Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk

Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-mo...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 12; no. 27; pp. 30584 - 30590
Main Authors Wu, Xiao-Hui, Chen, Fang, Yan, Feng, Pei, Lin-Qi, Hou, Rong, Horsley, John R, Abell, Andrew D, Zhou, Xiao-Shun, Yu, Jingxian, Li, Dong-Feng, Jin, Shan, Mao, Bing-Wei
Format Journal Article
LanguageEnglish
Published American Chemical Society 08.07.2020
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.0c01556

Cover

Abstract Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π–π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule–electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding).
AbstractList Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π-π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule-electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding).Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π-π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule-electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding).
Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π–π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule–electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding).
Author Yan, Feng
Hou, Rong
Pei, Lin-Qi
Abell, Andrew D
Chen, Fang
Yu, Jingxian
Jin, Shan
Zhou, Xiao-Shun
Horsley, John R
Li, Dong-Feng
Mao, Bing-Wei
Wu, Xiao-Hui
AuthorAffiliation Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry
State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering
Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry
AuthorAffiliation_xml – name: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering
– name: Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry
– name: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
Author_xml – sequence: 1
  givenname: Xiao-Hui
  surname: Wu
  fullname: Wu, Xiao-Hui
  organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
– sequence: 2
  givenname: Fang
  surname: Chen
  fullname: Chen, Fang
  organization: Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry
– sequence: 3
  givenname: Feng
  surname: Yan
  fullname: Yan, Feng
  organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
– sequence: 4
  givenname: Lin-Qi
  surname: Pei
  fullname: Pei, Lin-Qi
  organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
– sequence: 5
  givenname: Rong
  surname: Hou
  fullname: Hou, Rong
  organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
– sequence: 6
  givenname: John R
  surname: Horsley
  fullname: Horsley, John R
  organization: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry
– sequence: 7
  givenname: Andrew D
  orcidid: 0000-0002-0604-2629
  surname: Abell
  fullname: Abell, Andrew D
  organization: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry
– sequence: 8
  givenname: Xiao-Shun
  orcidid: 0000-0003-1673-8125
  surname: Zhou
  fullname: Zhou, Xiao-Shun
  email: xszhou@zjnu.edu.cn
  organization: Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry
– sequence: 9
  givenname: Jingxian
  orcidid: 0000-0002-6489-5988
  surname: Yu
  fullname: Yu, Jingxian
  email: jingxian.yu@adelaide.edu.au
  organization: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry
– sequence: 10
  givenname: Dong-Feng
  orcidid: 0000-0001-6537-3279
  surname: Li
  fullname: Li, Dong-Feng
  organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
– sequence: 11
  givenname: Shan
  orcidid: 0000-0002-1070-5456
  surname: Jin
  fullname: Jin, Shan
  email: jinshan@mail.ccnu.edu.cn
  organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry
– sequence: 12
  givenname: Bing-Wei
  orcidid: 0000-0002-9015-0162
  surname: Mao
  fullname: Mao, Bing-Wei
  email: bwmao@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering
BookMark eNqNkEFPwyAYhomZidv06rlHY9IJFGh7NNPpzIwe9Ey-Umo6KUygB_-9Xbp4MFniCfLyvHz5nhmaWGc1QpcELwim5AZUgK5dYIUJ5-IETUnJWFpQTie_d8bO0CyELcYio5hP0WrpbIi-V7G1H8ldDyZ9dkar3ujkqbdDPLwn0SWv3lU6WduofTcC4JOldyFEMJ_n6LQBE_TF4Zyj99X92_Ix3bw8rJe3mxQyhmOqCoWBV0JgAlrlpOBaZFUDTBDeFEXd5CURmQAQdVXjgmHBCWe4VkVDiRAqm6Or8d-dd1-9DlF2bVDaGLDa9UFSlueC8pLyf6AkK8thMhnQxYiq_T5eN3Ln2w78tyRY7t3K0a08uB0K7E9BtRH2rqKH1hyvXY-1IZdb13s7uDoG_wCGMY8D
CitedBy_id crossref_primary_10_1021_acssensors_0c02278
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_1039_D0NJ04919K
crossref_primary_10_1021_acsami_1c12151
crossref_primary_10_1039_D2CP05677A
crossref_primary_10_1016_j_enchem_2021_100065
Cites_doi 10.1016/j.carbon.2015.08.064
10.1038/nnano.2009.48
10.1103/PhysRevB.62.7325
10.1038/nchem.2180
10.1021/ja025896h
10.1126/sciadv.aao2615
10.1016/j.poly.2017.10.022
10.1021/ja507175b
10.1021/acs.jpcc.5b06110
10.1039/c6me00077k
10.1073/pnas.1606779113
10.1021/acs.jpcc.9b11908
10.1103/physrevb.59.16011
10.1002/anie.201605622
10.1038/nnano.2008.237
10.1038/nchem.2588
10.1021/ja4015293
10.1038/nnano.2013.101
10.1063/1.1825377
10.1039/c8tc05565c
10.1103/PhysRevB.76.115117
10.1021/jz200658h
10.1021/acs.jpcc.9b01812
10.1021/acs.jpcc.6b06399
10.1038/s41467-018-03203-1
10.1021/nl048372j
10.1002/smtd.201700071
10.1021/ja971921l
10.1063/1.5092661
10.1021/acs.jpclett.8b00980
10.1016/j.ccr.2009.12.023
10.1021/cr0300789
10.1039/c4cp03605k
10.1088/0957-4484/15/7/053
10.1021/acs.jpcb.9b07753
10.1038/nnano.2012.147
10.1016/j.elecom.2014.05.020
10.1103/PhysRevB.65.165401
10.1002/chem.201406451
10.1021/acs.accounts.8b00198
10.1073/pnas.072658799
10.1021/jacs.8b09086
ContentType Journal Article
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.0c01556
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 30590
ExternalDocumentID 10_1021_acsami_0c01556
b977984351
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
7S9
L.6
ID FETCH-LOGICAL-a340t-c8c0a5b6601aec7185e63bfa4615f88df791636aa6dbd0840651540dc8f2166c3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 07:03:31 EDT 2025
Thu Jul 10 23:53:34 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Tue Jul 01 02:36:15 EDT 2025
Thu Aug 27 13:41:53 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords dual-molecule junction
quantum transport simulation
noncovalent interactions
STM-BJ
supramolecular complex
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-c8c0a5b6601aec7185e63bfa4615f88df791636aa6dbd0840651540dc8f2166c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0604-2629
0000-0002-1070-5456
0000-0001-6537-3279
0000-0002-9015-0162
0000-0002-6489-5988
0000-0003-1673-8125
PQID 2413994611
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2477625925
proquest_miscellaneous_2413994611
crossref_primary_10_1021_acsami_0c01556
crossref_citationtrail_10_1021_acsami_0c01556
acs_journals_10_1021_acsami_0c01556
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-08
PublicationDateYYYYMMDD 2020-07-08
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-08
  day: 08
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref20/cit20
  doi: 10.1016/j.carbon.2015.08.064
– ident: ref27/cit27
  doi: 10.1038/nnano.2009.48
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.62.7325
– ident: ref14/cit14
  doi: 10.1038/nchem.2180
– ident: ref38/cit38
  doi: 10.1021/ja025896h
– ident: ref36/cit36
  doi: 10.1126/sciadv.aao2615
– ident: ref11/cit11
  doi: 10.1016/j.poly.2017.10.022
– ident: ref3/cit3
  doi: 10.1021/ja507175b
– ident: ref23/cit23
  doi: 10.1021/acs.jpcc.5b06110
– ident: ref33/cit33
  doi: 10.1039/c6me00077k
– ident: ref5/cit5
  doi: 10.1073/pnas.1606779113
– ident: ref37/cit37
  doi: 10.1021/acs.jpcc.9b11908
– ident: ref18/cit18
  doi: 10.1103/physrevb.59.16011
– ident: ref28/cit28
  doi: 10.1002/anie.201605622
– ident: ref25/cit25
  doi: 10.1038/nnano.2008.237
– ident: ref24/cit24
  doi: 10.1038/nchem.2588
– ident: ref35/cit35
  doi: 10.1021/ja4015293
– ident: ref1/cit1
  doi: 10.1038/nnano.2013.101
– ident: ref8/cit8
  doi: 10.1063/1.1825377
– ident: ref32/cit32
  doi: 10.1039/c8tc05565c
– ident: ref42/cit42
  doi: 10.1103/PhysRevB.76.115117
– ident: ref19/cit19
  doi: 10.1021/jz200658h
– ident: ref16/cit16
  doi: 10.1021/acs.jpcc.9b01812
– ident: ref2/cit2
  doi: 10.1021/acs.jpcc.6b06399
– ident: ref13/cit13
  doi: 10.1038/s41467-018-03203-1
– ident: ref15/cit15
  doi: 10.1021/nl048372j
– ident: ref12/cit12
  doi: 10.1002/smtd.201700071
– ident: ref7/cit7
  doi: 10.1021/ja971921l
– ident: ref17/cit17
  doi: 10.1063/1.5092661
– ident: ref26/cit26
  doi: 10.1021/acs.jpclett.8b00980
– ident: ref40/cit40
  doi: 10.1016/j.ccr.2009.12.023
– ident: ref6/cit6
  doi: 10.1021/cr0300789
– ident: ref34/cit34
  doi: 10.1039/c4cp03605k
– ident: ref22/cit22
  doi: 10.1088/0957-4484/15/7/053
– ident: ref9/cit9
  doi: 10.1021/acs.jpcb.9b07753
– ident: ref29/cit29
  doi: 10.1038/nnano.2012.147
– ident: ref30/cit30
  doi: 10.1016/j.elecom.2014.05.020
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.65.165401
– ident: ref10/cit10
  doi: 10.1002/chem.201406451
– ident: ref4/cit4
  doi: 10.1021/acs.accounts.8b00198
– ident: ref39/cit39
  doi: 10.1073/pnas.072658799
– ident: ref31/cit31
  doi: 10.1021/jacs.8b09086
SSID ssj0063205
Score 2.3603706
Snippet Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 30584
SubjectTerms electrostatic interactions
hydrogen bonding
Organic Electronic Devices
scanning tunneling microscopy
Title Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk
URI http://dx.doi.org/10.1021/acsami.0c01556
https://www.proquest.com/docview/2413994611
https://www.proquest.com/docview/2477625925
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8244
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwRpSXjEBickmcxHHHqlBVlYqQoFK3yHYchpYUKenCr-cuD6BUBbYMlyh-ft_d2d8Rch16IlAiNCxw3IQhA2caiZzSwE8lUuYYA_rDB9Ef-YNxMP6Kd_zM4HP3VpkMS-E4BtFdrJMNLqSLblan-1TvucLjxWFF8Mh9JgGxannGpfcRhEy2CEKLe3ABLL2dUuUoK_QI8TzJpDXPdcu8L6s1_vnPu2S7Ype0U06HPbJm032y9U1z8ID0sERnKRqbvtC7uZqyYVki19IBgFwxD2k-o494UYgWEcPXuoYu7WJ7gK9PDsmod__c7bOqmAJTnu_kzEjjqEALcMCUNYBIgRWeTpQPlCaRMk5CIIqeUErEOnbA7cMa6b4TG5lwVwjjHZFGOkvtMaExfEC2NaC_0T63gfKM9ODRxm0DhMY0yRV0QFQthiwq8tzcjcpeiapeaRJWj0FkKj1yLIsxXWl_82n_VipxrLS8rIc0gsWCGRCV2tk8izCJ2G5Dk93fbMIQnUIenPyrHadkk6MPjiFfeUYaMIL2HIhKri-KOfoBAL_i3A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2InCCROplkd94gKVSkUIQESt8h2HA4tKVLaC1_PjJMABYHgFkUTy2vmjcd-D-A4DngkeaxZ5HoZIwTOFAE5qRCfCoLMKW3o92545yHsPkaPU9Co78JgJQosqbBJ_A92Aa-B70gRx9Xk5Pk0zFoaFMJCrbv618sD355ZxMA8ZAIdV83S-O178kW6mPRFk79i61_aS3D7XjN7rKR_Oh6pU_36hbTxH1VfhsUKazpn5eRYgSmTr8LCJwbCNWiTYGdJIZs_OedjOWC9UjDXOF10eXZWOqOhc0vXhhy7f_hcK-o6LWoWovf-Ojy0L-5bHVZJKzAZhO6IaaFdGSmO4Zg0Gv1TZHigMhkiwMmESLMYYWPApeSpSl0MAkkxPXRTLTLf41wHGzCTD3OzCU6KBYimQiygVeibSAZaBPho0qZGeKO34Ag7IKmWRpHYrLfvJWWvJFWvbAGrhyLRFTs5iWQMfrQ_ebd_KXk5frQ8rEc2waVD-RCZm-G4SCil2Gxik73fbOKYQkQ_2v5TOw5grnPfu06uL2-udmDep-icNoPFLszgaJo9hDAjtW-n7RvacOtH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gujBt1ifEQVPW_PcbI_SWmq1pWALvYXdzcZDa1pIevHXO5NHsUpFbyFMln1mvtnZ_T5Cbn2HeYL5inqmFVFE4FQikBMS8ClHyBzihn63x9pDtzPyRsU9brwLA5VIoKQkS-Ljqp6FUcEwYN3De1TFMRU6erZONjzkf0M81Hgtf7_MsbNzixCcu5SD8yqZGn98j_5IJcv-aPl3nPmY1i4ZLGqXHS0Z1-aprKmPb8SN_6z-HtkpMKfxkE-SfbKm4wOy_YWJ8JC0ULgzp5KN34zmXExoNxfO1UYHXF82O410avTx-pCR7SO-l8q6RgObBih-fESGrcdBo00LiQUqHNdMqeLKFJ5kEJYJrcBPeZo5MhIuAJ2I8zDyAT46TAgWytCEYBCV010zVDyyLcaUc0wq8TTWJ8QIoQBel4AJlHRt7QlHcQcedVhXAHNUldxABwTFEkmCLPttW0HeK0HRK1VCy-EIVMFSjmIZk5X2dwv7Wc7PsdLyuhzdAJYQ5kVErKfzJMDUYr0OTbZ-s_F9DBVt7_RP7bgim_1mK3h56j2fkS0bg3TcE-bnpAKDqS8AyaTyMpu5n25c7cE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Dual-Molecule+Junctions+to+Probe+Intermolecular+Crosstalk&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wu%2C+Xiao-Hui&rft.au=Chen%2C+Fang&rft.au=Yan%2C+Feng&rft.au=Pei%2C+Lin-Qi&rft.date=2020-07-08&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=27&rft.spage=30584&rft_id=info:doi/10.1021%2Facsami.0c01556&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon