Application and Comprehensive Analysis of Neighbor Approximated Information Theoretic Configurational Entropy Methods to Protein–Ligand Binding Cases

The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 16; no. 12; pp. 7581 - 7600
Main Authors Panday, Shailesh Kumar, Ghosh, Indira
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 08.12.2020
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.0c00764

Cover

Abstract The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein–ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20–30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented.
AbstractList The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein–ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20–30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented.
The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein-ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20-30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented.The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein-ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20-30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented.
Author Ghosh, Indira
Panday, Shailesh Kumar
AuthorAffiliation School of Computational and Integrative Sciences
AuthorAffiliation_xml – name: School of Computational and Integrative Sciences
Author_xml – sequence: 1
  givenname: Shailesh Kumar
  orcidid: 0000-0003-3099-8679
  surname: Panday
  fullname: Panday, Shailesh Kumar
  email: shaileshp51@gmail.com
– sequence: 2
  givenname: Indira
  orcidid: 0000-0001-8413-0387
  surname: Ghosh
  fullname: Ghosh, Indira
BookMark eNp9kb9u2zAQh4kiBZqk2TsSyJKhdo-iTEmjayRtAPfPkMzChTraNGRSIekg3voOHfp-fZLSdtohQDqRIL_vyLvfCTty3hFj7wSMBRTiA-o4Xumkx6ABKlW-YsdiUjajRhXq6N9e1G_YSYwrACnLQh6zX9Nh6K3GZL3j6Do-8-sh0JJctA_Epw77bbSRe8O_kl0s73zgWQn-0a4xUcevnfFhffBvluQDJatzFWfsYhP259jzS5eCH7b8C6Wl7yJPnn8PPpF1v3_8nNvF7uWP1nXWLfgMI8W37LXBPtLZ03rKbq8ub2afR_Nvn65n0_kIZSnSqJooJeumk50CLAgrNNTU8g7LelJpU1QdGMidakQNCBMF0BhZNiojVUFGnrKLQ93c0v2GYmrXNmrqe3TkN7EtSiUAQCiR0fNn6MpvQu5uR1WgVCNqmSk4UDr4GAOZdgh5VGHbCmh3SbU5qXaXVPuUVFbUM0XbtJ9cCmj7_4nvD-L-5u9nXsT_AENIr5M
CitedBy_id crossref_primary_10_1021_acsomega_1c07037
crossref_primary_10_1021_acs_jctc_2c00858
Cites_doi 10.1002/jcc.20919
10.1073/pnas.1213180109
10.1021/ct200910z
10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T
10.1002/jcc.23350
10.1371/journal.ppat.1002755
10.1162/089976603321780272
10.1002/wcms.1195
10.1109/99.660313
10.1142/9781860949920_0019
10.1107/S0021889892009944
10.1021/ma60052a001
10.1016/j.str.2003.09.020
10.1021/jp401049h
10.1023/A:1026096204727
10.1002/jcc.20289
10.1002/prot.340230306
10.1002/pro.692
10.1021/acs.jctc.5b01217
10.1063/1.4748104
10.1002/jcc.20290
10.1021/jp111176x
10.1093/bioinformatics/btg362
10.1103/PhysRevA.33.3628
10.1080/08927029408022001
10.1146/annurev-biophys-083012-130318
10.1002/jcc.21287
10.1007/978-1-4612-0919-5_30
10.1021/jp2068123
10.1021/jp061627s
10.1002/j.1538-7305.1948.tb01338.x
10.1021/acs.jpcb.5b07060
10.1021/jp5102412
10.1063/1.1401821
10.1146/annurev-physchem-040412-110047
10.1016/0009-2614(93)89366-P
10.1021/bi9005896
10.1016/j.jmb.2009.04.003
10.1038/nm.3073
10.1063/1.2746329
10.1021/ja405200u
10.1002/jcc.21450
10.1016/j.jmgm.2015.09.010
10.1073/pnas.0501808102
10.1021/acs.jctc.5b00255
10.1021/ma50003a019
10.1093/nar/28.1.235
10.1021/acsmedchemlett.8b00490
10.1016/S0959-440X(94)90321-2
10.1021/acs.jpcb.5b00689
10.1021/jp003020w
10.1073/pnas.1110303108
10.1103/PhysRevE.62.3096
10.1021/ct400314y
10.1002/9780470015902.a0020204.pub2
10.1038/nchembio.347
10.1002/jcc.20291
10.1039/C1CP21779H
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright American Chemical Society Dec 8, 2020
Copyright_xml – notice: 2020 American Chemical Society
– notice: Copyright American Chemical Society Dec 8, 2020
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.0c00764
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 7600
ExternalDocumentID 10_1021_acs_jctc_0c00764
b379985065
GroupedDBID 53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a341t-7566389d3d60a2ea7afe983ba4857cf27d0f0342caac0a056009f34963ba72ef3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Fri Jul 11 13:34:44 EDT 2025
Sun Jun 29 16:36:21 EDT 2025
Tue Jul 01 02:03:18 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Thu Jan 28 04:14:17 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a341t-7566389d3d60a2ea7afe983ba4857cf27d0f0342caac0a056009f34963ba72ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8413-0387
0000-0003-3099-8679
PQID 2470669183
PQPubID 2048741
PageCount 20
ParticipantIDs proquest_miscellaneous_2461000161
proquest_journals_2470669183
crossref_primary_10_1021_acs_jctc_0c00764
crossref_citationtrail_10_1021_acs_jctc_0c00764
acs_journals_10_1021_acs_jctc_0c00764
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201208
2020-12-08
PublicationDateYYYYMMDD 2020-12-08
PublicationDate_xml – month: 12
  year: 2020
  text: 20201208
  day: 08
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
Snir M. (ref35/cit35) 1998; 1
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
Hausser J. (ref40/cit40) 2009; 10
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1002/jcc.20919
– volume: 10
  start-page: 1469
  year: 2009
  ident: ref40/cit40
  publication-title: J. Mach. Learn. Res.
– ident: ref2/cit2
  doi: 10.1073/pnas.1213180109
– ident: ref16/cit16
  doi: 10.1021/ct200910z
– ident: ref59/cit59
  doi: 10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T
– ident: ref23/cit23
  doi: 10.1002/jcc.23350
– ident: ref48/cit48
  doi: 10.1371/journal.ppat.1002755
– ident: ref45/cit45
  doi: 10.1162/089976603321780272
– ident: ref29/cit29
  doi: 10.1002/wcms.1195
– ident: ref36/cit36
  doi: 10.1109/99.660313
– ident: ref5/cit5
  doi: 10.1142/9781860949920_0019
– ident: ref51/cit51
  doi: 10.1107/S0021889892009944
– ident: ref41/cit41
  doi: 10.1021/ma60052a001
– ident: ref46/cit46
  doi: 10.1016/j.str.2003.09.020
– ident: ref19/cit19
  doi: 10.1021/jp401049h
– ident: ref38/cit38
  doi: 10.1023/A:1026096204727
– ident: ref34/cit34
  doi: 10.1002/jcc.20289
– volume: 1
  volume-title: MPI–the Complete Reference: the MPI core
  year: 1998
  ident: ref35/cit35
– ident: ref49/cit49
  doi: 10.1002/prot.340230306
– ident: ref9/cit9
  doi: 10.1002/pro.692
– ident: ref21/cit21
  doi: 10.1021/acs.jctc.5b01217
– ident: ref17/cit17
  doi: 10.1063/1.4748104
– ident: ref31/cit31
  doi: 10.1002/jcc.20290
– ident: ref26/cit26
  doi: 10.1021/jp111176x
– ident: ref50/cit50
  doi: 10.1093/bioinformatics/btg362
– ident: ref60/cit60
  doi: 10.1103/PhysRevA.33.3628
– ident: ref61/cit61
  doi: 10.1080/08927029408022001
– ident: ref28/cit28
  doi: 10.1146/annurev-biophys-083012-130318
– ident: ref33/cit33
  doi: 10.1002/jcc.21287
– ident: ref39/cit39
  doi: 10.1007/978-1-4612-0919-5_30
– ident: ref18/cit18
  doi: 10.1021/jp2068123
– ident: ref13/cit13
  doi: 10.1021/jp061627s
– ident: ref44/cit44
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref6/cit6
  doi: 10.1021/acs.jpcb.5b07060
– ident: ref20/cit20
  doi: 10.1021/jp5102412
– ident: ref12/cit12
  doi: 10.1063/1.1401821
– ident: ref3/cit3
  doi: 10.1146/annurev-physchem-040412-110047
– ident: ref11/cit11
  doi: 10.1016/0009-2614(93)89366-P
– ident: ref4/cit4
  doi: 10.1021/bi9005896
– ident: ref37/cit37
– ident: ref7/cit7
  doi: 10.1016/j.jmb.2009.04.003
– ident: ref53/cit53
  doi: 10.1038/nm.3073
– ident: ref14/cit14
  doi: 10.1063/1.2746329
– ident: ref22/cit22
  doi: 10.1021/ja405200u
– ident: ref1/cit1
  doi: 10.1002/jcc.21450
– ident: ref30/cit30
  doi: 10.1016/j.jmgm.2015.09.010
– ident: ref54/cit54
  doi: 10.1073/pnas.0501808102
– ident: ref56/cit56
  doi: 10.1021/acs.jctc.5b00255
– ident: ref10/cit10
  doi: 10.1021/ma50003a019
– ident: ref47/cit47
  doi: 10.1093/nar/28.1.235
– ident: ref43/cit43
  doi: 10.1021/acsmedchemlett.8b00490
– ident: ref24/cit24
  doi: 10.1016/S0959-440X(94)90321-2
– ident: ref57/cit57
  doi: 10.1021/acs.jpcb.5b00689
– ident: ref58/cit58
  doi: 10.1021/jp003020w
– ident: ref52/cit52
  doi: 10.1073/pnas.1110303108
– ident: ref42/cit42
  doi: 10.1103/PhysRevE.62.3096
– ident: ref55/cit55
  doi: 10.1021/ct400314y
– ident: ref25/cit25
  doi: 10.1002/9780470015902.a0020204.pub2
– ident: ref8/cit8
  doi: 10.1038/nchembio.347
– ident: ref32/cit32
  doi: 10.1002/jcc.20291
– ident: ref27/cit27
  doi: 10.1039/C1CP21779H
SSID ssj0033423
Score 2.3467526
Snippet The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7581
SubjectTerms Anharmonicity
Antigens
Approximation
Binding
Graph theory
Information theory
Kinases
Ligands
Maximum likelihood estimators
Molecular Mechanics
Performance evaluation
Probability density functions
Proteins
Sampling
Search algorithms
Title Application and Comprehensive Analysis of Neighbor Approximated Information Theoretic Configurational Entropy Methods to Protein–Ligand Binding Cases
URI http://dx.doi.org/10.1021/acs.jctc.0c00764
https://www.proquest.com/docview/2470669183
https://www.proquest.com/docview/2461000161
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhR5RNRoIDh5bWWewcS9UKIUBIUKm3yHEcCKC0alIJOPEPHPg_voQZJ6FiUdVrYmexx543npk3hBx6roikxpUmvLBqSzB3pHbQ5rEDyTgLeGiiLa7cs6593nN6Y5qc3x581jiRKq09qEzV6grdRvYsmWcu5xi-12zdlLuuhUx2hhvVRsbJhihckv89ARWRSn8qop_7sFEuneW8SlFqOAkxpuSxNsqCmnr9y9g4xXevkKUCY9JmLhSrZEYna2ShVZZ2WycfzbHbmsokpLgrDPV9HsxOS6IS2o_oFR6dgpzQJpKPP8cAcHVIiyQm0_-2TIWkmD0Y342GxfkibWMU_OCFXpoq1SnN-vQaaSHi5PPt_SK-wzefxiathrZAm6YbpNtp37bOqkWFhqoE7ZdVOYBBQDyhFbp1ybTkMtKesAJpC4eriMFER8gxqKRUdVlHdOVFSFEPTTjTkbVJ5pJ-orcIBbsMJINpy1GRLVwlHaG1coXmIYDQ0K2QIxhRv1hhqW-c56zhm4swzH4xzBVyUk6rrwqac6y28TShx_F3j0FO8TGh7W4pKeNPYTYH4ObB5lghB9-3YUrR9yIT3R9hG7eR4-vtKX9khywytO0xdEbskrlsONJ7AICyYN9I_hdTXgTF
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOMClBdqqaXksEj1wSIjXa3t9TCNQgBChEiRu1nq9pobKQbEjFU79Dz30__WXdGZjJ6JCCK727nq9r_lmZ-YbgL3Ql6kytNNkmDSFQnVHGY90HhErHvA4SKy3xcDvXYqTK-9qAZw6FgY7UWBLhTXiz9kFnAN6dqNL3Wprsh6JRVj2fOGQvtXpXtSHr0uEdpYiVRDxpCMry-RTLZA80sVjefT4OLYy5ugtfJv1zrqW3LYmZdzSD_8RN76q-2vwpkKcrDNdIuuwYPINWOnWid7ewZ_O3IjNVJ4wOiPG5vvUtZ3VtCVslLIBXaTiqmEdoiL_mSHcNQmrQpps_WEdGMkoljC7noyr20Z2SD7xd_fszOasLlg5YudEEpHlf3_97mfX9OWvmQ2yYV2UrcV7uDw6HHZ7zSpfQ1OhLCybAUJDxD-Jm_htxY0KVGpC6cZKSC_QKcdpT4lxUCul26pNWCtMibAeiwTcpO4HWMpHufkIDLU0XCfcuJ5OhfS18qQx2pcmSBCSJn4DvuCIRtV-KyJrSudOZB_iMEfVMDfgoJ7dSFek55R748czNfZnNe6mhB_PlN2sF8y8K1wECONCPCobsDt7jVNKlhiVm9GEyvjOFG1_euGP7MBKb3jWj_rHg9PPsMpJ6yenGrkJS-V4YrYQGpXxtt0M_wCT7A0n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VIgGXFmgrUkprJDhwSJp4X95jSBsVKFEl2qq3ldePsrTaRNmNBJz4Dxz6__glzDjeVK1QVa5e2-vXeD57Zj4DvEljYaUhSROpbocSjzvSRHTmCXPJE54n2nlbjOKDk_DjWXS2BFETC4ONqLCmyhnxSaon2nqGgd4upX9Ttep0FVmQwgfwMIpR0gkRDb40G3BApHaOJjUk8sme8NbJf9VAOklVN3XSzS3Z6ZnhKpwuWujcSy46szrvqJ-3yBv_uwtPYcUjT9afL5VnsGTK5_B40Dz4tgZX_WtjNpOlZrRXTM3XuYs7a-hL2NiyEV2o4uphfaIk_14g7DWa-dAmV_64CZBkFFNYnM-m_taR7ZNv_OQH--zerq5YPWZHRBZRlH9-_T4szunP7wsXbMMGqGOrdTgZ7h8PDtr-3Ya2RJ1YtxOEiIiDdKDjruRGJtKaVAS5DEWUKMtx-i0xDyopVVd2CXOllojrMUvCjQ02YLkcl-YFMDyt4XrhJoiUDUWsZCSMUbEwiUZoquMWvMURzbzcVZkzqfNe5hJxmDM_zC3YbWY4U578nN7guLyjxLtFicmc-OOOvFvNorluCg8ThHMpbpkteL34jFNKFhlZmvGM8sS9OerevGdHduDR0d4wO_ww-vQSnnA6_JNvjdiC5Xo6M68QIdX5tpOHvyBND6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+and+Comprehensive+Analysis+of+Neighbor+Approximated+Information+Theoretic+Configurational+Entropy+Methods+to+Protein%E2%80%93Ligand+Binding+Cases&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Panday%2C+Shailesh+Kumar&rft.au=Ghosh%2C+Indira&rft.date=2020-12-08&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=16&rft.issue=12&rft.spage=7581&rft_id=info:doi/10.1021%2Facs.jctc.0c00764&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon