Efficient Excitations and Spectra within a Perturbative Renormalization Approach
We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time. This is based on the auxiliary second-order Green’s function approach [ Backhouse, O. J. Chem. Theory Comput., 2000 ], in which a self-consisten...
Saved in:
| Published in | Journal of chemical theory and computation Vol. 16; no. 10; pp. 6294 - 6304 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Washington
American Chemical Society
13.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9618 1549-9626 1549-9626 |
| DOI | 10.1021/acs.jctc.0c00701 |
Cover
| Abstract | We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time. This is based on the auxiliary second-order Green’s function approach [ Backhouse, O. J. Chem. Theory Comput., 2000 ], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals. |
|---|---|
| AbstractList | We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time. This is based on the auxiliary second-order Green’s function approach [ Backhouse, O. J. Chem. Theory Comput., 2000 ], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals. We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O[N5] computational time. This is based on the auxiliary second-order Green's function approach [Backhouse, O. J. Chem. Theory Comput., 2000], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals.We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O[N5] computational time. This is based on the auxiliary second-order Green's function approach [Backhouse, O. J. Chem. Theory Comput., 2000], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals. We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative computational time. This is based on the auxiliary second-order Green's function approach [Backhouse, O. J. Chem. Theory Comput., 2000], in which a self-consistent effective Hamiltonian is constructed by systematically renormalizing the dynamical effects of the self-energy at second-order perturbation theory. From extensive benchmarking across the W4-11 molecular test set, we show that the iterative renormalization and truncation of the effective dynamical resolution arising from the 2h1p and 1h2p spaces can substantially improve the quality of the resulting ionization potential and electron affinity predictions compared to benchmark values. The resulting method is shown to be superior in accuracy to similarly scaling quantum chemical methods for charged excitations in EOM-CC2 and ADC(2), across this test set, while the self-consistency also removes the dependence on the underlying mean-field reference. The approach also allows for single-shot computation of the entire quasiparticle spectrum, which is applied to the benzoquinone molecule and demonstrates the reduction in the single-particle gap due to the correlated physics, and gives direct access to the localization of the Dyson orbitals. |
| Author | Backhouse, Oliver J Booth, George H |
| AuthorAffiliation | Department of Physics |
| AuthorAffiliation_xml | – name: Department of Physics |
| Author_xml | – sequence: 1 givenname: Oliver J surname: Backhouse fullname: Backhouse, Oliver J – sequence: 2 givenname: George H orcidid: 0000-0003-2503-4904 surname: Booth fullname: Booth, George H email: george.booth@kcl.ac.uk |
| BookMark | eNp9kElLAzEUgIMo2FbvHge8eLD1ZZntWEpdoGBxOQ-ZNwlNmWZqkrr9eqebh4Ke8iDflzy-Ljm2jVWEXFAYUGD0RqIfzDHgABAgBXpEOjQWeT9PWHL8O9PslHS9nwNwLhjvkOlYa4NG2RCNP9EEGUxjfSRtFT0vFQYnow8TZsZGMpoqF1aubJF3FT0p27iFrM33RomGy6VrJM7OyImWtVfnu7NHXm_HL6P7_uTx7mE0nPQlFzT0BaZaxyJhIpexVIlALVkVM4klQIZ5RWnMFeY6QRBZVuqqREx4xVNZsUxT3iNX23fbb99WyodiYTyqupZWNStfMCFApCzla_TyAJ03K2fb7VoqgTTLAPKWSrYUusZ7p3Sxz9FGMHVBoViHLtrQxTp0sQvdinAgLp1ZSPf1n3K9VTY3-2X-xH8A70KUwg |
| CitedBy_id | crossref_primary_10_1021_acs_jctc_3c00281 crossref_primary_10_1063_5_0143291 crossref_primary_10_1103_PhysRevB_109_075112 crossref_primary_10_1103_PhysRevB_106_125153 crossref_primary_10_1063_5_0089317 crossref_primary_10_1021_acs_jctc_2c00670 crossref_primary_10_1021_acs_jctc_3c00246 crossref_primary_10_1063_5_0040317 crossref_primary_10_1021_acs_jctc_4c00216 crossref_primary_10_1021_acs_jpclett_1c02383 crossref_primary_10_1063_5_0159853 crossref_primary_10_1021_acs_jctc_3c01146 |
| Cites_doi | 10.1063/1.1497682 10.1063/1.4921841 10.1021/ja00452a005 10.1016/0370-2693(93)90068-S 10.1103/PhysRevLett.81.1662 10.1016/0009-2614(86)85005-9 10.1016/j.cplett.2010.06.023 10.1103/PhysRevA.23.1038 10.1063/1.4942234 10.1063/1.5021832 10.1063/1.1884965 10.1063/1.459578 10.1063/1.5100290 10.1063/1.458815 10.1063/1.1376126 10.1063/1.5142354 10.1016/0009-2614(95)00841-Q 10.1063/1.5055380 10.1103/PhysRevB.98.235132 10.1103/PhysRevLett.96.226402 10.1002/wcms.1462 10.1063/1.3089567 10.1016/j.cplett.2011.05.007 10.1103/PhysRev.139.A796 10.1103/PhysRevB.100.085112 10.1063/1.4962910 10.1063/1.5131771 10.1088/0022-3700/18/5/008 10.1016/j.aop.2010.09.012 10.1021/acs.jctc.9b00603 10.1063/1.2805393 10.1021/jp1120542 10.1103/PhysRevB.54.8411 10.1021/ct300648t 10.1039/C5CP04589D 10.1103/PhysRevA.28.1217 10.1103/PhysRevB.96.155128 10.1063/1.4921037 10.1002/qua.560120850 10.1063/1.480352 10.1021/acs.jctc.9b01182 10.1063/1.4884951 10.1063/1.4892418 10.1063/1.468900 10.1103/PhysRevB.100.115154 10.1021/acs.jctc.5b00873 10.1063/1.468022 10.1021/acs.jctc.5b01238 10.1103/PhysRevLett.69.2863 10.1063/1.464746 10.1103/PhysRevLett.55.1418 10.1088/0034-4885/61/3/002 10.1103/PhysRevA.28.1237 10.1088/0953-4075/28/12/003 10.1016/S0370-2693(97)00135-4 10.1016/j.orgel.2005.03.001 10.1002/wcms.1340 10.1016/0022-3697(89)90001-2 10.1063/1.471429 10.1002/wcms.99 10.1016/0375-9474(88)90172-8 10.1002/wcms.1206 10.1063/1.1290013 |
| ContentType | Journal Article |
| Copyright | Copyright American Chemical Society Oct 13, 2020 |
| Copyright_xml | – notice: Copyright American Chemical Society Oct 13, 2020 |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1021/acs.jctc.0c00701 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| EndPage | 6304 |
| ExternalDocumentID | 10_1021_acs_jctc_0c00701 h62775188 |
| GroupedDBID | 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 J9A JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-a341t-4c7ff546249a5ae64cfa2d52acb008c9d1153ec9f6c0488bfdbcc63d37ad28f13 |
| IEDL.DBID | ACS |
| ISSN | 1549-9618 1549-9626 |
| IngestDate | Fri Jul 11 11:28:41 EDT 2025 Mon Jun 30 05:05:23 EDT 2025 Tue Jul 01 02:03:18 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Thu Oct 15 08:22:34 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a341t-4c7ff546249a5ae64cfa2d52acb008c9d1153ec9f6c0488bfdbcc63d37ad28f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2503-4904 |
| PQID | 2460788009 |
| PQPubID | 2048741 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2440472731 proquest_journals_2460788009 crossref_citationtrail_10_1021_acs_jctc_0c00701 crossref_primary_10_1021_acs_jctc_0c00701 acs_journals_10_1021_acs_jctc_0c00701 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201013 2020-10-13 |
| PublicationDateYYYYMMDD | 2020-10-13 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201013 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J. Chem. Theory Comput |
| PublicationYear | 2020 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 Mohnen V. A. (ref1/cit1) 1976 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref50/cit50 doi: 10.1063/1.1497682 – ident: ref38/cit38 doi: 10.1063/1.4921841 – ident: ref64/cit64 doi: 10.1021/ja00452a005 – ident: ref48/cit48 doi: 10.1016/0370-2693(93)90068-S – ident: ref59/cit59 doi: 10.1103/PhysRevLett.81.1662 – ident: ref62/cit62 doi: 10.1016/0009-2614(86)85005-9 – ident: ref61/cit61 doi: 10.1016/j.cplett.2010.06.023 – ident: ref36/cit36 doi: 10.1103/PhysRevA.23.1038 – ident: ref63/cit63 doi: 10.1063/1.4942234 – ident: ref29/cit29 doi: 10.1063/1.5021832 – ident: ref19/cit19 doi: 10.1063/1.1884965 – ident: ref17/cit17 doi: 10.1063/1.459578 – ident: ref52/cit52 doi: 10.1063/1.5100290 – ident: ref23/cit23 doi: 10.1063/1.458815 – ident: ref18/cit18 doi: 10.1063/1.1376126 – ident: ref30/cit30 doi: 10.1063/1.5142354 – ident: ref35/cit35 doi: 10.1016/0009-2614(95)00841-Q – ident: ref66/cit66 doi: 10.1063/1.5055380 – ident: ref51/cit51 doi: 10.1103/PhysRevB.98.235132 – ident: ref60/cit60 doi: 10.1103/PhysRevLett.96.226402 – ident: ref31/cit31 doi: 10.1002/wcms.1462 – ident: ref54/cit54 doi: 10.1063/1.3089567 – ident: ref55/cit55 doi: 10.1016/j.cplett.2011.05.007 – ident: ref42/cit42 – ident: ref9/cit9 doi: 10.1103/PhysRev.139.A796 – ident: ref5/cit5 doi: 10.1103/PhysRevB.100.085112 – ident: ref25/cit25 doi: 10.1063/1.4962910 – ident: ref28/cit28 doi: 10.1063/1.5131771 – ident: ref37/cit37 doi: 10.1088/0022-3700/18/5/008 – ident: ref45/cit45 doi: 10.1016/j.aop.2010.09.012 – ident: ref40/cit40 doi: 10.1021/acs.jctc.9b00603 – ident: ref43/cit43 doi: 10.1063/1.2805393 – ident: ref65/cit65 doi: 10.1021/jp1120542 – ident: ref24/cit24 – ident: ref58/cit58 doi: 10.1103/PhysRevB.54.8411 – ident: ref67/cit67 – start-page: 1 volume-title: Electrical Processes in Atmospheres year: 1976 ident: ref1/cit1 – ident: ref12/cit12 doi: 10.1021/ct300648t – ident: ref2/cit2 doi: 10.1039/C5CP04589D – ident: ref22/cit22 doi: 10.1103/PhysRevA.28.1217 – ident: ref53/cit53 doi: 10.1103/PhysRevB.96.155128 – ident: ref56/cit56 – ident: ref46/cit46 – ident: ref69/cit69 doi: 10.1063/1.4921037 – ident: ref6/cit6 doi: 10.1002/qua.560120850 – ident: ref16/cit16 doi: 10.1063/1.480352 – ident: ref21/cit21 doi: 10.1021/acs.jctc.9b01182 – ident: ref20/cit20 doi: 10.1063/1.4884951 – ident: ref33/cit33 doi: 10.1063/1.4892418 – ident: ref39/cit39 doi: 10.1063/1.468900 – ident: ref41/cit41 doi: 10.1103/PhysRevB.100.115154 – ident: ref68/cit68 doi: 10.1021/acs.jctc.5b00873 – ident: ref8/cit8 doi: 10.1063/1.468022 – ident: ref13/cit13 doi: 10.1021/acs.jctc.5b01238 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.69.2863 – ident: ref7/cit7 doi: 10.1063/1.464746 – ident: ref10/cit10 doi: 10.1103/PhysRevLett.55.1418 – ident: ref11/cit11 doi: 10.1088/0034-4885/61/3/002 – ident: ref14/cit14 doi: 10.1103/PhysRevA.28.1237 – ident: ref15/cit15 doi: 10.1088/0953-4075/28/12/003 – ident: ref49/cit49 doi: 10.1016/S0370-2693(97)00135-4 – ident: ref3/cit3 doi: 10.1016/j.orgel.2005.03.001 – ident: ref57/cit57 doi: 10.1002/wcms.1340 – ident: ref4/cit4 doi: 10.1016/0022-3697(89)90001-2 – ident: ref32/cit32 doi: 10.1063/1.471429 – ident: ref27/cit27 doi: 10.1002/wcms.99 – ident: ref47/cit47 doi: 10.1016/0375-9474(88)90172-8 – ident: ref34/cit34 doi: 10.1002/wcms.1206 – ident: ref26/cit26 doi: 10.1063/1.1290013 |
| SSID | ssj0033423 |
| Score | 2.457373 |
| Snippet | We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O [ N 5 ] computational time.... We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative computational time. This is based... We present a self-consistent approach for computing the correlated quasiparticle spectrum of charged excitations in iterative O[N5] computational time. This is... |
| SourceID | proquest crossref acs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6294 |
| SubjectTerms | Benzoquinone Computing time Electron affinity Elementary excitations Excitation spectra Green's functions Ionization potentials Iterative methods Perturbation theory Quantum chemistry Quantum Electronic Structure |
| Title | Efficient Excitations and Spectra within a Perturbative Renormalization Approach |
| URI | http://dx.doi.org/10.1021/acs.jctc.0c00701 https://www.proquest.com/docview/2460788009 https://www.proquest.com/docview/2440472731 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6iB734FldXiaAHD11Nmqbb47LsIoIiPmBvJZ0koC5d2XZB_PXOdFvFB-K1TUqSSfJ9k0m_YexYSG0jK1zg48Sjg-JVYMIoC5SPnQJlERbovOPqWl88qMtRNPqUyfkewZfizEDReYISOudA2jTo6SxJHcd0fa_Xv2t23ZCU7CptVEWKk6JbhyR_-wIBERRfgejrPlyBy3BtnqWoqDQJ6U7Jc2dWZh14-6nY-I92r7PVmmPy3nxSbLAFl2-y5X6T2m2L3Qwq4QjEGz54hVqlu-Amt5zy0ZdTw-l89jHnht-4KaJSVumD81uXE8cd1z9v8l6tSL7NHoaD-_5FUKdWQEsoUQYKYu8jpdH5MpFxWoE30kbSAC7DLiQWiWLoIPEaaIln3mYAOrRhbKzsehHusMV8krtdxpNz1_UIcXGErpxAqNMghUevKnJIzaRpsRMcirReGkVaRb2lSKuHOD5pPT4tdtbYI216Tmkyxn_UOP2o8TLX5vijbLsx8WdTpNLIkJAyJy129PEabUFBE5O7yYzKKBLUjEOx98-O7LMVSU45XXsJ22yxnM7cATKXMjuspuw7gPDo1g |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hOMCFRwtiy8tI9MAhC3ZsZ3NcrRZtW0CIgsQtcvyQaFGoNlmp6q9nxiSLqCpUrk5sjT22vxmP_Q3AERfaKcd9ErI8oIMSZGJSVSYyZF5a6RAW6Lzj4lJPbuXXO3W3ALx7C4NC1NhSHYP4L-wC_ITKftjG9k8tUdSgw7OktOTkbw1H37vNNyVCu0iRKol4kg_ayOS_WiA8svVrPHq9HUeMOVuD67l08WrJz_6sKfv2z1_Eje8Sfx1WW4uTDZ-nyAYs-OoDLI-6RG8f4WocaSQQfdj4t205u2tmKscoO30zNYxOa-8rZtiVnyJGlZEtnF37iizeh_YpJxu2_OSbcHs2vhlNkjbRAupF8iaRNgtBSY2umFHGa2mDEU4JY3FRDmzu0GxMvc2DtrTgy-BKa3Xq0sw4MQg83YLF6rHy28DyUz8ICHiZQseOI_BpK3hAH0t5NNSE6cFnHIqiXSh1EWPgghexEMenaMenByedWoqu55Q04-GNGsfzGr-emTre-He30_SLKEJqtJfQgM57cDj_jLqgEIqp_OOM_pFEr5ml_NN_duQAlic3F-fF-ZfLbzuwIshdpwsx6S4sNtOZ30Obpin34yx-AvE58Tg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8QTNQXPzGcAtZEH3zY49ptu7eP5LwLoJKLCuFt0-1HopKF3O4lxr-emdI9AyEEX7vbpu10Or_ptL8BeM-Fdspxn4WiDOigBJmZXNWZDIWXVjo0C3Te8fVI7x_Lw1N1ugaqfwuDnWixpTYG8UmrL1xIDAN8l8p_2c4OR5ZoatDpeaA0ajohosn3fgPOidQu0qRKIp_k4xSdvK0Fskm2vW6Trm_J0c7MnsLJqofxesnv4bKrh_bvDfLG_x7CM3iSkCfbu1oqz2HNNy_g0aRP-PYS5tNIJ4FWiE3_2MTd3TLTOEZZ6ruFYXRq-7Nhhs39Am1VHVnD2TffEPI9S0862V7iKd-A49n0x2Q_SwkXUD6Sd5m0RQhKanTJjDJeSxuMcEoYi8o5tqVD-Jh7WwZtSfHr4Gprde7ywjgxDjx_BevNeeM3gZUjPw5o-AqFDh5HA6it4AF9LeURsAkzgA84FVVSmLaKsXDBq1iI81Ol-RnAbi-aqh85Jc84u6PGx1WNiyvGjjv-3eql_a8rQmrETQikywG8W31GWVAoxTT-fEn_SKLZLHL--p4DeQsP559m1ZeDo89v4LEgr53uxeRbsN4tln4boU1X78SFfAnO7PO7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Excitations+and+Spectra+within+a+Perturbative+Renormalization+Approach&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Backhouse%2C+Oliver+J&rft.au=Booth%2C+George+H&rft.date=2020-10-13&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=16&rft.issue=10&rft.spage=6294&rft_id=info:doi/10.1021%2Facs.jctc.0c00701&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |