Application and Comprehensive Analysis of Neighbor Approximated Information Theoretic Configurational Entropy Methods to Protein–Ligand Binding Cases
The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling...
Saved in:
| Published in | Journal of chemical theory and computation Vol. 16; no. 12; pp. 7581 - 7600 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
American Chemical Society
08.12.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9618 1549-9626 1549-9626 |
| DOI | 10.1021/acs.jctc.0c00764 |
Cover
| Abstract | The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein–ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20–30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented. |
|---|---|
| AbstractList | The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein–ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20–30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented. The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein-ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20-30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented.The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy is often one of the major contributors in it. Therefore, its accurate estimation is important, though it is challenging mostly due to sampling limitations, anharmonicity, and multimodality of atomic fluctuations. The present work reports a Neighbor Approximated Maximum Information Spanning Tree (A-MIST) method for conformational entropy and presents its performance and computational advantage over conventional Mutual Information Expansion (MIE) and Maximum Information Spanning Tree (MIST) for two protein-ligand binding cases: indirubin-5-sulfonate to Plasmodium falciparum Protein Kinase 5 (PfPK5) and P. falciparum RON2-peptide to P. falciparum Apical Membrane Antigen 1 (PfAMA1). Important structural regions considering binding configurational entropy are identified, and physical origins for such are discussed. A thorough performance evaluation is done of a set of four entropy estimators (Maximum Likelihood (ML), Miller-Madow (MM), Chao-Shen (CS), and James and Stein shrinkage (JS)) with known varying degrees of sensitivity of the entropy estimate on the extent of sampling, each with two schemes for discretization of fluctuation data of Degrees of Freedom (DFs) to estimate Probability Density Functions (PDFs). Our comprehensive evaluation of influences of variations of parameters shows Neighbor Approximated MIE (A-MIE) outperforms MIE in terms of convergence and computational efficiency. In the case of A-MIE/MIE, results are sensitive to the choice of root atoms, graph search algorithm used for the Bond-Angle-Torsion (BAT) conversion, and entropy estimator, while A-MIST/MIST are not. A-MIST yields binding entropy within 0.5 kcal/mol of MIST with only 20-30% computation. Moreover, all these methods have been implemented in an OpenMP/MPI hybrid parallel C++11 code, and also a python package for data preprocessing and entropy contribution analysis is developed and made available. A comparative analysis of features of current implementation and existing tools is also presented. |
| Author | Ghosh, Indira Panday, Shailesh Kumar |
| AuthorAffiliation | School of Computational and Integrative Sciences |
| AuthorAffiliation_xml | – name: School of Computational and Integrative Sciences |
| Author_xml | – sequence: 1 givenname: Shailesh Kumar orcidid: 0000-0003-3099-8679 surname: Panday fullname: Panday, Shailesh Kumar email: shaileshp51@gmail.com – sequence: 2 givenname: Indira orcidid: 0000-0001-8413-0387 surname: Ghosh fullname: Ghosh, Indira |
| BookMark | eNp9kb9u2zAQh4kiBZqk2TsSyJKhdo-iTEmjayRtAPfPkMzChTraNGRSIekg3voOHfp-fZLSdtohQDqRIL_vyLvfCTty3hFj7wSMBRTiA-o4Xumkx6ABKlW-YsdiUjajRhXq6N9e1G_YSYwrACnLQh6zX9Nh6K3GZL3j6Do-8-sh0JJctA_Epw77bbSRe8O_kl0s73zgWQn-0a4xUcevnfFhffBvluQDJatzFWfsYhP259jzS5eCH7b8C6Wl7yJPnn8PPpF1v3_8nNvF7uWP1nXWLfgMI8W37LXBPtLZ03rKbq8ub2afR_Nvn65n0_kIZSnSqJooJeumk50CLAgrNNTU8g7LelJpU1QdGMidakQNCBMF0BhZNiojVUFGnrKLQ93c0v2GYmrXNmrqe3TkN7EtSiUAQCiR0fNn6MpvQu5uR1WgVCNqmSk4UDr4GAOZdgh5VGHbCmh3SbU5qXaXVPuUVFbUM0XbtJ9cCmj7_4nvD-L-5u9nXsT_AENIr5M |
| CitedBy_id | crossref_primary_10_1021_acsomega_1c07037 crossref_primary_10_1021_acs_jctc_2c00858 |
| Cites_doi | 10.1002/jcc.20919 10.1073/pnas.1213180109 10.1021/ct200910z 10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T 10.1002/jcc.23350 10.1371/journal.ppat.1002755 10.1162/089976603321780272 10.1002/wcms.1195 10.1109/99.660313 10.1142/9781860949920_0019 10.1107/S0021889892009944 10.1021/ma60052a001 10.1016/j.str.2003.09.020 10.1021/jp401049h 10.1023/A:1026096204727 10.1002/jcc.20289 10.1002/prot.340230306 10.1002/pro.692 10.1021/acs.jctc.5b01217 10.1063/1.4748104 10.1002/jcc.20290 10.1021/jp111176x 10.1093/bioinformatics/btg362 10.1103/PhysRevA.33.3628 10.1080/08927029408022001 10.1146/annurev-biophys-083012-130318 10.1002/jcc.21287 10.1007/978-1-4612-0919-5_30 10.1021/jp2068123 10.1021/jp061627s 10.1002/j.1538-7305.1948.tb01338.x 10.1021/acs.jpcb.5b07060 10.1021/jp5102412 10.1063/1.1401821 10.1146/annurev-physchem-040412-110047 10.1016/0009-2614(93)89366-P 10.1021/bi9005896 10.1016/j.jmb.2009.04.003 10.1038/nm.3073 10.1063/1.2746329 10.1021/ja405200u 10.1002/jcc.21450 10.1016/j.jmgm.2015.09.010 10.1073/pnas.0501808102 10.1021/acs.jctc.5b00255 10.1021/ma50003a019 10.1093/nar/28.1.235 10.1021/acsmedchemlett.8b00490 10.1016/S0959-440X(94)90321-2 10.1021/acs.jpcb.5b00689 10.1021/jp003020w 10.1073/pnas.1110303108 10.1103/PhysRevE.62.3096 10.1021/ct400314y 10.1002/9780470015902.a0020204.pub2 10.1038/nchembio.347 10.1002/jcc.20291 10.1039/C1CP21779H |
| ContentType | Journal Article |
| Copyright | 2020 American Chemical
Society Copyright American Chemical Society Dec 8, 2020 |
| Copyright_xml | – notice: 2020 American Chemical Society – notice: Copyright American Chemical Society Dec 8, 2020 |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1021/acs.jctc.0c00764 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| EndPage | 7600 |
| ExternalDocumentID | 10_1021_acs_jctc_0c00764 b379985065 |
| GroupedDBID | 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-a341t-7566389d3d60a2ea7afe983ba4857cf27d0f0342caac0a056009f34963ba72ef3 |
| IEDL.DBID | ACS |
| ISSN | 1549-9618 1549-9626 |
| IngestDate | Fri Jul 11 13:34:44 EDT 2025 Sun Jun 29 16:36:21 EDT 2025 Tue Jul 01 02:03:18 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Thu Jan 28 04:14:17 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a341t-7566389d3d60a2ea7afe983ba4857cf27d0f0342caac0a056009f34963ba72ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8413-0387 0000-0003-3099-8679 |
| PQID | 2470669183 |
| PQPubID | 2048741 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2461000161 proquest_journals_2470669183 crossref_primary_10_1021_acs_jctc_0c00764 crossref_citationtrail_10_1021_acs_jctc_0c00764 acs_journals_10_1021_acs_jctc_0c00764 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201208 2020-12-08 |
| PublicationDateYYYYMMDD | 2020-12-08 |
| PublicationDate_xml | – month: 12 year: 2020 text: 20201208 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J. Chem. Theory Comput |
| PublicationYear | 2020 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 Snir M. (ref35/cit35) 1998; 1 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 Hausser J. (ref40/cit40) 2009; 10 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref15/cit15 doi: 10.1002/jcc.20919 – volume: 10 start-page: 1469 year: 2009 ident: ref40/cit40 publication-title: J. Mach. Learn. Res. – ident: ref2/cit2 doi: 10.1073/pnas.1213180109 – ident: ref16/cit16 doi: 10.1021/ct200910z – ident: ref59/cit59 doi: 10.1002/(SICI)1096-987X(19980115)19:1<102::AID-JCC9>3.0.CO;2-T – ident: ref23/cit23 doi: 10.1002/jcc.23350 – ident: ref48/cit48 doi: 10.1371/journal.ppat.1002755 – ident: ref45/cit45 doi: 10.1162/089976603321780272 – ident: ref29/cit29 doi: 10.1002/wcms.1195 – ident: ref36/cit36 doi: 10.1109/99.660313 – ident: ref5/cit5 doi: 10.1142/9781860949920_0019 – ident: ref51/cit51 doi: 10.1107/S0021889892009944 – ident: ref41/cit41 doi: 10.1021/ma60052a001 – ident: ref46/cit46 doi: 10.1016/j.str.2003.09.020 – ident: ref19/cit19 doi: 10.1021/jp401049h – ident: ref38/cit38 doi: 10.1023/A:1026096204727 – ident: ref34/cit34 doi: 10.1002/jcc.20289 – volume: 1 volume-title: MPI–the Complete Reference: the MPI core year: 1998 ident: ref35/cit35 – ident: ref49/cit49 doi: 10.1002/prot.340230306 – ident: ref9/cit9 doi: 10.1002/pro.692 – ident: ref21/cit21 doi: 10.1021/acs.jctc.5b01217 – ident: ref17/cit17 doi: 10.1063/1.4748104 – ident: ref31/cit31 doi: 10.1002/jcc.20290 – ident: ref26/cit26 doi: 10.1021/jp111176x – ident: ref50/cit50 doi: 10.1093/bioinformatics/btg362 – ident: ref60/cit60 doi: 10.1103/PhysRevA.33.3628 – ident: ref61/cit61 doi: 10.1080/08927029408022001 – ident: ref28/cit28 doi: 10.1146/annurev-biophys-083012-130318 – ident: ref33/cit33 doi: 10.1002/jcc.21287 – ident: ref39/cit39 doi: 10.1007/978-1-4612-0919-5_30 – ident: ref18/cit18 doi: 10.1021/jp2068123 – ident: ref13/cit13 doi: 10.1021/jp061627s – ident: ref44/cit44 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref6/cit6 doi: 10.1021/acs.jpcb.5b07060 – ident: ref20/cit20 doi: 10.1021/jp5102412 – ident: ref12/cit12 doi: 10.1063/1.1401821 – ident: ref3/cit3 doi: 10.1146/annurev-physchem-040412-110047 – ident: ref11/cit11 doi: 10.1016/0009-2614(93)89366-P – ident: ref4/cit4 doi: 10.1021/bi9005896 – ident: ref37/cit37 – ident: ref7/cit7 doi: 10.1016/j.jmb.2009.04.003 – ident: ref53/cit53 doi: 10.1038/nm.3073 – ident: ref14/cit14 doi: 10.1063/1.2746329 – ident: ref22/cit22 doi: 10.1021/ja405200u – ident: ref1/cit1 doi: 10.1002/jcc.21450 – ident: ref30/cit30 doi: 10.1016/j.jmgm.2015.09.010 – ident: ref54/cit54 doi: 10.1073/pnas.0501808102 – ident: ref56/cit56 doi: 10.1021/acs.jctc.5b00255 – ident: ref10/cit10 doi: 10.1021/ma50003a019 – ident: ref47/cit47 doi: 10.1093/nar/28.1.235 – ident: ref43/cit43 doi: 10.1021/acsmedchemlett.8b00490 – ident: ref24/cit24 doi: 10.1016/S0959-440X(94)90321-2 – ident: ref57/cit57 doi: 10.1021/acs.jpcb.5b00689 – ident: ref58/cit58 doi: 10.1021/jp003020w – ident: ref52/cit52 doi: 10.1073/pnas.1110303108 – ident: ref42/cit42 doi: 10.1103/PhysRevE.62.3096 – ident: ref55/cit55 doi: 10.1021/ct400314y – ident: ref25/cit25 doi: 10.1002/9780470015902.a0020204.pub2 – ident: ref8/cit8 doi: 10.1038/nchembio.347 – ident: ref32/cit32 doi: 10.1002/jcc.20291 – ident: ref27/cit27 doi: 10.1039/C1CP21779H |
| SSID | ssj0033423 |
| Score | 2.3467526 |
| Snippet | The binding entropy is an important thermodynamic quantity which has numerous applications in studies of the biophysical process, and configurational entropy... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7581 |
| SubjectTerms | Anharmonicity Antigens Approximation Binding Graph theory Information theory Kinases Ligands Maximum likelihood estimators Molecular Mechanics Performance evaluation Probability density functions Proteins Sampling Search algorithms |
| Title | Application and Comprehensive Analysis of Neighbor Approximated Information Theoretic Configurational Entropy Methods to Protein–Ligand Binding Cases |
| URI | http://dx.doi.org/10.1021/acs.jctc.0c00764 https://www.proquest.com/docview/2470669183 https://www.proquest.com/docview/2461000161 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhR5RNRoIDh5bWWewcS9UKIUBIUKm3yHEcCKC0alIJOPEPHPg_voQZJ6FiUdVrYmexx543npk3hBx6roikxpUmvLBqSzB3pHbQ5rEDyTgLeGiiLa7cs6593nN6Y5qc3x581jiRKq09qEzV6grdRvYsmWcu5xi-12zdlLuuhUx2hhvVRsbJhihckv89ARWRSn8qop_7sFEuneW8SlFqOAkxpuSxNsqCmnr9y9g4xXevkKUCY9JmLhSrZEYna2ShVZZ2WycfzbHbmsokpLgrDPV9HsxOS6IS2o_oFR6dgpzQJpKPP8cAcHVIiyQm0_-2TIWkmD0Y342GxfkibWMU_OCFXpoq1SnN-vQaaSHi5PPt_SK-wzefxiathrZAm6YbpNtp37bOqkWFhqoE7ZdVOYBBQDyhFbp1ybTkMtKesAJpC4eriMFER8gxqKRUdVlHdOVFSFEPTTjTkbVJ5pJ-orcIBbsMJINpy1GRLVwlHaG1coXmIYDQ0K2QIxhRv1hhqW-c56zhm4swzH4xzBVyUk6rrwqac6y28TShx_F3j0FO8TGh7W4pKeNPYTYH4ObB5lghB9-3YUrR9yIT3R9hG7eR4-vtKX9khywytO0xdEbskrlsONJ7AICyYN9I_hdTXgTF |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xOMClBdqqaXksEj1wSIjXa3t9TCNQgBChEiRu1nq9pobKQbEjFU79Dz30__WXdGZjJ6JCCK727nq9r_lmZ-YbgL3Ql6kytNNkmDSFQnVHGY90HhErHvA4SKy3xcDvXYqTK-9qAZw6FgY7UWBLhTXiz9kFnAN6dqNL3Wprsh6JRVj2fOGQvtXpXtSHr0uEdpYiVRDxpCMry-RTLZA80sVjefT4OLYy5ugtfJv1zrqW3LYmZdzSD_8RN76q-2vwpkKcrDNdIuuwYPINWOnWid7ewZ_O3IjNVJ4wOiPG5vvUtZ3VtCVslLIBXaTiqmEdoiL_mSHcNQmrQpps_WEdGMkoljC7noyr20Z2SD7xd_fszOasLlg5YudEEpHlf3_97mfX9OWvmQ2yYV2UrcV7uDw6HHZ7zSpfQ1OhLCybAUJDxD-Jm_htxY0KVGpC6cZKSC_QKcdpT4lxUCul26pNWCtMibAeiwTcpO4HWMpHufkIDLU0XCfcuJ5OhfS18qQx2pcmSBCSJn4DvuCIRtV-KyJrSudOZB_iMEfVMDfgoJ7dSFek55R748czNfZnNe6mhB_PlN2sF8y8K1wECONCPCobsDt7jVNKlhiVm9GEyvjOFG1_euGP7MBKb3jWj_rHg9PPsMpJ6yenGrkJS-V4YrYQGpXxtt0M_wCT7A0n |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VIgGXFmgrUkprJDhwSJp4X95jSBsVKFEl2qq3ldePsrTaRNmNBJz4Dxz6__glzDjeVK1QVa5e2-vXeD57Zj4DvEljYaUhSROpbocSjzvSRHTmCXPJE54n2nlbjOKDk_DjWXS2BFETC4ONqLCmyhnxSaon2nqGgd4upX9Ttep0FVmQwgfwMIpR0gkRDb40G3BApHaOJjUk8sme8NbJf9VAOklVN3XSzS3Z6ZnhKpwuWujcSy46szrvqJ-3yBv_uwtPYcUjT9afL5VnsGTK5_B40Dz4tgZX_WtjNpOlZrRXTM3XuYs7a-hL2NiyEV2o4uphfaIk_14g7DWa-dAmV_64CZBkFFNYnM-m_taR7ZNv_OQH--zerq5YPWZHRBZRlH9-_T4szunP7wsXbMMGqGOrdTgZ7h8PDtr-3Ya2RJ1YtxOEiIiDdKDjruRGJtKaVAS5DEWUKMtx-i0xDyopVVd2CXOllojrMUvCjQ02YLkcl-YFMDyt4XrhJoiUDUWsZCSMUbEwiUZoquMWvMURzbzcVZkzqfNe5hJxmDM_zC3YbWY4U578nN7guLyjxLtFicmc-OOOvFvNorluCg8ThHMpbpkteL34jFNKFhlZmvGM8sS9OerevGdHduDR0d4wO_ww-vQSnnA6_JNvjdiC5Xo6M68QIdX5tpOHvyBND6o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+and+Comprehensive+Analysis+of+Neighbor+Approximated+Information+Theoretic+Configurational+Entropy+Methods+to+Protein%E2%80%93Ligand+Binding+Cases&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Panday%2C+Shailesh+Kumar&rft.au=Ghosh%2C+Indira&rft.date=2020-12-08&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=16&rft.issue=12&rft.spage=7581&rft_id=info:doi/10.1021%2Facs.jctc.0c00764&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |