Head Impact Kinematics Estimation With Network of Inertial Measurement Units
Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often suffer from a lack of measurement fidelity. While some researchers have focused on developing highly accurate, single sensor systems, we hav...
Saved in:
| Published in | Journal of biomechanical engineering Vol. 140; no. 9 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.09.2018
|
| Online Access | Get full text |
| ISSN | 1528-8951 0148-0731 1528-8951 |
| DOI | 10.1115/1.4039987 |
Cover
| Abstract | Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often suffer from a lack of measurement fidelity. While some researchers have focused on developing highly accurate, single sensor systems, we have taken a parallel approach in investigating optimal estimation techniques with multiple noisy sensors. In this work, we present a sensor network methodology that utilizes multiple skin patch sensors arranged on the head and combines their data to obtain a more accurate estimate than any individual sensor in the network. Our methodology visually localizes subject-specific sensor transformations, and based on rigid body assumptions, applies estimation algorithms to obtain a minimum mean squared error estimate. During mild soccer headers, individual skin patch sensors had over 100% error in peak angular velocity magnitude, angular acceleration magnitude, and linear acceleration magnitude. However, when properly networked using our visual localization and estimation methodology, we obtained kinematic estimates with median errors below 20%. While we demonstrate this methodology with skin patch sensors in mild soccer head impacts, the formulation can be generally applied to any dynamic scenario, such as measurement of cadaver head impact dynamics using arbitrarily placed sensors. |
|---|---|
| AbstractList | Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often suffer from a lack of measurement fidelity. While some researchers have focused on developing highly accurate, single sensor systems, we have taken a parallel approach in investigating optimal estimation techniques with multiple noisy sensors. In this work, we present a sensor network methodology that utilizes multiple skin patch sensors arranged on the head and combines their data to obtain a more accurate estimate than any individual sensor in the network. Our methodology visually localizes subject-specific sensor transformations, and based on rigid body assumptions, applies estimation algorithms to obtain a minimum mean squared error estimate. During mild soccer headers, individual skin patch sensors had over 100% error in peak angular velocity magnitude, angular acceleration magnitude, and linear acceleration magnitude. However, when properly networked using our visual localization and estimation methodology, we obtained kinematic estimates with median errors below 20%. While we demonstrate this methodology with skin patch sensors in mild soccer head impacts, the formulation can be generally applied to any dynamic scenario, such as measurement of cadaver head impact dynamics using arbitrarily placed sensors. |
| Author | Kuo, Calvin Sganga, Jake Camarillo, David B Fanton, Michael |
| Author_xml | – sequence: 1 givenname: Calvin surname: Kuo fullname: Kuo, Calvin organization: Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail: – sequence: 2 givenname: Jake surname: Sganga fullname: Sganga, Jake organization: Department of Bioengineering, Stanford University, Stanford, CA 94305 e-mail: – sequence: 3 givenname: Michael surname: Fanton fullname: Fanton, Michael organization: Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail: – sequence: 4 givenname: David B surname: Camarillo fullname: Camarillo, David B organization: Professor Department of Bioengineering, Stanford University, Stanford, CA 94305 e-mail: |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29801166$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLw0AURgep2Icu_AMyayF1XpmZLKW0Nlh1Y3EZ7iQTjCaTkJlQ-u9taRVX9ywOH5czRSPXOovQLSVzSmn8QOeC8CTR6gJNaMx0pJOYjv7xGE29_yKEUi3IFRqzRB9YygnarC0UOG06yAN-rpxtIFS5x0sfqiO2Dn9U4RO_2rBr-2_cljh1tg8V1PjFgh9621gX8NZVwV-jyxJqb2_Od4a2q-X7Yh1t3p7SxeMmAi5IiOIykcwoRnKiuaFWGlYybqAsiZA5pzpRXBpFTFzEhRAqB6Eskwy4UmA58Bm6P-0OroP9Duo66_rDu_0-oyQ7Jslodk5ykO9OcjeYxhZ_5m8D_gO9bVzA |
| CitedBy_id | crossref_primary_10_3390_ijerph19095488 crossref_primary_10_1007_s10439_024_03647_1 crossref_primary_10_1109_TBME_2024_3416378 crossref_primary_10_1007_s10439_023_03369_w |
| ContentType | Journal Article |
| DBID | NPM ADTOC UNPAY |
| DOI | 10.1115/1.4039987 |
| DatabaseName | PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Forestry |
| EISSN | 1528-8951 |
| ExternalDocumentID | 10.1115/1.4039987 29801166 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 29J 4.4 5AI 5GY ABJNI ACBEA ACGFO ACGFS ACKMT ADPDT ALMA_UNASSIGNED_HOLDINGS CS3 EBS EJD F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR .GJ 53G 6TJ AAYJJ ACXMS ADTOC AGNGV AI. ALEEW UNPAY VH1 WHG ZE2 |
| ID | FETCH-LOGICAL-a340t-5f962b720c083b1e6b2f23baff046c3189736b70b5d5d447ca47e262a377ae3a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1528-8951 0148-0731 |
| IngestDate | Tue Aug 19 16:21:19 EDT 2025 Thu Apr 03 07:08:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a340t-5f962b720c083b1e6b2f23baff046c3189736b70b5d5d447ca47e262a377ae3a3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://asmedigitalcollection.asme.org/biomechanical/article-pdf/140/9/091006/6414190/bio_140_09_091006.pdf |
| PMID | 29801166 |
| ParticipantIDs | unpaywall_primary_10_1115_1_4039987 pubmed_primary_29801166 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomechanical engineering |
| PublicationTitleAlternate | J Biomech Eng |
| PublicationYear | 2018 |
| SSID | ssj0011840 |
| Score | 2.287958 |
| Snippet | Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| Title | Head Impact Kinematics Estimation With Network of Inertial Measurement Units |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29801166 https://asmedigitalcollection.asme.org/biomechanical/article-pdf/140/9/091006/6414190/bio_140_09_091006.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 140 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT9wwEB7BIoE4tLxaqFpkqb06D8d2kiNCoKV0VxxYFU6RnTiAQGHFZoXgN_RHMxOHLeLUU6UcInuUyA95vvF8MwPww1WCDkbFlYsqLl3tqMyL4yqn6saowvOEopFHYz2cyJ8X6mIJbl9jYcyMfMpXVDCDJqKjIzUBtXZu_S4mnUJiaQRhP7l8WtUhGgphHpL2i3SoZSxR05F4QeSlKC98T4Ciy7CiFQL3AaxMxmcHl57kmHHc7D67qsh4hsCjz0OEkCmMAxmhJife3UJPrc2bqXl6NHd3bxTS8Uf48zoUz0O5DeatDcrnd1ke_9NYN-BDD2zZgf_AJiy5ZgvW36Q73IJVqgNKxeXwddT79Lfh1xC3GTvpojXZKTZ1SWRn7AgPHx9XyX7ftNds7Anr7L5mJw2xwfFvo783nIzQ82wHJsdH54dD3td44CaRUctVnWthUxGViAVt7LQVtUisqWs03Es8cPI00TaNrKpUJWVaGpk6oYVJ0tS4xCSfYNDcN24XmEbTTbnSVsZUMrNxZl2EglR_y-Hj9uCzX7ti6hN5FCLPyA-l9-D7YjEXnd46UkVc9Gv_5Z-kvsKgfZi7bwhVWrsPy-Oz0X6_0V4AueznCA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT9wwEB7RRaLiAC1vBJWl9uo8HNtJjgiBlra76qEr6CmyE6dFoLBis0LwG_jRzMRhQT1xQsohskeJ_JDnG883MwDfXCXoYFRcuaji0tWOyrw4rnKqbowqPE8oGnk01sOJ_H6hLpbg6jkWxszIp_yXCmbQRHR0pCag1s6t38WkU0gsjSDsJ5dPqzpEQyHMQ9J-kQ61jCVqOhIviLwU5YXvCVD0AyxrhcB9AMuT8a-jP57kmHHc7D67qsh4hsCjz0OEkCmMAxmhJife3UJPfZw3U3N_Z66vXymk03V4fB6K56FcBfPWBuXDf1ke32msn2CtB7bsyH_gMyy5ZgNWX6U73IAVqgNKxeXwddT79Dfh5xC3GTvrojXZD2zqksjO2AkePj6ukp1ftv_Y2BPW2U3Nzhpig-PfRi83nIzQ82wLJqcnv4-HvK_xwE0io5arOtfCpiIqEQva2GkrapFYU9douJd44ORpom0aWVWpSsq0NDJ1QguTpKlxiUm2YdDcNG4XmEbTTbnSVsZUMrNxZl2EglR_y-Hj9mDHr10x9Yk8CpFn5IfSe_B1sZiLTm8dqSIu-rXff5PUAQza27k7RKjS2i_9FnsCVOLl_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+Impact+Kinematics+Estimation+With+Network+of+Inertial+Measurement+Units&rft.jtitle=Journal+of+biomechanical+engineering&rft.issn=1528-8951&rft_id=info:doi/10.1115%2F1.4039987&rft.externalDocID=10.1115%2F1.4039987 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon |