Efficient Excitations and Spectra within a Perturbative Renormalization Approach

We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time. This is based on the auxiliary second-order Green’s function approach [ Backhouse, O. J. Chem. Theory Comput., 2000 ], in which a self-consisten...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 16; no. 10; pp. 6294 - 6304
Main Authors Backhouse, Oliver J, Booth, George H
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 13.10.2020
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.0c00701

Cover

Abstract We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time. This is based on the auxiliary second-order Green’s function approach [ Backhouse, O. J. Chem. Theory Comput., 2000 ], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals.
AbstractList We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time. This is based on the auxiliary second-order Green’s function approach [ Backhouse, O. J. Chem. Theory Comput., 2000 ], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals.
We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O[N5] computational time. This is based on the auxiliary second-order Green's function approach [Backhouse, O. J. Chem. Theory Comput., 2000], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals.We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O[N5] computational time. This is based on the auxiliary second-order Green's function approach [Backhouse, O. J. Chem. Theory Comput., 2000], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals.
We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative computational time. This is based on the auxiliary second-order Green's function approach [Backhouse, O. J. Chem. Theory Comput., 2000], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals.
Author Backhouse, Oliver J
Booth, George H
AuthorAffiliation Department of Physics
AuthorAffiliation_xml – name: Department of Physics
Author_xml – sequence: 1
  givenname: Oliver J
  surname: Backhouse
  fullname: Backhouse, Oliver J
– sequence: 2
  givenname: George H
  orcidid: 0000-0003-2503-4904
  surname: Booth
  fullname: Booth, George H
  email: george.booth@kcl.ac.uk
BookMark eNp9kElLAzEUgIMo2FbvHge8eLD1ZZntWEpdoGBxOQ-ZNwlNmWZqkrr9eqebh4Ke8iDflzy-Ljm2jVWEXFAYUGD0RqIfzDHgABAgBXpEOjQWeT9PWHL8O9PslHS9nwNwLhjvkOlYa4NG2RCNP9EEGUxjfSRtFT0vFQYnow8TZsZGMpoqF1aubJF3FT0p27iFrM33RomGy6VrJM7OyImWtVfnu7NHXm_HL6P7_uTx7mE0nPQlFzT0BaZaxyJhIpexVIlALVkVM4klQIZ5RWnMFeY6QRBZVuqqREx4xVNZsUxT3iNX23fbb99WyodiYTyqupZWNStfMCFApCzla_TyAJ03K2fb7VoqgTTLAPKWSrYUusZ7p3Sxz9FGMHVBoViHLtrQxTp0sQvdinAgLp1ZSPf1n3K9VTY3-2X-xH8A70KUwg
CitedBy_id crossref_primary_10_1021_acs_jctc_3c00281
crossref_primary_10_1063_5_0143291
crossref_primary_10_1103_PhysRevB_109_075112
crossref_primary_10_1103_PhysRevB_106_125153
crossref_primary_10_1063_5_0089317
crossref_primary_10_1021_acs_jctc_2c00670
crossref_primary_10_1021_acs_jctc_3c00246
crossref_primary_10_1063_5_0040317
crossref_primary_10_1021_acs_jctc_4c00216
crossref_primary_10_1021_acs_jpclett_1c02383
crossref_primary_10_1063_5_0159853
crossref_primary_10_1021_acs_jctc_3c01146
Cites_doi 10.1063/1.1497682
10.1063/1.4921841
10.1021/ja00452a005
10.1016/0370-2693(93)90068-S
10.1103/PhysRevLett.81.1662
10.1016/0009-2614(86)85005-9
10.1016/j.cplett.2010.06.023
10.1103/PhysRevA.23.1038
10.1063/1.4942234
10.1063/1.5021832
10.1063/1.1884965
10.1063/1.459578
10.1063/1.5100290
10.1063/1.458815
10.1063/1.1376126
10.1063/1.5142354
10.1016/0009-2614(95)00841-Q
10.1063/1.5055380
10.1103/PhysRevB.98.235132
10.1103/PhysRevLett.96.226402
10.1002/wcms.1462
10.1063/1.3089567
10.1016/j.cplett.2011.05.007
10.1103/PhysRev.139.A796
10.1103/PhysRevB.100.085112
10.1063/1.4962910
10.1063/1.5131771
10.1088/0022-3700/18/5/008
10.1016/j.aop.2010.09.012
10.1021/acs.jctc.9b00603
10.1063/1.2805393
10.1021/jp1120542
10.1103/PhysRevB.54.8411
10.1021/ct300648t
10.1039/C5CP04589D
10.1103/PhysRevA.28.1217
10.1103/PhysRevB.96.155128
10.1063/1.4921037
10.1002/qua.560120850
10.1063/1.480352
10.1021/acs.jctc.9b01182
10.1063/1.4884951
10.1063/1.4892418
10.1063/1.468900
10.1103/PhysRevB.100.115154
10.1021/acs.jctc.5b00873
10.1063/1.468022
10.1021/acs.jctc.5b01238
10.1103/PhysRevLett.69.2863
10.1063/1.464746
10.1103/PhysRevLett.55.1418
10.1088/0034-4885/61/3/002
10.1103/PhysRevA.28.1237
10.1088/0953-4075/28/12/003
10.1016/S0370-2693(97)00135-4
10.1016/j.orgel.2005.03.001
10.1002/wcms.1340
10.1016/0022-3697(89)90001-2
10.1063/1.471429
10.1002/wcms.99
10.1016/0375-9474(88)90172-8
10.1002/wcms.1206
10.1063/1.1290013
ContentType Journal Article
Copyright Copyright American Chemical Society Oct 13, 2020
Copyright_xml – notice: Copyright American Chemical Society Oct 13, 2020
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.0c00701
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 6304
ExternalDocumentID 10_1021_acs_jctc_0c00701
h62775188
GroupedDBID 53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a341t-4c7ff546249a5ae64cfa2d52acb008c9d1153ec9f6c0488bfdbcc63d37ad28f13
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Fri Jul 11 11:28:41 EDT 2025
Mon Jun 30 05:05:23 EDT 2025
Tue Jul 01 02:03:18 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Thu Oct 15 08:22:34 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a341t-4c7ff546249a5ae64cfa2d52acb008c9d1153ec9f6c0488bfdbcc63d37ad28f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2503-4904
PQID 2460788009
PQPubID 2048741
PageCount 11
ParticipantIDs proquest_miscellaneous_2440472731
proquest_journals_2460788009
crossref_citationtrail_10_1021_acs_jctc_0c00701
crossref_primary_10_1021_acs_jctc_0c00701
acs_journals_10_1021_acs_jctc_0c00701
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201013
2020-10-13
PublicationDateYYYYMMDD 2020-10-13
PublicationDate_xml – month: 10
  year: 2020
  text: 20201013
  day: 13
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
Mohnen V. A. (ref1/cit1) 1976
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref50/cit50
  doi: 10.1063/1.1497682
– ident: ref38/cit38
  doi: 10.1063/1.4921841
– ident: ref64/cit64
  doi: 10.1021/ja00452a005
– ident: ref48/cit48
  doi: 10.1016/0370-2693(93)90068-S
– ident: ref59/cit59
  doi: 10.1103/PhysRevLett.81.1662
– ident: ref62/cit62
  doi: 10.1016/0009-2614(86)85005-9
– ident: ref61/cit61
  doi: 10.1016/j.cplett.2010.06.023
– ident: ref36/cit36
  doi: 10.1103/PhysRevA.23.1038
– ident: ref63/cit63
  doi: 10.1063/1.4942234
– ident: ref29/cit29
  doi: 10.1063/1.5021832
– ident: ref19/cit19
  doi: 10.1063/1.1884965
– ident: ref17/cit17
  doi: 10.1063/1.459578
– ident: ref52/cit52
  doi: 10.1063/1.5100290
– ident: ref23/cit23
  doi: 10.1063/1.458815
– ident: ref18/cit18
  doi: 10.1063/1.1376126
– ident: ref30/cit30
  doi: 10.1063/1.5142354
– ident: ref35/cit35
  doi: 10.1016/0009-2614(95)00841-Q
– ident: ref66/cit66
  doi: 10.1063/1.5055380
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.98.235132
– ident: ref60/cit60
  doi: 10.1103/PhysRevLett.96.226402
– ident: ref31/cit31
  doi: 10.1002/wcms.1462
– ident: ref54/cit54
  doi: 10.1063/1.3089567
– ident: ref55/cit55
  doi: 10.1016/j.cplett.2011.05.007
– ident: ref42/cit42
– ident: ref9/cit9
  doi: 10.1103/PhysRev.139.A796
– ident: ref5/cit5
  doi: 10.1103/PhysRevB.100.085112
– ident: ref25/cit25
  doi: 10.1063/1.4962910
– ident: ref28/cit28
  doi: 10.1063/1.5131771
– ident: ref37/cit37
  doi: 10.1088/0022-3700/18/5/008
– ident: ref45/cit45
  doi: 10.1016/j.aop.2010.09.012
– ident: ref40/cit40
  doi: 10.1021/acs.jctc.9b00603
– ident: ref43/cit43
  doi: 10.1063/1.2805393
– ident: ref65/cit65
  doi: 10.1021/jp1120542
– ident: ref24/cit24
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.54.8411
– ident: ref67/cit67
– start-page: 1
  volume-title: Electrical Processes in Atmospheres
  year: 1976
  ident: ref1/cit1
– ident: ref12/cit12
  doi: 10.1021/ct300648t
– ident: ref2/cit2
  doi: 10.1039/C5CP04589D
– ident: ref22/cit22
  doi: 10.1103/PhysRevA.28.1217
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.96.155128
– ident: ref56/cit56
– ident: ref46/cit46
– ident: ref69/cit69
  doi: 10.1063/1.4921037
– ident: ref6/cit6
  doi: 10.1002/qua.560120850
– ident: ref16/cit16
  doi: 10.1063/1.480352
– ident: ref21/cit21
  doi: 10.1021/acs.jctc.9b01182
– ident: ref20/cit20
  doi: 10.1063/1.4884951
– ident: ref33/cit33
  doi: 10.1063/1.4892418
– ident: ref39/cit39
  doi: 10.1063/1.468900
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.100.115154
– ident: ref68/cit68
  doi: 10.1021/acs.jctc.5b00873
– ident: ref8/cit8
  doi: 10.1063/1.468022
– ident: ref13/cit13
  doi: 10.1021/acs.jctc.5b01238
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.69.2863
– ident: ref7/cit7
  doi: 10.1063/1.464746
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.55.1418
– ident: ref11/cit11
  doi: 10.1088/0034-4885/61/3/002
– ident: ref14/cit14
  doi: 10.1103/PhysRevA.28.1237
– ident: ref15/cit15
  doi: 10.1088/0953-4075/28/12/003
– ident: ref49/cit49
  doi: 10.1016/S0370-2693(97)00135-4
– ident: ref3/cit3
  doi: 10.1016/j.orgel.2005.03.001
– ident: ref57/cit57
  doi: 10.1002/wcms.1340
– ident: ref4/cit4
  doi: 10.1016/0022-3697(89)90001-2
– ident: ref32/cit32
  doi: 10.1063/1.471429
– ident: ref27/cit27
  doi: 10.1002/wcms.99
– ident: ref47/cit47
  doi: 10.1016/0375-9474(88)90172-8
– ident: ref34/cit34
  doi: 10.1002/wcms.1206
– ident: ref26/cit26
  doi: 10.1063/1.1290013
SSID ssj0033423
Score 2.457373
Snippet We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time....
We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative computational time. This is based...
We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O[N5] computational time. This is...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6294
SubjectTerms Benzoquinone
Computing time
Electron affinity
Elementary excitations
Excitation spectra
Green's functions
Ionization potentials
Iterative methods
Perturbation theory
Quantum chemistry
Quantum Electronic Structure
Title Efficient Excitations and Spectra within a Perturbative Renormalization Approach
URI http://dx.doi.org/10.1021/acs.jctc.0c00701
https://www.proquest.com/docview/2460788009
https://www.proquest.com/docview/2440472731
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734FldXiaAHD11Nmqbb47LsIoIiPmBvJZ0koC5d2XZB_PXOdFvFB-K1TUqSSfJ9k0m_YexYSG0jK1zg48Sjg-JVYMIoC5SPnQJlERbovOPqWl88qMtRNPqUyfkewZfizEDReYISOudA2jTo6SxJHcd0fa_Xv2t23ZCU7CptVEWKk6JbhyR_-wIBERRfgejrPlyBy3BtnqWoqDQJ6U7Jc2dWZh14-6nY-I92r7PVmmPy3nxSbLAFl2-y5X6T2m2L3Qwq4QjEGz54hVqlu-Amt5zy0ZdTw-l89jHnht-4KaJSVumD81uXE8cd1z9v8l6tSL7NHoaD-_5FUKdWQEsoUQYKYu8jpdH5MpFxWoE30kbSAC7DLiQWiWLoIPEaaIln3mYAOrRhbKzsehHusMV8krtdxpNz1_UIcXGErpxAqNMghUevKnJIzaRpsRMcirReGkVaRb2lSKuHOD5pPT4tdtbYI216Tmkyxn_UOP2o8TLX5vijbLsx8WdTpNLIkJAyJy129PEabUFBE5O7yYzKKBLUjEOx98-O7LMVSU45XXsJ22yxnM7cATKXMjuspuw7gPDo1g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOMCFRwtiy8tI9MAhC3ZsZ3NcrRZtW0CIgsQtcvyQaFGoNlmp6q9nxiSLqCpUrk5sjT22vxmP_Q3AERfaKcd9ErI8oIMSZGJSVSYyZF5a6RAW6Lzj4lJPbuXXO3W3ALx7C4NC1NhSHYP4L-wC_ITKftjG9k8tUdSgw7OktOTkbw1H37vNNyVCu0iRKol4kg_ayOS_WiA8svVrPHq9HUeMOVuD67l08WrJz_6sKfv2z1_Eje8Sfx1WW4uTDZ-nyAYs-OoDLI-6RG8f4WocaSQQfdj4t205u2tmKscoO30zNYxOa-8rZtiVnyJGlZEtnF37iizeh_YpJxu2_OSbcHs2vhlNkjbRAupF8iaRNgtBSY2umFHGa2mDEU4JY3FRDmzu0GxMvc2DtrTgy-BKa3Xq0sw4MQg83YLF6rHy28DyUz8ICHiZQseOI_BpK3hAH0t5NNSE6cFnHIqiXSh1EWPgghexEMenaMenByedWoqu55Q04-GNGsfzGr-emTre-He30_SLKEJqtJfQgM57cDj_jLqgEIqp_OOM_pFEr5ml_NN_duQAlic3F-fF-ZfLbzuwIshdpwsx6S4sNtOZ30Obpin34yx-AvE58Tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8QTNQXPzGcAtZEH3zY49ptu7eP5LwLoJKLCuFt0-1HopKF3O4lxr-emdI9AyEEX7vbpu10Or_ptL8BeM-Fdspxn4WiDOigBJmZXNWZDIWXVjo0C3Te8fVI7x_Lw1N1ugaqfwuDnWixpTYG8UmrL1xIDAN8l8p_2c4OR5ZoatDpeaA0ajohosn3fgPOidQu0qRKIp_k4xSdvK0Fskm2vW6Trm_J0c7MnsLJqofxesnv4bKrh_bvDfLG_x7CM3iSkCfbu1oqz2HNNy_g0aRP-PYS5tNIJ4FWiE3_2MTd3TLTOEZZ6ruFYXRq-7Nhhs39Am1VHVnD2TffEPI9S0862V7iKd-A49n0x2Q_SwkXUD6Sd5m0RQhKanTJjDJeSxuMcEoYi8o5tqVD-Jh7WwZtSfHr4Gprde7ywjgxDjx_BevNeeM3gZUjPw5o-AqFDh5HA6it4AF9LeURsAkzgA84FVVSmLaKsXDBq1iI81Ol-RnAbi-aqh85Jc84u6PGx1WNiyvGjjv-3eql_a8rQmrETQikywG8W31GWVAoxTT-fEn_SKLZLHL--p4DeQsP559m1ZeDo89v4LEgr53uxeRbsN4tln4boU1X78SFfAnO7PO7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Excitations+and+Spectra+within+a+Perturbative+Renormalization+Approach&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Backhouse%2C+Oliver+J&rft.au=Booth%2C+George+H&rft.date=2020-10-13&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=16&rft.issue=10&rft.spage=6294&rft_id=info:doi/10.1021%2Facs.jctc.0c00701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon