167000
crossref_primary_10_1007_s00603_020_02177_1
crossref_citationtrail_10_1007_s00603_020_02177_1
springer_journals_10_1007_s00603_020_02177_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2020
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References BieniawskiZTEngineering classification of jointed rock massesTrans S Afr Inst Civ Eng197315335344
Brox D (2020) Hydroelectric waterway inspections—risks and causes. TunnelTech Article. http://www.tunneltalk.com/TunnelTECH-Mar2020-Hydroelectric-tunnel-inspections.php
Carter TG, Carvalho JL (2020) Suggested tensile test data interpretation for estimating Hoek-Brown mi. In: Proceedings of the 54th US rock mechanics conf., Paper ARMA 201860, Golden, Colorado
Marinos V (2007) Geotechnical classification and engineering geological behaviour of weak and complex rock masses in tunneling. Doctoral thesis, School of Civil Engineering, Geotechnical Engineering Department, National Technical University of Athens (NTUA), Athens (In Greek)
Anon (1978) Suggested methods for the quantitative description of discontinuities in rock masses. International Society for Rock Mechanics Working Group Compilation Report. Int J Rock Mech Min Sci Geomech Abstr 15:319–368
Carter TG, Marinos V (2014) Use of GSI for rock engineering design. In: Proceedings of the. 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June, 2014
LaubscherDHGeomechanics classification of jointed rock masses—mining applicationsTrans Inst Min Metall197786A1A8
Dershowitz W, Doe T, Uchida M, Hermanson J (2003) Correlations between fracture size, transmissivity, and aperture. In: Essen, P. Culligan, H. Einstein, and A. Whittle (eds) Soil Rock America. Proceedings of the 39th US rock mechanics symposium, Cambridge, MA. VGE, pp 887–891
Diederichs MS, Carvalho JL, Carter TG (2007) A modified approach for prediction of strength and post yield behaviour for high GSI rock masses in strong, brittle ground. In: Proceedings of 1st Can-US rock symposium. Meeting Society’s Challenges and Demands, June, Vancouver, pp 277–285
HoekEBrownETUnderground excavations in rock1980LondonInstitution of Mining and Metallurgy527
Potvin Y, Hudyma MR, Miller HDS (1989) Design guidelines for open stope support. CIM Bull v.82, #926
HoekEMarinosPA brief history of the development of the Hoek-Brown failure criterionSoils Rocks (São Paulo)20073028592
HoekEBrownETEmpirical strength criterion for rock massesJ Geotech Eng Div ASCE1980106GT910131035
Carter TG (2019) A suggested visual approach for estimating Hoek-Brown mi for different rock types. In: Proceedings of the 14th ISRM congress on rock mechanics and rock engineering, Sept. 13–18, Foz do Iguassu, Brazil, Paper #14356
Mathews KE, Hoek E, Wyllie DC, Stewart SBV (1981) Golder Associates Report 802-1571 to CanMet on prediction of stable excavation spans for mining at depths below 1000 metres in Hard Rock. CanMet Contract No.17SQ.23440-0-9020
Hoek E, Carranza-Torres CT, Corkum B (2002) Hoek-Brown failure criterion—2002 edition. In: Bawden HRW, Curran J, Telesnicki M (eds) Proceedings of the North American Rock Mechanics Society (NARMS-TAC 2002). Mining Innovation and Technology, Toronto, Canada, pp 267273
HoekEBrownETThe Hoek-Brown failure criterion and GSI—2018 editionJ Rock Mech Geotech Eng201810.1016/j.jrmge.2018.08.001
Carter TG (2010) Applicability of classifications for tunnelling—valuable for improving insight, but problematic for contractual support definition or final design. In: Proceedings of the world tunnelling conference (WTC 2010), 36th ITA Congress. Vancouver, Paper 00401, Session 6c
Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: 47th US rock mechanics/geomechanics symposium, San Francisco: ARMA Paper 13-672
MarinosPHoekEEstimating the geotechnical properties of heterogeneous rock masses such as flyschBull Eng Geol Environ200160829210.1007/s100640000090
Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 97–106
SchlotfeldtPCarterTGA new and unified approach to improved scalability and volumetric fracture intensity quantification for GSI and rockmass strength and deformability estimationInt J Rock Mech Min Sci2019110486710.1016/j.ijrmms.2018.06.021
Hoek E, Wood D, Shah S (1992) A modified Hoek-Brown criterion for jointed rock masses. In: Hudson JA (ed) Proceedings of the rock characterization, Symp. Int. Soc. Rock Mech.: Eurock‘92. Lond Brit Geotech Soc, 209–214
DeereDUTechnical description of rock cores for engineering purposesRock Mech Eng Geol1964111722
HoekEStrength of rock and rock massesNews J Int Soc Rock Mech199422416
LaufferHGebirgsklassifizierung fur den StollenbauGeol Bauwesen1958744651
SheoreyPREmpirical rock failure criteria19971RotterdamA.A. Balkema
Coates DF (1970) Rock mechanics principles. Mines Branch Monograph 874, Mining Research Centre, Department of Energy, Mines and Resources, Ottawa, Canada
Carter TG (1992) Prediction and uncertainties in geological engineering and rock mass characterization assessment. In: Proceedings of the 4th Italian rock mechanics conference, Torino, pp 1.1–1.22
HoekEPutting numbers to geology—an engineer’s view-pointQ J Eng Geol199932111910.1144/GSL.QJEG.1999.032.P1.01
Rocscience (2018) https://www.rocscience.com/help/rs3/Geology/Materials/Parameter_Calculator.htm (in RocData Program)
DayJJDiederichsMSHutchinsonDJComposite geological strength index approach with application to hydrothermal vein networks and other intrablock structures in complex rockmassesGeotech Geol Eng2019375285531410.1007/s10706-019-00980-4
MarinosVTunnel behaviour and support associated with the weak rock masses of flyschJ Rock Mech Geotech Eng2014622723910.1016/j.jrmge.2014.04.003
Carter TG (2014) Guidelines for use of the scaled span method for surface crown pillar stability assessment. In: Proceedings of the 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June
MarinosVMarinosPHoekEThe geological strength index—applications and limitations»Bull Eng Geol Environ2005641556510.1007/s10064-004-0270-5
Skempton AW (1966) Some observations on tectonic shear zones. In: Congress of the international society for rock mechanics 1st proceedings, vol 1, pp 329–335
Marinos P, Marinos V, Hoek E (2007) Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses » . In: Romana, Perucho & Olalla (eds) Proceedings of the international workshop on rock mass classification in underground mining held in 1st Canada-US rock mechanics symposium, Also permitted to be published in: Underground works under special conditions. Taylor and Francis Publishing, Lisbon, pp 13–21
TchalenkoJSSimilarities between shear-zones of different magnitudesGeol Soc Am Bull1970811625164010.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2
Ganye J, Vasileiou A, Perras MA, Carter TG (2020) Influence of grain size and interlock on intact rock strength. In: Proceedings of the 54th US rock mechanics/geomechanics symposium, Golden, Colorado: ARMA Paper 20-2097
PalmstromAThe volumetric joint count - A useful and simple measure of the degree of rock mass jointing1982New DelhiIAEG CongressV.221V.228
Hoek E (1983) Strength of jointed rock masses. 1983 Rankine Lecture. Geotechnique 33(186):187–223
Hoek E, Brown ET (1988) The Hoek-Brown failure criterion—a 1988 update. In: Proceedings of the 15th Canadian rock mechanics symposium, pp 31–38
Castro LM, Carvalho J, Sá G (2013) Discussion on how to classify and estimate strength of weak rock masses. In: Dight PM (ed) Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp 205–217
Peck RB (1976) Rock foundations for structures. In: Proceedings of the specialty conference on rock engineering for foundations and slopes, vol 2, Boulder, Colorado, pp 1–21
Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geologie und Paleontologie B, 354–368
SonmezHUlusayRModifications to the Geological Strength Index (GSI) and their applicability to Stability of SlopesInt J Rock Mech Min Sci19993674376010.1016/S0148-9062(99)00043-1
Marinos V, Carter TG (2018) Maintaining geological reality in application of GSI for design of engineering structures in rock. J Eng Geol 239:282–297. Corrigendum to Maintaining geological reality in application of GSI for design of engineering structures in Rock
PriestSDHudsonJADiscontinuity spacings in rockInt J Rock Mech Min Sci19761313514810.1016/0148-9062(76)90818-4
Dershowitz WS, Herda H (1992) Interpretation of fracture spacing and intensity. In: Proceedings, 32nd US rock mechanics symposium, Santa Fe, New Mexico
BartlettWLFriedmanMLoganJMExperimental folding of rocks under confining pressure Part IX wrench faults in limestone layersTectonophysics19817925527710.1016/0040-1951(81)90116-5
RovidaATibaldiAPropagation of strike-slip faults across holocene volcano-sedimentary deposits, Pasto, ColombiaJ Struct Geol2005271838185510.1016/j.jsg.2005.06.009
Barton NR (1976) Recent experiences with the Q-system of tunnel support design. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 107–117
Carter TG (2018) Suggested standards for improving structural geological definition for open pit slope design. In: Proceedings of the XIV Congreso Internacional de Energia y Recursos Minerals: Slope Stability, 10–13 April, Sevilla
Carter TG, Diederichs MS, Carvalho JL (2008) Application of modified Hoek-Brown transition relationships for assessing strength and post yield behaviour at both ends of the rock competence scale. In: Proceedings of the 6th international symposium on ground support in mining and civil engineering construction, 30 March–3 April 2008. Cape Town, South Africa, pp 37–59. J S Afr Inst Min Metall 108:325–338
Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: International symposium on the role of rock mechanics ISRM, Zacatecas, pp 49–53
Marinos P, Hoek E (2000) GSI: a geologically friendly tool for
WL Bartlett (2177_CR5) 1981; 79
NR Barton (2177_CR8) 1974; 6
2177_CR10
2177_CR52
ZT Bieniawski (2177_CR11) 1989
2177_CR53
2177_CR14
2177_CR58
2177_CR15
2177_CR59
2177_CR12
2177_CR56
2177_CR13
E Hoek (2177_CR40) 2006; 43
2177_CR57
2177_CR18
2177_CR19
2177_CR16
DU Deere (2177_CR25) 1964; 1
2177_CR17
K Terzaghi (2177_CR70) 1946
E Hoek (2177_CR37) 1980
JJ Day (2177_CR101) 2019; 37
2177_CR43
2177_CR44
H Sonmez (2177_CR68) 1999; 36
E Hoek (2177_CR34) 1994; 2
2177_CR42
E Hoek (2177_CR45) 2005; 42
E Hoek (2177_CR39) 2018
JS Tchalenko (2177_CR69) 1970; 81
2177_CR46
V Marinos (2177_CR55) 2005; 64
2177_CR49
E Hoek (2177_CR41) 2007; 30
E Hoek (2177_CR36) 1980; 106
PR Sheorey (2177_CR66) 1997
cr-split#-2177_CR100.1
2177_CR32
X Feng (2177_CR103) 2014; 173
2177_CR33
P Marinos (2177_CR54) 2001; 60
2177_CR30
cr-split#-2177_CR100.2
2177_CR31
P Schlotfeldt (2177_CR65) 2019; 110
G Barla (2177_CR3) 2013; 46
2177_CR38
2177_CR2
SD Priest (2177_CR62) 1976; 13
2177_CR1
2177_CR4
2177_CR6
A Rovida (2177_CR64) 2005; 27
V Marinos (2177_CR50) 2014; 6
DH Laubscher (2177_CR47) 1977; 86
2177_CR61
2177_CR60
2177_CR21
A Palmstrom (2177_CR102) 1982
2177_CR22
2177_CR63
2177_CR20
E Hoek (2177_CR35) 1999; 32
2177_CR23
DU Deere (2177_CR26) 1968
2177_CR67
2177_CR24
2177_CR29
H Lauffer (2177_CR48) 1958; 74
V Marinos (2177_CR51) 2017
2177_CR27
2177_CR28
2177_CR105
ZT Bieniawski (2177_CR9) 1973; 15
2177_CR104
References_xml – reference: BieniawskiZTEngineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering1989New YorkWiley251
– reference: LaubscherDHGeomechanics classification of jointed rock masses—mining applicationsTrans Inst Min Metall197786A1A8
– reference: Marinos P, Marinos V, Hoek E (2007) Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses » . In: Romana, Perucho & Olalla (eds) Proceedings of the international workshop on rock mass classification in underground mining held in 1st Canada-US rock mechanics symposium, Also permitted to be published in: Underground works under special conditions. Taylor and Francis Publishing, Lisbon, pp 13–21
– reference: Anon (1977) The description of rock masses for engineering purposes. Geological Society Engineering Group Working Party Report. Q J Eng Geol 10:355–388
– reference: Hoek E, Carranza-Torres CT, Corkum B (2002) Hoek-Brown failure criterion—2002 edition. In: Bawden HRW, Curran J, Telesnicki M (eds) Proceedings of the North American Rock Mechanics Society (NARMS-TAC 2002). Mining Innovation and Technology, Toronto, Canada, pp 267273
– reference: Deere DU, Miller R (1966) Engineering classification and index properties for intact rock. Tech. Report No AFNL—AFWL-TR-65-116. Air Force Weapons Lab., Kirtland Air Force Base, New Mexico
– reference: Coates DF (1970) Rock mechanics principles. Mines Branch Monograph 874, Mining Research Centre, Department of Energy, Mines and Resources, Ottawa, Canada
– reference: BartlettWLFriedmanMLoganJMExperimental folding of rocks under confining pressure Part IX wrench faults in limestone layersTectonophysics19817925527710.1016/0040-1951(81)90116-5
– reference: Carter TG (1992) Prediction and uncertainties in geological engineering and rock mass characterization assessment. In: Proceedings of the 4th Italian rock mechanics conference, Torino, pp 1.1–1.22
– reference: Mathews KE, Hoek E, Wyllie DC, Stewart SBV (1981) Golder Associates Report 802-1571 to CanMet on prediction of stable excavation spans for mining at depths below 1000 metres in Hard Rock. CanMet Contract No.17SQ.23440-0-9020
– reference: MarinosVA revised, geotechnical classification GSI system for tectonically disturbed heterogeneous rock masses, such as flyschBull Eng Geol Environ201710.1007/s10064-017-1151-z
– reference: PriestSDHudsonJADiscontinuity spacings in rockInt J Rock Mech Min Sci19761313514810.1016/0148-9062(76)90818-4
– reference: Carter TG (2010) Applicability of classifications for tunnelling—valuable for improving insight, but problematic for contractual support definition or final design. In: Proceedings of the world tunnelling conference (WTC 2010), 36th ITA Congress. Vancouver, Paper 00401, Session 6c
– reference: HoekEPutting numbers to geology—an engineer’s view-pointQ J Eng Geol199932111910.1144/GSL.QJEG.1999.032.P1.01
– reference: BarlaGEinsteinHKovariKManuscripts using numerical distinct element methodsJ Rock Mech Rock Eng20134665510.1007/s00603-013-0442-3
– reference: Carter TG (2015) On increasing reliance on numerical modelling and synthetic data in rock engineering. In: Proceedings 13th ISRM international congress of rock mechanics, 10–13 May, Montreal, Canada (paper 821)
– reference: Carter TG, Marinos V (2014) Use of GSI for rock engineering design. In: Proceedings of the. 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June, 2014
– reference: Murphy WL (1985) Geotechnical descriptions of rock and rock masses. Technical Report GL85-3, Geotechnical Laboratory, Department of the Army, Waterways Experiment Station, Corps of Engineers PO Box 631 Vicksburg, Mississippi 39180-0631
– reference: TerzaghiKRock defects and load on tunnel supports, introduction to rock tunnelling with steel supports, a book by Proctor, R.V. and White, T.L1946YoungtownCommercial Shearing & Stamping Co
– reference: Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Rotterdam: Balkema, reprinted by CRC Press. ISBN 9789054101871
– reference: PalmstromAThe volumetric joint count - A useful and simple measure of the degree of rock mass jointing1982New DelhiIAEG CongressV.221V.228
– reference: Riedel W (1929) Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt fur Mineralogie, Geologie und Paleontologie B, 354–368
– reference: HoekEMarinosPMarinosVCharacterisation and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock massesInt J Rock Mech Min Sci200542227728510.1016/j.ijrmms.2004.09.015
– reference: Marinos V, Carter TG (2018) Maintaining geological reality in application of GSI for design of engineering structures in rock. J Eng Geol 239:282–297. Corrigendum to Maintaining geological reality in application of GSI for design of engineering structures in Rock
– reference: Carter TG, Diederichs MS, Carvalho JL (2008) Application of modified Hoek-Brown transition relationships for assessing strength and post yield behaviour at both ends of the rock competence scale. In: Proceedings of the 6th international symposium on ground support in mining and civil engineering construction, 30 March–3 April 2008. Cape Town, South Africa, pp 37–59. J S Afr Inst Min Metall 108:325–338
– reference: Muir-Wood AM (2000) Tunnelling: management by design. Published by E & FN Spon. ISBN 0-419-23200. https://doi.org/10.4324/9780203477663
– reference: HoekEBrownETEmpirical strength criterion for rock massesJ Geotech Eng Div ASCE1980106GT910131035
– reference: Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rockmass strength estimation. In: Proceedings of the GeoEng2000 at the international conference on geotechnical and geological engineering, Melbourne, Technomic publishers, Lancaster, Pennsylvania, pp 1422–1446
– reference: BieniawskiZTEngineering classification of jointed rock massesTrans S Afr Inst Civ Eng197315335344
– reference: HoekEStrength of rock and rock massesNews J Int Soc Rock Mech199422416
– reference: SonmezHUlusayRModifications to the Geological Strength Index (GSI) and their applicability to Stability of SlopesInt J Rock Mech Min Sci19993674376010.1016/S0148-9062(99)00043-1
– reference: Skempton AW (1966) Some observations on tectonic shear zones. In: Congress of the international society for rock mechanics 1st proceedings, vol 1, pp 329–335
– reference: BartonNRLienRLundeJEngineering classification of rock masses for the design of tunnel supportRock Mech19746418923910.1007/BF01239496
– reference: Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: 47th US rock mechanics/geomechanics symposium, San Francisco: ARMA Paper 13-672
– reference: Barton NR (1976) Recent experiences with the Q-system of tunnel support design. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 107–117
– reference: LaufferHGebirgsklassifizierung fur den StollenbauGeol Bauwesen1958744651
– reference: Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: International symposium on the role of rock mechanics ISRM, Zacatecas, pp 49–53
– reference: Anon (1978) Suggested methods for the quantitative description of discontinuities in rock masses. International Society for Rock Mechanics Working Group Compilation Report. Int J Rock Mech Min Sci Geomech Abstr 15:319–368
– reference: Ganye J, Vasileiou A, Perras MA, Carter TG (2020) Influence of grain size and interlock on intact rock strength. In: Proceedings of the 54th US rock mechanics/geomechanics symposium, Golden, Colorado: ARMA Paper 20-2097
– reference: MarinosPHoekEEstimating the geotechnical properties of heterogeneous rock masses such as flyschBull Eng Geol Environ200160829210.1007/s100640000090
– reference: Carter TG (2014) Guidelines for use of the scaled span method for surface crown pillar stability assessment. In: Proceedings of the 1st international conference on applied empirical design methods in mining, Lima-Perú, 9–11th June
– reference: MarinosVTunnel behaviour and support associated with the weak rock masses of flyschJ Rock Mech Geotech Eng2014622723910.1016/j.jrmge.2014.04.003
– reference: Carter TG, Marinos V (2020) Characterization of rockmass strength based on rock matrix competence (to be submitted for publication in Rock Mechanics and Rock Engineering)
– reference: DeereDUTechnical description of rock cores for engineering purposesRock Mech Eng Geol1964111722
– reference: HoekEBrownETUnderground excavations in rock1980LondonInstitution of Mining and Metallurgy527
– reference: SheoreyPREmpirical rock failure criteria19971RotterdamA.A. Balkema
– reference: Marinos V (2007) Geotechnical classification and engineering geological behaviour of weak and complex rock masses in tunneling. Doctoral thesis, School of Civil Engineering, Geotechnical Engineering Department, National Technical University of Athens (NTUA), Athens (In Greek)
– reference: Bieniawski ZT (1976) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Proceedings of the symposium on exploration for rock engineering. A.A. Balkema, Johannesburg, pp 97–106
– reference: DeereDUStaggKZienkiewiczOCGeological considerationsRock mechanics in engineering practice1968LondonWiley120
– reference: Carter TG, Carvalho JL (2020) Suggested tensile test data interpretation for estimating Hoek-Brown mi. In: Proceedings of the 54th US rock mechanics conf., Paper ARMA 201860, Golden, Colorado
– reference: Potvin Y, Hudyma MR, Miller HDS (1989) Design guidelines for open stope support. CIM Bull v.82, #926
– reference: Dershowitz W, Doe T, Uchida M, Hermanson J (2003) Correlations between fracture size, transmissivity, and aperture. In: Essen, P. Culligan, H. Einstein, and A. Whittle (eds) Soil Rock America. Proceedings of the 39th US rock mechanics symposium, Cambridge, MA. VGE, pp 887–891
– reference: Dershowitz WS, Herda H (1992) Interpretation of fracture spacing and intensity. In: Proceedings, 32nd US rock mechanics symposium, Santa Fe, New Mexico
– reference: Brox D (2020) Hydroelectric waterway inspections—risks and causes. TunnelTech Article. http://www.tunneltalk.com/TunnelTECH-Mar2020-Hydroelectric-tunnel-inspections.php
– reference: Carter TG (2019) A suggested visual approach for estimating Hoek-Brown mi for different rock types. In: Proceedings of the 14th ISRM congress on rock mechanics and rock engineering, Sept. 13–18, Foz do Iguassu, Brazil, Paper #14356
– reference: Castro LM, Carvalho J, Sá G (2013) Discussion on how to classify and estimate strength of weak rock masses. In: Dight PM (ed) Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp 205–217
– reference: Carter TG (2018) Suggested standards for improving structural geological definition for open pit slope design. In: Proceedings of the XIV Congreso Internacional de Energia y Recursos Minerals: Slope Stability, 10–13 April, Sevilla
– reference: Carvalho JL, Carter TG, Diederichs MS (2007) An approach for prediction of strength and post yield behaviour for rock masses of low intact strength. In: Proceedings 1st Can-US rock mechanics symposium, meeting society’s challenges & demands, Vancouver, Canada, pp 249–257
– reference: DayJJDiederichsMSHutchinsonDJComposite geological strength index approach with application to hydrothermal vein networks and other intrablock structures in complex rockmassesGeotech Geol Eng2019375285531410.1007/s10706-019-00980-4
– reference: HoekEBrownETThe Hoek-Brown failure criterion and GSI—2018 editionJ Rock Mech Geotech Eng201810.1016/j.jrmge.2018.08.001
– reference: SchlotfeldtPCarterTGA new and unified approach to improved scalability and volumetric fracture intensity quantification for GSI and rockmass strength and deformability estimationInt J Rock Mech Min Sci2019110486710.1016/j.ijrmms.2018.06.021
– reference: Barnett WP, Carter TG (2020) Structural domaining for engineering projects. In: Proceedings of the 54th US rock mechanics/geomechanics symposium, Golden, Colorado. ARMA Paper 20-2105
– reference: Hoek E (1983) Strength of jointed rock masses. 1983 Rankine Lecture. Geotechnique 33(186):187–223
– reference: Peck RB (1976) Rock foundations for structures. In: Proceedings of the specialty conference on rock engineering for foundations and slopes, vol 2, Boulder, Colorado, pp 1–21
– reference: HoekEMarinosPA brief history of the development of the Hoek-Brown failure criterionSoils Rocks (São Paulo)20073028592
– reference: Diederichs MS, Carvalho JL, Carter TG (2007) A modified approach for prediction of strength and post yield behaviour for high GSI rock masses in strong, brittle ground. In: Proceedings of 1st Can-US rock symposium. Meeting Society’s Challenges and Demands, June, Vancouver, pp 277–285
– reference: Douglas KJ (2002) The shear strength of rock masses. Unpublished Doctoral thesis. University of New South Wales, Sydney, Australia
– reference: TchalenkoJSSimilarities between shear-zones of different magnitudesGeol Soc Am Bull1970811625164010.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2
– reference: FengXJimenezRBayesian prediction of elastic modulus of intact rocks using their uniaxial compressive strengthEng Geol2014173324010.1016/j.enggeo.2014.02.005
– reference: Hoek E, Brown ET (1988) The Hoek-Brown failure criterion—a 1988 update. In: Proceedings of the 15th Canadian rock mechanics symposium, pp 31–38
– reference: HoekEDiederichsMSEmpirical estimation of rock mass modulusInt J Rock Mech Min Sci20064320321510.1016/j.ijrmms.2005.06.005
– reference: RovidaATibaldiAPropagation of strike-slip faults across holocene volcano-sedimentary deposits, Pasto, ColombiaJ Struct Geol2005271838185510.1016/j.jsg.2005.06.009
– reference: MarinosVMarinosPHoekEThe geological strength index—applications and limitations»Bull Eng Geol Environ2005641556510.1007/s10064-004-0270-5
– reference: Rocscience (2018) https://www.rocscience.com/help/rs3/Geology/Materials/Parameter_Calculator.htm (in RocData Program)
– reference: Hoek E, Wood D, Shah S (1992) A modified Hoek-Brown criterion for jointed rock masses. In: Hudson JA (ed) Proceedings of the rock characterization, Symp. Int. Soc. Rock Mech.: Eurock‘92. Lond Brit Geotech Soc, 209–214
– volume: 46
  start-page: 655
  year: 2013
  ident: 2177_CR3
  publication-title: J Rock Mech Rock Eng
  doi: 10.1007/s00603-013-0442-3
– ident: 2177_CR14
– ident: 2177_CR20
– ident: 2177_CR10
– ident: 2177_CR105
– ident: 2177_CR43
– ident: 2177_CR28
– ident: 2177_CR53
– ident: 2177_CR24
– ident: 2177_CR30
  doi: 10.1201/NOE0415444019-c34
– volume: 86
  start-page: A1
  year: 1977
  ident: 2177_CR47
  publication-title: Trans Inst Min Metall
– volume: 106
  start-page: 1013
  issue: GT9
  year: 1980
  ident: 2177_CR36
  publication-title: J Geotech Eng Div ASCE
  doi: 10.1061/AJGEB6.0001029
– volume: 74
  start-page: 46
  year: 1958
  ident: 2177_CR48
  publication-title: Geol Bauwesen
– volume: 60
  start-page: 82
  year: 2001
  ident: 2177_CR54
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s100640000090
– ident: 2177_CR38
– volume: 6
  start-page: 189
  issue: 4
  year: 1974
  ident: 2177_CR8
  publication-title: Rock Mech
  doi: 10.1007/BF01239496
– ident: 2177_CR57
– volume: 37
  start-page: 5285
  year: 2019
  ident: 2177_CR101
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-019-00980-4
– ident: 2177_CR56
  doi: 10.1201/NOE0415450287.ch2
– ident: 2177_CR23
  doi: 10.1201/NOE0415444019-c31
– ident: 2177_CR58
  doi: 10.4324/9780203477663
– ident: 2177_CR17
– volume: 64
  start-page: 55
  issue: 1
  year: 2005
  ident: 2177_CR55
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-004-0270-5
– ident: 2177_CR13
– volume-title: Rock defects and load on tunnel supports, introduction to rock tunnelling with steel supports, a book by Proctor, R.V. and White, T.L
  year: 1946
  ident: 2177_CR70
– ident: #cr-split#-2177_CR100.2
– ident: 2177_CR44
– ident: 2177_CR104
– volume-title: Empirical rock failure criteria
  year: 1997
  ident: 2177_CR66
– ident: 2177_CR61
– volume: 43
  start-page: 203
  year: 2006
  ident: 2177_CR40
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2005.06.005
– volume: 79
  start-page: 255
  year: 1981
  ident: 2177_CR5
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(81)90116-5
– volume: 36
  start-page: 743
  year: 1999
  ident: 2177_CR68
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/S0148-9062(99)00043-1
– start-page: V.221
  volume-title: The volumetric joint count - A useful and simple measure of the degree of rock mass jointing
  year: 1982
  ident: 2177_CR102
– ident: 2177_CR4
– ident: 2177_CR27
– volume: 32
  start-page: 1
  issue: 1
  year: 1999
  ident: 2177_CR35
  publication-title: Q J Eng Geol
  doi: 10.1144/GSL.QJEG.1999.032.P1.01
– volume: 27
  start-page: 1838
  year: 2005
  ident: 2177_CR64
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2005.06.009
– start-page: 251
  volume-title: Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering
  year: 1989
  ident: 2177_CR11
– volume: 15
  start-page: 335
  year: 1973
  ident: 2177_CR9
  publication-title: Trans S Afr Inst Civ Eng
– volume: 173
  start-page: 32
  year: 2014
  ident: 2177_CR103
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2014.02.005
– ident: 2177_CR16
– ident: 2177_CR12
– volume: 30
  start-page: 85
  issue: 2
  year: 2007
  ident: 2177_CR41
  publication-title: Soils Rocks (São Paulo)
  doi: 10.28927/SR.302085
– ident: 2177_CR22
– volume: 81
  start-page: 1625
  year: 1970
  ident: 2177_CR69
  publication-title: Geol Soc Am Bull
  doi: 10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2
– ident: 2177_CR60
– ident: 2177_CR29
– ident: 2177_CR49
– volume: 6
  start-page: 227
  year: 2014
  ident: 2177_CR50
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.04.003
– ident: 2177_CR19
– ident: 2177_CR32
– volume: 2
  start-page: 4
  issue: 2
  year: 1994
  ident: 2177_CR34
  publication-title: News J Int Soc Rock Mech
– volume: 110
  start-page: 48
  year: 2019
  ident: 2177_CR65
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.06.021
– start-page: 1
  volume-title: Rock mechanics in engineering practice
  year: 1968
  ident: 2177_CR26
– volume: 42
  start-page: 277
  issue: 2
  year: 2005
  ident: 2177_CR45
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2004.09.015
– ident: 2177_CR59
– ident: 2177_CR1
  doi: 10.1144/GSL.QJEG.1977.010.04.01
– ident: 2177_CR15
– ident: 2177_CR33
  doi: 10.1680/geot.1983.33.3.187
– ident: 2177_CR52
  doi: 10.1016/j.enggeo.2018.03.022
– ident: 2177_CR42
– ident: 2177_CR21
– ident: #cr-split#-2177_CR100.1
  doi: 10.36487/ACG_rep/1308_08_Castro
– volume: 1
  start-page: 17
  issue: 1
  year: 1964
  ident: 2177_CR25
  publication-title: Rock Mech Eng Geol
– ident: 2177_CR46
– year: 2018
  ident: 2177_CR39
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2018.08.001
– ident: 2177_CR67
– ident: 2177_CR63
– ident: 2177_CR2
– ident: 2177_CR31
– ident: 2177_CR18
– year: 2017
  ident: 2177_CR51
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1151-z
– start-page: 527
  volume-title: Underground excavations in rock
  year: 1980
  ident: 2177_CR37
– ident: 2177_CR6
– volume: 13
  start-page: 135
  year: 1976
  ident: 2177_CR62
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/0148-9062(76)90818-4
SSID ssj0014378
Score 2.351306
Snippet The trend today to ever increasing modelling sophistication demands that much more attention be paid by practitioners to achieving better appreciation and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4487
SubjectTerms Calibration
Civil Engineering
Design engineering
Domains
Earth and Environmental Science
Earth Sciences
Geology
Geophysics/Geodesy
Illustrations
Microprocessors
Modelling
Original Paper
Rocks
Spalling
Variability
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iCHoQrYrVKjl408DmveutPmoRFJEWegvJbhZE2YrdHvz3JtlHq6jgcXcnOXyZnZkwM98AcOpuADLKuUbUuJsOw8Yg4_w8spIlzEqn19pndO8fxHDM7iZ8UjeFzZpq9yYlGSx12-zmqUN8zjFCPo6WyN151rin83JaPCb9NnfAaGV_JaHIs5HXrTI_7_HVHS1izG9p0eBtBttgqw4TYb861x2wYosO2FwiD-yA9dswlPdjF1w8zkP1MqzeeNjhYJrOZ_BSpy_wuSin8MnZPbi0Hl6H0o09MBrcjK6GqJ6JgDRlpETCRFrz1HCRxDTKE2GopsTayJrYmaooo1LGmTWCEEszS2yap9jGgsnMxBbTfbBaTAt7AKAmQtMk48JJMc4zg3Mq3ZPhRGPLRBfgBhmV1nzhfmzFq2qZjgOayqGpApoKd8FZu-atYsv4U7rXAK7qP2emiPOW2PcORV1w3hzC4vPvux3-T_wIbBCvB6EurwdWy_e5PXbxRWlOgjp9AsETwyA
  priority: 102
  providerName: Springer Nature
Title Putting Geological Focus Back into Rock Engineering Design
URI https://link.springer.com/article/10.1007/s00603-020-02177-1
https://www.proquest.com/docview/2471167000
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1434-453X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_chqAPolNxfow8-KbB5qNJK4hM3SaKYwyF-VSSNgNRtqnbg_-9SdZuU9DHpkke7q6XS-_u9wM4tjcAGQxChZm2Nx1OtMbanvPYSB5zI61dK5fRfeiI2yd-1w_7K9ApemFcWWXhE72jzkap-0d-Rq0XJa6nJLgcv2PHGuWyqwWFhsqpFbILDzFWggp1yFhlqFw1O93ePK_A2cw3S8qwQyrP22h8M52DJnE5zQC7OF1i8vOoWsSfv1Km_iRqbcJGHkKixkznW7BihlVYXwIWrMJq2xP2fm3DeXfqK5vRbMSpBLVG6fQTXan0Fb0MJyPUsz4RLa1HN76sYwceW83H61uc8yVgxTidYKEDpcJUhyKOWDCIhWaKUWMCoyPrxoKMSRllRgtKDcsMNekgJSYSXGY6MoTtQnk4Gpo9QIoKxeIsFHYWD8NMkwGT9kmHVBHDRQ1IIZkkzbHEHaXFWzJHQfbSTKw0Ey_NhNTgZL5mPEPS-Hf2YSHwJP-qPpOFDdTgtFDC4vXfu-3_v9sBrFGnd1-jdwjlycfUHNlYY6LrUIpa7TpUGu3n-2Y9Nyc7-kQb34RN0CM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xEIIeqvISKWnxAU5gsX6svVspqkpDCK8IRUHKzbJ3HQmBkrRJhPhx_W-1nd2EIpVbjrtr-zD-POPZmfkG4NB5ADLqxRoz4zwdTozBxtl5bCVPuZUO19pHdG9bonnPr7pxdwn-lLUwPq2y1IlBUeeDzP8jP6VOixJfUxJ9H_7CvmuUj66WLTR00VohrwWKsaKw49q-PDsXblS7rLv9PqK0cd752cRFlwGsGadjLEykdZyZWKQJi3qpMEwzam1kTeIOf5QzKZPcGkGpZbmlNutlxCaCy9wkljC37DKscsZT5_utnp237tqzMAZnU1MgKcOeGL2o2gm1e54JxYdQI-zdAonJv5Zxft19E6ENhq_xCT4WN1b0YwqxTViy_S348IrHcAvWLkJ_4Jdt-HY3CYnUaPrGIwA1BtlkhM509oge-uMBajsVjF7NR_WQRbIDnUUIbhdW-oO-3QOkqdAszWPhRvE4zg3pMemeTEw1sVxUgJSSUVlBXe47aDypGelykKZy0lRBmopU4Hg2Zzgl7nh3dLUUuCoO8UjNIVeBk3IT5p__v9rn91c7gPVm5_ZG3Vy2rvdhg3oMhPTAKqyMf0_sF3fNGZuvBZgQqAXD9y_CqQtT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RqlbtoeIplld9gFNrET9iJ0hVVboNu9AihBaJm2UnjoSKssDuquKn8e-wnWSXViq3PSaxfRh_nvFkZr4B2HMegIzKWGNmnKfDiTHYODuPreQpt9LhWvuI7q8z0bvkJ1fx1QI8trUwPq2y1YlBURfD3P8jP6BOixJfUxIdlE1axHk3-3p7h30HKR9pbdtp1BA5tQ9_nPs2-tLvur3epzT7Mfjew02HAawZp2MsTKR1nJtYpAmLylQYphm1NrImcQc_KpiUSWGNoNSywlKblzmxieCyMIklzC37Cl5LT-Lui9Sz42kAg7PaCEjKsKdEb-p1QtWe50DxwdMIe4dAYvK3TZxddP-JzQaTly3Bh-auir7V4FqGBVutwPtnDIYr8OY4dAZ-WIXD80lIoUb1G7_3KBvmkxE60vlvdF2Nh-jCKV_0bD7qhvyRNRjMQ2zrsFgNK7sBSFOhWVrEwo3icVwYUjLpnkxMNbFcdIC0klF5Q1rue2fcqCndcpCmctJUQZqKdODTdM5tTdnx4ujtVuCqOb4jNQNbBz63mzD7_P_VNl9e7SO8daBVP_tnp1vwjnoIhLzAbVgc30_sjrvfjM1uQBICNWfkPgFo2gjt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Putting+Geological+Focus+Back+into+Rock+Engineering+Design&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Carter%2C+Trevor+G&rft.au=Marinos+Vassilis&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=53&rft.issue=10&rft.spage=4487&rft.epage=4508&rft_id=info:doi/10.1007%2Fs00603-020-02177-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon