Head Impact Kinematics Estimation With Network of Inertial Measurement Units

Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often suffer from a lack of measurement fidelity. While some researchers have focused on developing highly accurate, single sensor systems, we hav...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanical engineering Vol. 140; no. 9
Main Authors Kuo, Calvin, Sganga, Jake, Fanton, Michael, Camarillo, David B
Format Journal Article
LanguageEnglish
Published United States 01.09.2018
Online AccessGet full text
ISSN1528-8951
0148-0731
1528-8951
DOI10.1115/1.4039987

Cover

Abstract Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often suffer from a lack of measurement fidelity. While some researchers have focused on developing highly accurate, single sensor systems, we have taken a parallel approach in investigating optimal estimation techniques with multiple noisy sensors. In this work, we present a sensor network methodology that utilizes multiple skin patch sensors arranged on the head and combines their data to obtain a more accurate estimate than any individual sensor in the network. Our methodology visually localizes subject-specific sensor transformations, and based on rigid body assumptions, applies estimation algorithms to obtain a minimum mean squared error estimate. During mild soccer headers, individual skin patch sensors had over 100% error in peak angular velocity magnitude, angular acceleration magnitude, and linear acceleration magnitude. However, when properly networked using our visual localization and estimation methodology, we obtained kinematic estimates with median errors below 20%. While we demonstrate this methodology with skin patch sensors in mild soccer head impacts, the formulation can be generally applied to any dynamic scenario, such as measurement of cadaver head impact dynamics using arbitrarily placed sensors.
AbstractList Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often suffer from a lack of measurement fidelity. While some researchers have focused on developing highly accurate, single sensor systems, we have taken a parallel approach in investigating optimal estimation techniques with multiple noisy sensors. In this work, we present a sensor network methodology that utilizes multiple skin patch sensors arranged on the head and combines their data to obtain a more accurate estimate than any individual sensor in the network. Our methodology visually localizes subject-specific sensor transformations, and based on rigid body assumptions, applies estimation algorithms to obtain a minimum mean squared error estimate. During mild soccer headers, individual skin patch sensors had over 100% error in peak angular velocity magnitude, angular acceleration magnitude, and linear acceleration magnitude. However, when properly networked using our visual localization and estimation methodology, we obtained kinematic estimates with median errors below 20%. While we demonstrate this methodology with skin patch sensors in mild soccer head impacts, the formulation can be generally applied to any dynamic scenario, such as measurement of cadaver head impact dynamics using arbitrarily placed sensors.
Author Kuo, Calvin
Sganga, Jake
Camarillo, David B
Fanton, Michael
Author_xml – sequence: 1
  givenname: Calvin
  surname: Kuo
  fullname: Kuo, Calvin
  organization: Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail: 
– sequence: 2
  givenname: Jake
  surname: Sganga
  fullname: Sganga, Jake
  organization: Department of Bioengineering, Stanford University, Stanford, CA 94305 e-mail: 
– sequence: 3
  givenname: Michael
  surname: Fanton
  fullname: Fanton, Michael
  organization: Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 e-mail: 
– sequence: 4
  givenname: David B
  surname: Camarillo
  fullname: Camarillo, David B
  organization: Professor Department of Bioengineering, Stanford University, Stanford, CA 94305 e-mail: 
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29801166$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AURgep2Icu_AMyayF1XpmZLKW0Nlh1Y3EZ7iQTjCaTkJlQ-u9taRVX9ywOH5czRSPXOovQLSVzSmn8QOeC8CTR6gJNaMx0pJOYjv7xGE29_yKEUi3IFRqzRB9YygnarC0UOG06yAN-rpxtIFS5x0sfqiO2Dn9U4RO_2rBr-2_cljh1tg8V1PjFgh9621gX8NZVwV-jyxJqb2_Od4a2q-X7Yh1t3p7SxeMmAi5IiOIykcwoRnKiuaFWGlYybqAsiZA5pzpRXBpFTFzEhRAqB6Eskwy4UmA58Bm6P-0OroP9Duo66_rDu_0-oyQ7Jslodk5ykO9OcjeYxhZ_5m8D_gO9bVzA
CitedBy_id crossref_primary_10_3390_ijerph19095488
crossref_primary_10_1007_s10439_024_03647_1
crossref_primary_10_1109_TBME_2024_3416378
crossref_primary_10_1007_s10439_023_03369_w
ContentType Journal Article
DBID NPM
ADTOC
UNPAY
DOI 10.1115/1.4039987
DatabaseName PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 10.1115/1.4039987
29801166
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
29J
4.4
5AI
5GY
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ADPDT
ALMA_UNASSIGNED_HOLDINGS
CS3
EBS
EJD
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
.GJ
53G
6TJ
AAYJJ
ACXMS
ADTOC
AGNGV
AI.
ALEEW
UNPAY
VH1
WHG
ZE2
ID FETCH-LOGICAL-a340t-5f962b720c083b1e6b2f23baff046c3189736b70b5d5d447ca47e262a377ae3a3
IEDL.DBID UNPAY
ISSN 1528-8951
0148-0731
IngestDate Tue Aug 19 16:21:19 EDT 2025
Thu Apr 03 07:08:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-5f962b720c083b1e6b2f23baff046c3189736b70b5d5d447ca47e262a377ae3a3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://asmedigitalcollection.asme.org/biomechanical/article-pdf/140/9/091006/6414190/bio_140_09_091006.pdf
PMID 29801166
ParticipantIDs unpaywall_primary_10_1115_1_4039987
pubmed_primary_29801166
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2018
SSID ssj0011840
Score 2.287958
Snippet Wearable sensors embedded with inertial measurement units have become commonplace for the measurement of head impact biomechanics, but individual systems often...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
Title Head Impact Kinematics Estimation With Network of Inertial Measurement Units
URI https://www.ncbi.nlm.nih.gov/pubmed/29801166
https://asmedigitalcollection.asme.org/biomechanical/article-pdf/140/9/091006/6414190/bio_140_09_091006.pdf
UnpaywallVersion publishedVersion
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT9wwEB7BIoE4tLxaqFpkqb06D8d2kiNCoKV0VxxYFU6RnTiAQGHFZoXgN_RHMxOHLeLUU6UcInuUyA95vvF8MwPww1WCDkbFlYsqLl3tqMyL4yqn6saowvOEopFHYz2cyJ8X6mIJbl9jYcyMfMpXVDCDJqKjIzUBtXZu_S4mnUJiaQRhP7l8WtUhGgphHpL2i3SoZSxR05F4QeSlKC98T4Ciy7CiFQL3AaxMxmcHl57kmHHc7D67qsh4hsCjz0OEkCmMAxmhJife3UJPrc2bqXl6NHd3bxTS8Uf48zoUz0O5DeatDcrnd1ke_9NYN-BDD2zZgf_AJiy5ZgvW36Q73IJVqgNKxeXwddT79Lfh1xC3GTvpojXZKTZ1SWRn7AgPHx9XyX7ftNds7Anr7L5mJw2xwfFvo783nIzQ82wHJsdH54dD3td44CaRUctVnWthUxGViAVt7LQVtUisqWs03Es8cPI00TaNrKpUJWVaGpk6oYVJ0tS4xCSfYNDcN24XmEbTTbnSVsZUMrNxZl2EglR_y-Hj9uCzX7ti6hN5FCLPyA-l9-D7YjEXnd46UkVc9Gv_5Z-kvsKgfZi7bwhVWrsPy-Oz0X6_0V4AueznCA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LT9wwEB7RRaLiAC1vBJWl9uo8HNtJjgiBlra76qEr6CmyE6dFoLBis0LwG_jRzMRhQT1xQsohskeJ_JDnG883MwDfXCXoYFRcuaji0tWOyrw4rnKqbowqPE8oGnk01sOJ_H6hLpbg6jkWxszIp_yXCmbQRHR0pCag1s6t38WkU0gsjSDsJ5dPqzpEQyHMQ9J-kQ61jCVqOhIviLwU5YXvCVD0AyxrhcB9AMuT8a-jP57kmHHc7D67qsh4hsCjz0OEkCmMAxmhJife3UJPfZw3U3N_Z66vXymk03V4fB6K56FcBfPWBuXDf1ke32msn2CtB7bsyH_gMyy5ZgNWX6U73IAVqgNKxeXwddT79Dfh5xC3GTvrojXZD2zqksjO2AkePj6ukp1ftv_Y2BPW2U3Nzhpig-PfRi83nIzQ82wLJqcnv4-HvK_xwE0io5arOtfCpiIqEQva2GkrapFYU9douJd44ORpom0aWVWpSsq0NDJ1QguTpKlxiUm2YdDcNG4XmEbTTbnSVsZUMrNxZl2EglR_y-Hj9mDHr10x9Yk8CpFn5IfSe_B1sZiLTm8dqSIu-rXff5PUAQza27k7RKjS2i_9FnsCVOLl_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Head+Impact+Kinematics+Estimation+With+Network+of+Inertial+Measurement+Units&rft.jtitle=Journal+of+biomechanical+engineering&rft.issn=1528-8951&rft_id=info:doi/10.1115%2F1.4039987&rft.externalDocID=10.1115%2F1.4039987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-8951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-8951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-8951&client=summon