Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk
Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-mo...
Saved in:
Published in | ACS applied materials & interfaces Vol. 12; no. 27; pp. 30584 - 30590 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
08.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.0c01556 |
Cover
Abstract | Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π–π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule–electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding). |
---|---|
AbstractList | Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π-π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule-electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding).Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π-π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule-electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding). Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic components, as future molecular devices will likely be multimolecular. The smallest possible molecular ensemble to address this challenge is a dual-molecule junction device, which has potential to unravel the effects of intermolecular crosstalk on electronic transport at the molecular level that cannot be elucidated using either conventional single-molecule or self-assembled monolayer (SAM) techniques. Herein, we demonstrate the fabrication of a scanning tunneling microscopy (STM) dual-molecule junction device, which utilizes noncovalent interactions and allows for direct comparison to the conventional STM single-molecule device. STM-break junction (BJ) measurements reveal a decrease in conductance of 10% per molecule from the dual-molecule to the single-molecule junction device. Quantum transport simulations indicate that this decrease is attributable to intermolecular crosstalk (i.e., intermolecular π–π interactions), with possible contributions from substrate-mediated coupling (i.e., molecule–electrode). This study provides the first experimental evidence to interpret intermolecular crosstalk in electronic transport at the STM-BJ level and translates the experimental observations into meaningful molecular information to enhance our fundamental knowledge of this subject matter. This approach is pertinent to the design and development of future multimolecular electronic components and also to other dual-molecular systems where such crosstalk is mediated by various noncovalent intermolecular interactions (e.g., electrostatic and hydrogen bonding). |
Author | Yan, Feng Hou, Rong Pei, Lin-Qi Abell, Andrew D Chen, Fang Yu, Jingxian Jin, Shan Zhou, Xiao-Shun Horsley, John R Li, Dong-Feng Mao, Bing-Wei Wu, Xiao-Hui |
AuthorAffiliation | Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry |
AuthorAffiliation_xml | – name: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry – name: State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering – name: Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry – name: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry |
Author_xml | – sequence: 1 givenname: Xiao-Hui surname: Wu fullname: Wu, Xiao-Hui organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry – sequence: 2 givenname: Fang surname: Chen fullname: Chen, Fang organization: Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry – sequence: 3 givenname: Feng surname: Yan fullname: Yan, Feng organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry – sequence: 4 givenname: Lin-Qi surname: Pei fullname: Pei, Lin-Qi organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry – sequence: 5 givenname: Rong surname: Hou fullname: Hou, Rong organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry – sequence: 6 givenname: John R surname: Horsley fullname: Horsley, John R organization: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry – sequence: 7 givenname: Andrew D orcidid: 0000-0002-0604-2629 surname: Abell fullname: Abell, Andrew D organization: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry – sequence: 8 givenname: Xiao-Shun orcidid: 0000-0003-1673-8125 surname: Zhou fullname: Zhou, Xiao-Shun email: xszhou@zjnu.edu.cn organization: Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry – sequence: 9 givenname: Jingxian orcidid: 0000-0002-6489-5988 surname: Yu fullname: Yu, Jingxian email: jingxian.yu@adelaide.edu.au organization: ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing, Department of Chemistry – sequence: 10 givenname: Dong-Feng orcidid: 0000-0001-6537-3279 surname: Li fullname: Li, Dong-Feng organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry – sequence: 11 givenname: Shan orcidid: 0000-0002-1070-5456 surname: Jin fullname: Jin, Shan email: jinshan@mail.ccnu.edu.cn organization: Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry – sequence: 12 givenname: Bing-Wei orcidid: 0000-0002-9015-0162 surname: Mao fullname: Mao, Bing-Wei email: bwmao@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering |
BookMark | eNqNkEFPwyAYhomZidv06rlHY9IJFGh7NNPpzIwe9Ey-Umo6KUygB_-9Xbp4MFniCfLyvHz5nhmaWGc1QpcELwim5AZUgK5dYIUJ5-IETUnJWFpQTie_d8bO0CyELcYio5hP0WrpbIi-V7G1H8ldDyZ9dkar3ujkqbdDPLwn0SWv3lU6WduofTcC4JOldyFEMJ_n6LQBE_TF4Zyj99X92_Ix3bw8rJe3mxQyhmOqCoWBV0JgAlrlpOBaZFUDTBDeFEXd5CURmQAQdVXjgmHBCWe4VkVDiRAqm6Or8d-dd1-9DlF2bVDaGLDa9UFSlueC8pLyf6AkK8thMhnQxYiq_T5eN3Ln2w78tyRY7t3K0a08uB0K7E9BtRH2rqKH1hyvXY-1IZdb13s7uDoG_wCGMY8D |
CitedBy_id | crossref_primary_10_1021_acssensors_0c02278 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1039_D0NJ04919K crossref_primary_10_1021_acsami_1c12151 crossref_primary_10_1039_D2CP05677A crossref_primary_10_1016_j_enchem_2021_100065 |
Cites_doi | 10.1016/j.carbon.2015.08.064 10.1038/nnano.2009.48 10.1103/PhysRevB.62.7325 10.1038/nchem.2180 10.1021/ja025896h 10.1126/sciadv.aao2615 10.1016/j.poly.2017.10.022 10.1021/ja507175b 10.1021/acs.jpcc.5b06110 10.1039/c6me00077k 10.1073/pnas.1606779113 10.1021/acs.jpcc.9b11908 10.1103/physrevb.59.16011 10.1002/anie.201605622 10.1038/nnano.2008.237 10.1038/nchem.2588 10.1021/ja4015293 10.1038/nnano.2013.101 10.1063/1.1825377 10.1039/c8tc05565c 10.1103/PhysRevB.76.115117 10.1021/jz200658h 10.1021/acs.jpcc.9b01812 10.1021/acs.jpcc.6b06399 10.1038/s41467-018-03203-1 10.1021/nl048372j 10.1002/smtd.201700071 10.1021/ja971921l 10.1063/1.5092661 10.1021/acs.jpclett.8b00980 10.1016/j.ccr.2009.12.023 10.1021/cr0300789 10.1039/c4cp03605k 10.1088/0957-4484/15/7/053 10.1021/acs.jpcb.9b07753 10.1038/nnano.2012.147 10.1016/j.elecom.2014.05.020 10.1103/PhysRevB.65.165401 10.1002/chem.201406451 10.1021/acs.accounts.8b00198 10.1073/pnas.072658799 10.1021/jacs.8b09086 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.0c01556 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 30590 |
ExternalDocumentID | 10_1021_acsami_0c01556 b977984351 |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a340t-c8c0a5b6601aec7185e63bfa4615f88df791636aa6dbd0840651540dc8f2166c3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 07:03:31 EDT 2025 Thu Jul 10 23:53:34 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Tue Jul 01 02:36:15 EDT 2025 Thu Aug 27 13:41:53 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | dual-molecule junction quantum transport simulation noncovalent interactions STM-BJ supramolecular complex |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a340t-c8c0a5b6601aec7185e63bfa4615f88df791636aa6dbd0840651540dc8f2166c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0604-2629 0000-0002-1070-5456 0000-0001-6537-3279 0000-0002-9015-0162 0000-0002-6489-5988 0000-0003-1673-8125 |
PQID | 2413994611 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2477625925 proquest_miscellaneous_2413994611 crossref_primary_10_1021_acsami_0c01556 crossref_citationtrail_10_1021_acsami_0c01556 acs_journals_10_1021_acsami_0c01556 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-08 |
PublicationDateYYYYMMDD | 2020-07-08 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1016/j.carbon.2015.08.064 – ident: ref27/cit27 doi: 10.1038/nnano.2009.48 – ident: ref21/cit21 doi: 10.1103/PhysRevB.62.7325 – ident: ref14/cit14 doi: 10.1038/nchem.2180 – ident: ref38/cit38 doi: 10.1021/ja025896h – ident: ref36/cit36 doi: 10.1126/sciadv.aao2615 – ident: ref11/cit11 doi: 10.1016/j.poly.2017.10.022 – ident: ref3/cit3 doi: 10.1021/ja507175b – ident: ref23/cit23 doi: 10.1021/acs.jpcc.5b06110 – ident: ref33/cit33 doi: 10.1039/c6me00077k – ident: ref5/cit5 doi: 10.1073/pnas.1606779113 – ident: ref37/cit37 doi: 10.1021/acs.jpcc.9b11908 – ident: ref18/cit18 doi: 10.1103/physrevb.59.16011 – ident: ref28/cit28 doi: 10.1002/anie.201605622 – ident: ref25/cit25 doi: 10.1038/nnano.2008.237 – ident: ref24/cit24 doi: 10.1038/nchem.2588 – ident: ref35/cit35 doi: 10.1021/ja4015293 – ident: ref1/cit1 doi: 10.1038/nnano.2013.101 – ident: ref8/cit8 doi: 10.1063/1.1825377 – ident: ref32/cit32 doi: 10.1039/c8tc05565c – ident: ref42/cit42 doi: 10.1103/PhysRevB.76.115117 – ident: ref19/cit19 doi: 10.1021/jz200658h – ident: ref16/cit16 doi: 10.1021/acs.jpcc.9b01812 – ident: ref2/cit2 doi: 10.1021/acs.jpcc.6b06399 – ident: ref13/cit13 doi: 10.1038/s41467-018-03203-1 – ident: ref15/cit15 doi: 10.1021/nl048372j – ident: ref12/cit12 doi: 10.1002/smtd.201700071 – ident: ref7/cit7 doi: 10.1021/ja971921l – ident: ref17/cit17 doi: 10.1063/1.5092661 – ident: ref26/cit26 doi: 10.1021/acs.jpclett.8b00980 – ident: ref40/cit40 doi: 10.1016/j.ccr.2009.12.023 – ident: ref6/cit6 doi: 10.1021/cr0300789 – ident: ref34/cit34 doi: 10.1039/c4cp03605k – ident: ref22/cit22 doi: 10.1088/0957-4484/15/7/053 – ident: ref9/cit9 doi: 10.1021/acs.jpcb.9b07753 – ident: ref29/cit29 doi: 10.1038/nnano.2012.147 – ident: ref30/cit30 doi: 10.1016/j.elecom.2014.05.020 – ident: ref41/cit41 doi: 10.1103/PhysRevB.65.165401 – ident: ref10/cit10 doi: 10.1002/chem.201406451 – ident: ref4/cit4 doi: 10.1021/acs.accounts.8b00198 – ident: ref39/cit39 doi: 10.1073/pnas.072658799 – ident: ref31/cit31 doi: 10.1021/jacs.8b09086 |
SSID | ssj0063205 |
Score | 2.3603706 |
Snippet | Understanding and controlling charge transport across multiple parallel molecules are fundamental to the creation of innovative functional electronic... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 30584 |
SubjectTerms | electrostatic interactions hydrogen bonding Organic Electronic Devices scanning tunneling microscopy |
Title | Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk |
URI | http://dx.doi.org/10.1021/acsami.0c01556 https://www.proquest.com/docview/2413994611 https://www.proquest.com/docview/2477625925 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1944-8252 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063205 issn: 1944-8244 databaseCode: ACS dateStart: 20090128 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwRpSXjEBickmcxHHHqlBVlYqQoFK3yHYchpYUKenCr-cuD6BUBbYMlyh-ft_d2d8Rch16IlAiNCxw3IQhA2caiZzSwE8lUuYYA_rDB9Ef-YNxMP6Kd_zM4HP3VpkMS-E4BtFdrJMNLqSLblan-1TvucLjxWFF8Mh9JgGxannGpfcRhEy2CEKLe3ABLL2dUuUoK_QI8TzJpDXPdcu8L6s1_vnPu2S7Ype0U06HPbJm032y9U1z8ID0sERnKRqbvtC7uZqyYVki19IBgFwxD2k-o494UYgWEcPXuoYu7WJ7gK9PDsmod__c7bOqmAJTnu_kzEjjqEALcMCUNYBIgRWeTpQPlCaRMk5CIIqeUErEOnbA7cMa6b4TG5lwVwjjHZFGOkvtMaExfEC2NaC_0T63gfKM9ODRxm0DhMY0yRV0QFQthiwq8tzcjcpeiapeaRJWj0FkKj1yLIsxXWl_82n_VipxrLS8rIc0gsWCGRCV2tk8izCJ2G5Dk93fbMIQnUIenPyrHadkk6MPjiFfeUYaMIL2HIhKri-KOfoBAL_i3A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHIADO2InCCROplkd94gKVSkUIQESt8h2HA4tKVLaC1_PjJMABYHgFkUTy2vmjcd-D-A4DngkeaxZ5HoZIwTOFAE5qRCfCoLMKW3o92545yHsPkaPU9Co78JgJQosqbBJ_A92Aa-B70gRx9Xk5Pk0zFoaFMJCrbv618sD355ZxMA8ZAIdV83S-O178kW6mPRFk79i61_aS3D7XjN7rKR_Oh6pU_36hbTxH1VfhsUKazpn5eRYgSmTr8LCJwbCNWiTYGdJIZs_OedjOWC9UjDXOF10eXZWOqOhc0vXhhy7f_hcK-o6LWoWovf-Ojy0L-5bHVZJKzAZhO6IaaFdGSmO4Zg0Gv1TZHigMhkiwMmESLMYYWPApeSpSl0MAkkxPXRTLTLf41wHGzCTD3OzCU6KBYimQiygVeibSAZaBPho0qZGeKO34Ag7IKmWRpHYrLfvJWWvJFWvbAGrhyLRFTs5iWQMfrQ_ebd_KXk5frQ8rEc2waVD-RCZm-G4SCil2Gxik73fbOKYQkQ_2v5TOw5grnPfu06uL2-udmDep-icNoPFLszgaJo9hDAjtW-n7RvacOtH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gujBt1ifEQVPW_PcbI_SWmq1pWALvYXdzcZDa1pIevHXO5NHsUpFbyFMln1mvtnZ_T5Cbn2HeYL5inqmFVFE4FQikBMS8ClHyBzihn63x9pDtzPyRsU9brwLA5VIoKQkS-Ljqp6FUcEwYN3De1TFMRU6erZONjzkf0M81Hgtf7_MsbNzixCcu5SD8yqZGn98j_5IJcv-aPl3nPmY1i4ZLGqXHS0Z1-aprKmPb8SN_6z-HtkpMKfxkE-SfbKm4wOy_YWJ8JC0ULgzp5KN34zmXExoNxfO1UYHXF82O410avTx-pCR7SO-l8q6RgObBih-fESGrcdBo00LiQUqHNdMqeLKFJ5kEJYJrcBPeZo5MhIuAJ2I8zDyAT46TAgWytCEYBCV010zVDyyLcaUc0wq8TTWJ8QIoQBel4AJlHRt7QlHcQcedVhXAHNUldxABwTFEkmCLPttW0HeK0HRK1VCy-EIVMFSjmIZk5X2dwv7Wc7PsdLyuhzdAJYQ5kVErKfzJMDUYr0OTbZ-s_F9DBVt7_RP7bgim_1mK3h56j2fkS0bg3TcE-bnpAKDqS8AyaTyMpu5n25c7cE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Dual-Molecule+Junctions+to+Probe+Intermolecular+Crosstalk&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wu%2C+Xiao-Hui&rft.au=Chen%2C+Fang&rft.au=Yan%2C+Feng&rft.au=Pei%2C+Lin-Qi&rft.date=2020-07-08&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=12&rft.issue=27&rft.spage=30584&rft_id=info:doi/10.1021%2Facsami.0c01556&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |